1.7. Uniqueness of measures.

Theorem 1.7.1 (Uniqueness of extension). Let μ_1, μ_2 be measures on (E, \mathcal{E}) with $\mu_1(E) = \mu_2(E) < \infty$. Suppose that $\mu_1 = \mu_2$ on \mathcal{A} , for some π -system \mathcal{A} generating \mathcal{E} . Then $\mu_1 = \mu_2$ on \mathcal{E} .

Proof. Consider $\mathcal{D} = \{A \in \mathcal{E} : \mu_1(A) = \mu_2(A)\}$. By hypothesis, $E \in \mathcal{D}$; for $A, B \in \mathcal{E}$ with $A \subseteq B$, we have

$$\mu_1(A) + \mu_1(B \setminus A) = \mu_1(B) < \infty, \quad \mu_2(A) + \mu_2(B \setminus A) = \mu_2(B) < \infty$$

so, if $A, B \in \mathcal{D}$, then also $B \setminus A \in \mathcal{D}$; if $A_n \in \mathcal{D}$, $n \in \mathbb{N}$, with $A_n \uparrow A$, then

$$\mu_1(A) = \lim_n \mu_1(A_n) = \lim_n \mu_2(A_n) = \mu_2(A)$$

so $A \in \mathcal{D}$. Thus \mathcal{D} is a d-system containing the π -system \mathcal{A} , so $\mathcal{D} = \mathcal{E}$ by Dynkin's lemma.

- 1.8. Borel sets and measures. Let E be a topological space. The σ -algebra generated by the set of open sets is E is called the *Borel* σ -algebra of E and is denoted $\mathcal{B}(E)$. The Borel σ -algebra of \mathbb{R} is denoted simply by \mathcal{B} . A measure μ on $(E, \mathcal{B}(E))$ is called a *Borel* measure on E. If moreover $\mu(K) < \infty$ for all compact sets K, then μ is called a *Radon* measure on E.
- 1.9. Probability, finite and σ -finite measures. If $\mu(E) = 1$ then μ is a probability measure and (E, \mathcal{E}, μ) is a probability space. The notation $(\Omega, \mathcal{F}, \mathbb{P})$ is often used to denote a probability space. If $\mu(E) < \infty$, then μ is a finite measure. If there exists a sequence of sets $(E_n : n \in \mathbb{N})$ in \mathcal{E} with $\mu(E_n) < \infty$ for all n and $\bigcup_n E_n = E$, then μ is a σ -finite measure.

1.10. Lebesgue measure.

Theorem 1.10.1. There exists a unique Borel measure μ on \mathbb{R} such that, for all $a, b \in \mathbb{R}$ with a < b,

$$\mu((a,b]) = b - a.$$

The measure μ is called *Lebesque measure* on \mathbb{R} .

Proof. (Existence.) Consider the ring \mathcal{A} of finite unions of disjoint intervals of the form

$$A = (a_1, b_1] \cup \cdots \cup (a_n, b_n].$$

We note that \mathcal{A} generates \mathcal{B} . Define for such $A \in \mathcal{A}$

$$\mu(A) = \sum_{i=1}^{n} (b_i - a_i).$$

Note that the presentation of A is not unique, as $(a,b] \cup (b,c] = (a,c]$ whenever a < b < c. Nevertheless, it is easy to check that μ is well-defined and additive.

We aim to show that μ is countably additive on \mathcal{A} , which then proves existence by Carathéodory's extension theorem.

By additivity, it suffices to show that, if $A \in \mathcal{A}$ and if $(A_n : n \in \mathbb{N})$ is an increasing sequence in \mathcal{A} with $A_n \uparrow A$, then $\mu(A_n) \to \mu(A)$. Set $B_n = A \setminus A_n$ then $B_n \in \mathcal{A}$ and $B_n \downarrow \emptyset$. By additivity again, it suffices to show that $\mu(B_n) \to 0$. Suppose, in fact, that for some $\varepsilon > 0$, we have $\mu(B_n) \geq 2\varepsilon$ for all n. For each n we can find $C_n \in \mathcal{A}$ with $\bar{C}_n \subseteq B_n$ and $\mu(B_n \setminus C_n) \leq \varepsilon 2^{-n}$. Then

$$\mu(B_n \setminus (C_1 \cap \cdots \cap C_n)) \le \mu((B_1 \setminus C_1) \cup \cdots \cup (B_n \setminus C_n)) \le \sum_{n \in \mathbb{N}} \varepsilon 2^{-n} = \varepsilon.$$

Since $\mu(B_n) \geq 2\varepsilon$, we must have $\mu(C_1 \cap \cdots \cap C_n) \geq \varepsilon$, so $C_1 \cap \cdots \cap C_n \neq \emptyset$, and so $K_n = \overline{C_1} \cap \cdots \cap \overline{C_n} \neq \emptyset$. Now $(K_n : n \in \mathbb{N})$ is a decreasing sequence of bounded non-empty closed sets in \mathbb{R} , so $\emptyset \neq \bigcap_n K_n \subseteq \bigcap_n B_n$, which is a contradiction.

(*Uniqueness*.) Let λ be any measure on \mathcal{B} with $\mu((a,b]) = b-a$ for all a < b. Fix n and consider

$$\mu_n(A) = \mu((n, n+1] \cap A), \quad \lambda_n(A) = \lambda((n, n+1] \cap A).$$

Then μ_n and λ_n are probability measures on \mathcal{B} and $\mu_n = \lambda_n$ on the π -system of intervals of the form (a, b], which generates \mathcal{B} . So, by Theorem 1.7.1, $\mu_n = \lambda_n$ on \mathcal{B} . Hence, for all $A \in \mathcal{B}$, we have

$$\mu(A) = \sum_{n} \mu_n(A) = \sum_{n} \lambda_n(A) = \lambda(A).$$