Probability and Measure 4

8.1 Let $\mu \in \mathbb{R}$ and $\sigma > 0$. Let X be a random variable with density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{(x-\mu)^2/(2\sigma^2)}, \quad x \in \mathbb{R}.$$

Set $Z = (X - \mu)/\sigma$. Show that Z has the standard normal density function. Deduce that $\mathbb{E}(X) = \mu$, $\text{var}(X) = \sigma^2$ and $\phi_X(u) = e^{iu\mu - u^2\sigma^2/2}$. Show that, for $a \neq 0$ and $b \in \mathbb{R}$, the random variable Y = aX + b has a density function of a similar form, for suitable μ_Y and σ_Y , to be determined.

8.2 Let $X = (X_1, ..., X_n)$ be a Gaussian random variable in \mathbb{R}^n with mean μ and covariance matrix V. Assume that V is invertible and set $Y = (Y_1, ..., Y_n) = V^{-1/2}(X - \mu)$. Show that $Y_1, ..., Y_n$ are independent N(0, 1) random variables. Show further that we can write X_2 in the form $X_2 = aX_1 + Z$ where Z is independent of X_1 and determine the distribution of Z.

8.3 Let X_1, \ldots, X_n be independent N(0,1) random variables. Show that

$$\left(\overline{X}, \sum_{m=1}^{n} (X_m - \overline{X})^2\right)$$
 and $\left(\frac{X_n}{\sqrt{n}}, \sum_{m=1}^{n-1} X_m^2\right)$

have the same distribution, where $\overline{X} = (X_1 + \cdots + X_n)/n$.

9.1 Let (E, \mathcal{E}, μ) be a measure space and $\theta : E \to E$ a measure-preserving transformation. Show that $\mathcal{E}_{\theta} := \{A \in \mathcal{E} : \theta^{-1}(A) = A\}$ is a σ -algebra, and that a measurable function f is \mathcal{E}_{θ} -measurable if and only if it is *invariant*, that is $f \circ \theta = f$.

9.2 Show that, if θ is an ergodic measure-preserving transformation and f is a θ -invariant function, then there exists a constant $c \in \mathbb{R}$ such that f = c a.e..

9.3 For $x \in [0,1)$, set $\theta(x) = 2x \mod 1$. Show that θ is a measure-preserving transformation of $([0,1), \mathcal{B}([0,1)), dx)$, and that θ is ergodic. Identify the invariant function \overline{f} corresponding to each integrable function f.

9.4 Fix $a \in [0,1)$ and define, for $x \in [0,1)$, $\theta(x) = x + a \mod 1$. Show that θ is also a measure-preserving transformation of $([0,1), \mathcal{B}([0,1)), dx)$. Determine for which values of a the transformation θ is ergodic. Hint: you may use the fact that any integrable function f on [0,1) whose Fourier coefficients all vanish must itself vanish a.e.. Identify, for all values of a, the invariant function \overline{f} corresponding to an integrable function f.

9.5 Call a sequence of random variables $(X_n : n \in \mathbb{N})$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ stationary if for each $n, k \in \mathbb{N}$ the random vectors (X_1, \ldots, X_n) and $(X_{k+1}, \ldots, X_{k+n})$ have the same distribution: for $A_1, \ldots, A_n \in \mathcal{B}$,

$$\mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \mathbb{P}(X_{k+1} \in A_1, \dots, X_{k+n} \in A_n).$$

Show that, if $(X_n : n \in \mathbb{N})$ is a stationary sequence and $X_1 \in L^p$, for some $p \in [1, \infty)$, then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}\to X \quad \text{a.s. and in } L^{p},$$

for some random variable $X \in L^p$ and find $\mathbb{E}(X)$.

- **10.1** Let $(X_n : n \in \mathbb{N})$ be a sequence of independent random variables, such that $\mathbb{E}(X_n) = \mu$ and $\mathbb{E}(X_n^4) \leq M$ for all n, for some constants $\mu \in \mathbb{R}$ and $M < \infty$. Set $P_n = X_1 X_2 + X_2 X_3 + \cdots + X_{n-1} X_n$. Show that P_n/n converges a.s. as $n \to \infty$ and identify the limit.
- **10.2** Let f be a bounded continuous function on $(0, \infty)$, having Laplace transform

$$\hat{f}(\lambda) = \int_0^\infty e^{-\lambda x} f(x) dx, \quad \lambda \in (0, \infty).$$

Let $(X_n : n \in \mathbb{N})$ be a sequence of independent exponential random variables, of parameter λ . Show that \hat{f} has derivatives of all orders on $(0, \infty)$ and that, for all $n \in \mathbb{N}$, for some $C(\lambda, n) \neq 0$ independent of f, we have

$$(d/d\lambda)^{n-1}\hat{f}(\lambda) = C(\lambda, n)\mathbb{E}(f(S_n))$$

where $S_n = X_1 + \cdots + X_n$. Deduce that if $\hat{f} \equiv 0$ then also $f \equiv 0$.

- **10.3** For each $n \in \mathbb{N}$, there is a unique probability measure μ_n on the unit sphere $S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ such that $\mu_n(A) = \mu_n(UA)$ for all Borel sets A and all orthogonal $n \times n$ matrices U. Fix $k \in \mathbb{N}$ and, for $n \geq k$, let γ_n denote the probability measure on \mathbb{R}^k which is the law of $\sqrt{n}(x^1, \ldots, x^k)$ under μ_n . Show
 - (i) if $X \sim N(0, I_n)$ then $X/|X| \sim \mu_n$,
 - (ii) if $(X_n : n \in \mathbb{N})$ is a sequence of independent N(0,1) random variables and if $R_n = \sqrt{X_1^2 + \dots + X_n^2}$ then $R_n / \sqrt{n} \to 1$ a.s.,
 - (iii) for all bounded continuous functions f on \mathbb{R}^k , $\gamma_n(f) \to \gamma(f)$, where γ is the standard Gaussian distribution on \mathbb{R}^k .