4. NORMS AND INEQUALITIES

4.1. LP-norms. Let (F, €&, u) be a measure space. For 1 < p < oo, we denote by
LP = LP(E, €, ) the set of measurable functions f with finite LP-norm:

1/p
11l = ( / \flpdu) < oo.

We denote by L* = L>*(FE, &, ) the set of measurable functions f with finite L*>°-
norm:

[flloo = inf{X: [f] < Xae}.
Note that ||f|l, < u(E)Y?||f|ls for all 1 < p < co. For 1 < p < oo and f, € LP, we
say that f,, converges to f in L* if || f, — f]l, — 0.

4.2. Chebyshev’s inequality. Let f be a non-negative measurable function and
let A > 0. We use the notation {f > A} for the set {x € E': f(x) > A}. Note that

Algpeay < f
so on integrating we obtain Chebyshev’s inequality

A(f = A) < p(f)

Now let g be any measurable function. We can deduce inequalities for g by choosing
some non-negative measurable function ¢ and applying Chebyshev’s inequality to
f=¢og. For example, if g € LP,p < oo and A > 0, then

u(lgl > A) = p(lgl” = N) < APu(|g|’) < oo.
So we obtain the tail estimate

n(lgl = A) = O(A7F), as A — oc.

4.3. Jensen’s inequality. Let I C R be an interval. A function ¢ : I — R is conver
if, for all z,y € I and ¢ € [0, 1],

c(tr + (1 —t)y) < te(z) + (1 —t)e(y).

Lemma 4.3.1. Let ¢ : I — R be convex and let m be a point in the interior of I.
Then there ezist a,b € R such ¢(x) > ax + b for all x, with equality at x = m.

Proof. By convexity, for m,z,y € I with x < m < y, we have

SC(y)—C(m).
m—x y—m

c(m) — ()

So, fixing an interior point m, there exists a € R such that, for all z < m and all
y>m

cm) —cla) __ ely) —elm)
m-x = y—-m
Then c¢(z) > a(x —m) + ¢(m), for all x € 1. O
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Theorem 4.3.2 (Jensen’s inequality). Let X be an integrable random variable with
values in I and let ¢ : I — R be convex. Then E(c(X)) is well defined and

E(c(X)) = c(E(X)).

Proof. The case where X is almost surely constant is easy. We exclude it. Then
m = E(X) must lie in the interior of I. Choose a,b € R as in the lemma. Then
c¢(X) > aX +b. In particular E(c(X)7) < |a|E(|X]) + [b] < o0, so E(¢(X)) is well
defined. Moreover

E(c(X)) > aE(X) +b=am+b=c(m) = c¢(E(X)).
0J

We deduce from Jensen’s inequality the monotonicity of LP-norms with respect to
a probability measure. Let 1 < p < q < oo. Set ¢(x) = |2|%?, then c is convex. So,
for any X € L*(P),

1X 1, = EIXP)P = ((EIX|")Y? < (Ee(|X[P) = (EX|)Y = |1 X]],.
In particular, LP(P) O L9(P).

4.4. Holder’s inequality and Minkowski’s inequality. For p,q € [1, o], we say
that p and ¢ are conjugate indices if

11
S4o=1
P g

Theorem 4.4.1 (Hoélder’s inequality). Let p,q € (1,00) be conjugate indices. Then,
for all measurable functions f and g, we have

pdlfal) < WA llnliglle:

Proof. The cases where | f|l, = 0 or ||f||, = oo are obvious. We exclude them.
Then, by multiplying f by an appropriate constant, we are reduced to the case where
| fll, = 1. So we can define a probability measure P on € by

P = [ I7Pdn
A
For measurable functions X > 0,
E(X) = u(X|fI"), E(X) < E(X9)"7.
Note that g(p — 1) = p. Then

q 1/q
s = (i) =2 () <= () = mlol = Wbl
O
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Theorem 4.4.2 (Minkowski’s inequality). For p € [1,00) and measurable functions
f and g, we have
1f + gllp < [1fllp + llgllp-

Proof. The cases where p = 1 or where || f||, = oo or ||g||, = oo are easy. We exclude
them. Then, since |f + g[? < 2P(| f|? + |g|?), we have

pllf +g”) < 27 f17) + (gl } < oo.
The case where || f + g||, = 0 is clear, so let us assume ||f + g||, > 0. Observe that
I1f + gl lg = n(lf + gl "DV = (| f + gIP)' =7
So, by Holder’s inequality,
p(lf +gl") < pFINF + glP=) + pllgllf + 9P~
< (£l + Ngll)ULf + g7 g
The result follows on dividing both sides by ||| f + g[*~ |, O
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