4. Norms and inequalities

4.1. L^p -norms. Let (E, \mathcal{E}, μ) be a measure space. For $1 \leq p < \infty$, we denote by $L^p = L^p(E, \mathcal{E}, \mu)$ the set of measurable functions f with finite L^p -norm:

$$||f||_p = \left(\int_E |f|^p d\mu\right)^{1/p} < \infty.$$

We denote by $L^{\infty} = L^{\infty}(E, \mathcal{E}, \mu)$ the set of measurable functions f with finite L^{∞} -norm:

$$||f||_{\infty} = \inf\{\lambda : |f| \le \lambda \text{ a.e.}\}.$$

Note that $||f||_p \leq \mu(E)^{1/p} ||f||_{\infty}$ for all $1 \leq p < \infty$. For $1 \leq p \leq \infty$ and $f_n \in L^p$, we say that f_n converges to f in L^p if $||f_n - f||_p \to 0$.

4.2. Chebyshev's inequality. Let f be a non-negative measurable function and let $\lambda \ge 0$. We use the notation $\{f \ge \lambda\}$ for the set $\{x \in E : f(x) \ge \lambda\}$. Note that

$$\lambda 1_{\{f \ge \lambda\}} \le f$$

so on integrating we obtain *Chebyshev's inequality*

 $\lambda \mu(f \ge \lambda) \le \mu(f).$

Now let g be any measurable function. We can deduce inequalities for g by choosing some non-negative measurable function ϕ and applying Chebyshev's inequality to $f = \phi \circ g$. For example, if $g \in L^p$, $p < \infty$ and $\lambda > 0$, then

$$\mu(|g| \ge \lambda) = \mu(|g|^p \ge \lambda^p) \le \lambda^{-p} \mu(|g|^p) < \infty.$$

So we obtain the *tail estimate*

$$\mu(|g| \ge \lambda) = O(\lambda^{-p}), \quad \text{as } \lambda \to \infty.$$

4.3. Jensen's inequality. Let $I \subseteq \mathbb{R}$ be an interval. A function $c: I \to \mathbb{R}$ is convex if, for all $x, y \in I$ and $t \in [0, 1]$,

$$c(tx + (1 - t)y) \le tc(x) + (1 - t)c(y).$$

Lemma 4.3.1. Let $c : I \to \mathbb{R}$ be convex and let m be a point in the interior of I. Then there exist $a, b \in \mathbb{R}$ such $c(x) \ge ax + b$ for all x, with equality at x = m.

Proof. By convexity, for $m, x, y \in I$ with x < m < y, we have

$$\frac{c(m) - c(x)}{m - x} \le \frac{c(y) - c(m)}{y - m}.$$

So, fixing an interior point m, there exists $a \in \mathbb{R}$ such that, for all x < m and all y > m

$$\frac{c(m) - c(x)}{m - x} \le a \le \frac{c(y) - c(m)}{y - m}.$$

Then $c(x) \ge a(x - m) + c(m)$, for all $x \in I$.

Theorem 4.3.2 (Jensen's inequality). Let X be an integrable random variable with values in I and let $c: I \to \mathbb{R}$ be convex. Then $\mathbb{E}(c(X))$ is well defined and

$$\mathbb{E}(c(X)) \ge c(\mathbb{E}(X)).$$

Proof. The case where X is almost surely constant is easy. We exclude it. Then $m = \mathbb{E}(X)$ must lie in the interior of I. Choose $a, b \in \mathbb{R}$ as in the lemma. Then $c(X) \ge aX + b$. In particular $\mathbb{E}(c(X)^{-}) \le |a|\mathbb{E}(|X|) + |b| < \infty$, so $\mathbb{E}(c(X))$ is well defined. Moreover

$$\mathbb{E}(c(X)) \ge a\mathbb{E}(X) + b = am + b = c(m) = c(\mathbb{E}(X)).$$

We deduce from Jensen's inequality the monotonicity of L^p -norms with respect to a probability measure. Let $1 \leq p < q < \infty$. Set $c(x) = |x|^{q/p}$, then c is convex. So, for any $X \in L^p(\mathbb{P})$,

$$\|X\|_p = (\mathbb{E}|X|^p)^{1/p} = (c(\mathbb{E}|X|^p))^{1/q} \le (\mathbb{E}\,c(|X|^p))^{1/q} = (\mathbb{E}|X|^q)^{1/q} = \|X\|_q$$

In particular, $L^p(\mathbb{P}) \supseteq L^q(\mathbb{P})$.

4.4. Hölder's inequality and Minkowski's inequality. For $p, q \in [1, \infty]$, we say that p and q are *conjugate indices* if

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Theorem 4.4.1 (Hölder's inequality). Let $p, q \in (1, \infty)$ be conjugate indices. Then, for all measurable functions f and g, we have

$$\mu(|fg|) \le ||f||_p ||g||_q.$$

Proof. The cases where $||f||_p = 0$ or $||f||_p = \infty$ are obvious. We exclude them. Then, by multiplying f by an appropriate constant, we are reduced to the case where $||f||_p = 1$. So we can define a probability measure \mathbb{P} on \mathcal{E} by

$$\mathbb{P}(A) = \int_A |f|^p d\mu.$$

For measurable functions $X \ge 0$,

$$\mathbb{E}(X) = \mu(X|f|^p), \quad \mathbb{E}(X) \le \mathbb{E}(X^q)^{1/q}.$$

Note that q(p-1) = p. Then

$$\mu(|fg|) = \mu\left(\frac{|g|}{|f|^{p-1}}|f|^p\right) = \mathbb{E}\left(\frac{|g|}{|f|^{p-1}}\right) \le \mathbb{E}\left(\frac{|g|^q}{|f|^{q(p-1)}}\right)^{1/q} = \mu(|g|^q)^{1/q} = \|f\|_p \|g\|_q.$$

Theorem 4.4.2 (Minkowski's inequality). For $p \in [1, \infty)$ and measurable functions f and g, we have

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Proof. The cases where p = 1 or where $||f||_p = \infty$ or $||g||_p = \infty$ are easy. We exclude them. Then, since $|f + g|^p \leq 2^p(|f|^p + |g|^p)$, we have

$$\mu(|f+g|^p) \le 2^p \{\mu(|f|^p) + \mu(|g|^p)\} < \infty.$$

The case where $||f + g||_p = 0$ is clear, so let us assume $||f + g||_p > 0$. Observe that

$$|||f+g|^{p-1}||_q = \mu(|f+g|^{(p-1)q})^{1/q} = \mu(|f+g|^p)^{1-1/p}.$$

So, by Hölder's inequality,

$$\mu(|f+g|^p) \le \mu(|f||f+g|^{p-1}) + \mu(|g||f+g|^{p-1})$$

$$\le (||f||_p + ||g||_p)||f+g|^{p-1}||_q.$$

The result follows on dividing both sides by $|||f + g|^{p-1}||_q$.