
2.3. Random variables. Let (Ω, F, P) be a probability space and let (E, E) be a
measurable space. A measurable function X : Ω → E is called a random variable in

E. It has the interpretation of a quantity, or state, determined by chance. Where no
space E is mentioned, it is assumed that X takes values in R. The image measure
µX = P◦X−1 is called the law or distribution of X. For real-valued random variables,
µX is uniquely determined by its values on the π-system of intervals (−∞, x], x ∈ R,
given by

FX(x) = µX((−∞, x]) = P(X ≤ x).

The function FX is called the distribution function of X.
Note that F = FX is increasing and right-continuous, with

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1.

Let us call any function F : R → [0, 1] satisfying these conditions a distribution

function.
Set Ω = (0, 1] and F = B((0, 1]). Let P denote the restriction of Lebesgue measure

to F. Then (Ω, F, P) is a probability space. Let F be any distribution function.
Define X : Ω → R by

X(ω) = inf{x : ω ≤ F (x)}.
Then, by Lemma 2.2.1, X is a random variable and X(ω) ≤ x if and only if ω ≤ F (x).
So

FX(x) = P(X ≤ x) = P((0, F (x)]) = F (x).

Thus every distribution function is the distribution function of a random variable.
A countable family of random variables (Xi : i ∈ I) is said to be independent if

the σ-algebras (σ(Xi) : i ∈ I) are independent. For a sequence (Xn : n ∈ N) of real
valued random variables, this is equivalent to the condition

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn)

for all x1, . . . , xn ∈ R and all n. A sequence of random variables (Xn : n ≥ 0) is often
regarded as a process evolving in time. The σ-algebra generated by X0, . . . , Xn

Fn = σ(X0, . . . , Xn)

contains those events depending (measurably) on X0, . . . , Xn and represents what is
known about the process by time n.

2.4. Rademacher functions. We continue with the particular choice of probabil-
ity space (Ω, F, P) made in the preceding section. Provided that we forbid infinite
sequences of 0’s, each ω ∈ Ω has a unique binary expansion

ω = 0.ω1ω2ω3 . . . .

Define random variables Rn : Ω → {0, 1} by Rn(ω) = ωn. Then
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These are called the Rademacher functions. The random variables R1, R2, . . . are
independent and Bernoulli , that is to say

P(Rn = 0) = P(Rn = 1) = 1/2.

The strong law of large numbers (proved in §10) applies here to show that

P

({

ω ∈ (0, 1] :
|{k ≤ n : ωk = 1}|

n
→ 1

2

})

= P

(

R1 + · · · + Rn

n
→ 1

2

)

= 1.

This is called Borel’s normal number theorem: almost every point in (0, 1] is normal,
that is, has ‘equal’ proportions of 0’s and 1’s in its binary expansion.

We now use a trick involving the Rademacher functions to construct on Ω =
(0, 1], not just one random variable, but an infinite sequence of independent random
variables with given distribution functions.

Proposition 2.4.1. Let (Ω, F, P) be the probability space of Lebesgue measure on the

Borel subsets of (0, 1]. Let (Fn : n ∈ N) be a sequence of distribution functions. Then

there exists a sequence (Xn : n ∈ N) of independent random variables on (Ω, F, P)
such that Xn has distribution function FXn

= Fn for all n.

Proof. Choose a bijection m : N2 → N and set Yk,n = Rm(k,n), where Rm is the mth
Rademacher function. Set

Yn =

∞
∑

k=1

2−kYk,n.

Then Y1, Y2, . . . are independent and, for all n, for i2−k = 0.y1 . . . yk, we have

P(i2−k < Yn ≤ (i + 1)2−k) = P(Y1,n = y1, . . . , Yk,n = yk) = 2−k

so P(Yn ≤ x) = x for all x ∈ (0, 1]. Set

Gn(y) = inf{x : y ≤ Fn(x)}
then, by Lemma 2.2.1, Gn is Borel and Gn(y) ≤ x if and only if y ≤ Fn(x). So, if we
set Xn = Gn(Yn), then X1, X2, . . . are independent random variables on Ω and

P(Xn ≤ x) = P(Gn(Yn) ≤ x) = P(Yn ≤ Fn(x)) = Fn(x).
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