Probability and Measure 3

4.1 Let X be a random variable and let $1 \leq p < \infty$. Show that, if $X \in L^p(\mathbb{P})$, then $\mathbb{P}(|X| \geq \lambda) = O(\lambda^{-p})$ as $\lambda \to \infty$. Prove the identity

$$\mathbb{E}(|X|^p) = \int_0^\infty p\lambda^{p-1} \mathbb{P}(|X| \ge \lambda) d\lambda$$

and deduce that, for all q > p, if $\mathbb{P}(|X| \ge \lambda) = O(\lambda^{-q})$ as $\lambda \to \infty$, then $X \in L^p(\mathbb{P})$.

- **4.2** Give a simple proof of Schwarz' inequality $||fg||_1 \le ||f||_2 ||g||_2$ for measurable functions f and g.
- **4.3** Show that $||XY||_1 = ||X||_1 ||Y||_1$ for independent random variables X and Y. Show further that, if X and Y are also integrable, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.
- **4.4** A stepfunction $f: \mathbb{R} \to \mathbb{R}$ is any finite linear combination of indicator functions of finite intervals. Show that the set of stepfunctions \mathcal{I} is dense in $L^p(\mathbb{R})$ for all $p \in [1, \infty)$: that is, for all $f \in L^p(\mathbb{R})$ and all $\varepsilon > 0$ there exists $g \in \mathcal{I}$ such that $||f g||_p < \varepsilon$. Deduce that the set of continuous functions of compact support is also dense in $L^p(\mathbb{R})$ for all $p \in [1, \infty)$.
- **4.5** Let $(X_n : n \in \mathbb{N})$ be an identically distributed sequence in $L^2(\mathbb{P})$. Show that $n\mathbb{P}(|X_1| > \varepsilon \sqrt{n}) \to 0$ as $n \to \infty$, for all $\varepsilon > 0$. Deduce that $n^{-1/2} \max_{k \le n} |X_k| \to 0$ in probability.
- **5.1** Let (E, \mathcal{E}, μ) be a measure space and let $V_1 \leq V_2 \leq \ldots$ be an increasing sequence of closed subspaces of $L^2 = L^2(E, \mathcal{E}, \mu)$ for $f \in L^2$, denote by f_n the orthogonal projection of f on V_n . Show that f_n converges in L^2 .
- **5.2** Let $X = (X_1, ..., X_n)$ be a random variable, with all components in $L^2(\mathbb{P})$. The covariance matrix $var(X) = (c_{ij} : 1 \le i, j \le n)$ of X is defined by $c_{ij} = cov(X_i, X_j)$. Show that var(X) is a non-negative definite matrix.
- **6.1** Find a uniformly integrable sequence of random variables $(X_n : n \in \mathbb{N})$ such that both $X_n \to 0$ a.s. and $\mathbb{E}(\sup_n |X_n|) = \infty$.
- **6.3** Let $(X_n : n \in \mathbb{N})$ be an identically distributed sequence in $L^2(\mathbb{P})$. Show that $\mathbb{E}(\max_{k \le n} |X_k|)/\sqrt{n} \to 0$ as $n \to \infty$.
- **7.1** Show that the Fourier transform of a finite Borel measure is a bounded continuous function.

- **7.2** Determine which of the following distributions have an integrable characteristic function: normal, binomial, Poisson, U[0,1].
- **7.3** Show that there do not exist independent identically distributed random variables X, Y such that $X Y \sim U[-1, 1]$.
- 7.4 The Cauchy distribution has density function

$$f(x) = \frac{1}{\pi(1+x^2)}, \quad x \in \mathbb{R}.$$

Show that the corresponding characteristic function is given by

$$\varphi(u) = e^{-|u|}.$$

Show also that, if X_1, \ldots, X_n are independent Cauchy random variables, then the random variable $(X_1 + \cdots + X_n)/n$ is also Cauchy.

7.5 For a finite Borel measure μ on the line show that, if $\int |x|^k d\mu(x) < \infty$, then the Fourier transform $\hat{\mu}$ of μ has a kth continuous derivative, which at 0 is given by

$$\hat{\mu}^{(k)}(0) = i^k \int x^k d\mu(x).$$

- **7.6** (i) Show that for any real numbers a, b one has $\int_a^b e^{itx} dx \to 0$ as $|t| \to \infty$.
- (ii) Show that, for any $f \in L^1(\mathbb{R})$, the Fourier transform

$$\hat{f}(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx$$

tends to 0 as $|t| \to \infty$. This is the Riemann–Lebesgue Lemma.