
4. Norms and inequalities

4.1. Lp-norms. Let (E, E, µ) be a measure space. For 1 ≤ p < ∞, we denote by
Lp = Lp(E, E, µ) the set of measurable functions f with finite Lp-norm:

‖f‖p =

(
∫

E

|f |pdµ

)1/p

< ∞.

We denote by L∞ = L∞(E, E, µ) the set of measurable functions f with finite L∞-
norm:

‖f‖∞ = inf{λ : |f | ≤ λ a.e.}.
Note that ‖f‖p ≤ µ(E)1/p‖f‖∞ for all 1 ≤ p < ∞. For 1 ≤ p ≤ ∞ and fn ∈ Lp, we
say that fn converges to f in Lp if ‖fn − f‖p → 0.

4.2. Chebyshev’s inequality. Let f be a non-negative measurable function and
let λ ≥ 0. We use the notation {f ≥ λ} for the set {x ∈ E : f(x) ≥ λ}. Note that

λ1{f≥λ} ≤ f

so on integrating we obtain Chebyshev’s inequality

λµ(f ≥ λ) ≤ µ(f).

Now let g be any measurable function. We can deduce inequalities for g by choosing
some non-negative measurable function φ and applying Chebyshev’s inequality to
f = φ ◦ g. For example, if g ∈ Lp, p < ∞ and λ > 0, then

µ(|g| ≥ λ) = µ(|g|p ≥ λp) ≤ λ−pµ(|g|p) < ∞.

So we obtain the tail estimate

µ(|g| ≥ λ) = O(λ−p), as λ → ∞.

4.3. Jensen’s inequality. Let I ⊆ R be an interval. A function c : I → R is convex
if, for all x, y ∈ I and t ∈ [0, 1],

c(tx + (1 − t)y) ≤ tc(x) + (1 − t)c(y).

Lemma 4.3.1. Let c : I → R be convex and let m be a point in the interior of I.
Then there exist a, b ∈ R such c(x) ≥ ax + b for all x, with equality at x = m.

Proof. By convexity, for m, x, y ∈ I with x < m < y, we have

c(m) − c(x)

m − x
≤ c(y) − c(m)

y − m
.

So, fixing an interior point m, there exists a ∈ R such that, for all x < m and all
y > m

c(m) − c(x)

m − x
≤ a ≤ c(y) − c(m)

y − m
.

Then c(x) ≥ a(x − m) + c(m), for all x ∈ I. �
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Theorem 4.3.2 (Jensen’s inequality). Let X be an integrable random variable with
values in I and let c : I → R be convex. Then E(c(X)) is well defined and

E(c(X)) ≥ c(E(X)).

Proof. The case where X is almost surely constant is easy. We exclude it. Then
m = E(X) must lie in the interior of I. Choose a, b ∈ R as in the lemma. Then
c(X) ≥ aX + b. In particular E(c(X)−) ≤ |a|E(|X|) + |b| < ∞, so E(c(X)) is well
defined. Moreover

E(c(X)) ≥ aE(X) + b = am + b = c(m) = c(E(X)).

�

We deduce from Jensen’s inequality the monotonicity of Lp-norms with respect to
a probability measure. Let 1 ≤ p < q < ∞. Set c(x) = |x|q/p, then c is convex. So,
for any X ∈ Lp(P),

‖X‖p = (E|X|p)1/p = (c(E|X|p))1/q ≤ (E c(|X|p))1/q = (E|X|q)1/q = ‖X‖q.

In particular, Lp(P) ⊇ Lq(P).

4.4. Hölder’s inequality and Minkowski’s inequality. For p, q ∈ [1,∞], we say
that p and q are conjugate indices if

1

p
+

1

q
= 1.

Theorem 4.4.1 (Hölder’s inequality). Let p, q ∈ (1,∞) be conjugate indices. Then,
for all measurable functions f and g, we have

µ(|fg|) ≤ ‖f‖p‖g‖q.

Proof. The cases where ‖f‖p = 0 or ‖f‖p = ∞ are obvious. We exclude them.
Then, by multiplying f by an appropriate constant, we are reduced to the case where
‖f‖p = 1. So we can define a probability measure P on E by

P(A) =

∫

A

|f |pdµ.

For measurable functions X ≥ 0,

E(X) = µ(X|f |p), E(X) ≤ E(Xq)1/q.

Note that q(p − 1) = p. Then

µ(|fg|) = µ

( |g|
|f |p−1

|f |p
)

= E

( |g|
|f |p−1

)

≤ E

( |g|q
|f |q(p−1)

)1/q

= µ(|g|q)1/q = ‖f‖p‖g‖q.

�
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Theorem 4.4.2 (Minkowski’s inequality). For p ∈ [1,∞) and measurable functions
f and g, we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. The cases where p = 1 or where ‖f‖p = ∞ or ‖g‖p = ∞ are easy. We exclude
them. Then, since |f + g|p ≤ 2p(|f |p + |g|p), we have

µ(|f + g|p) ≤ 2p{µ(|f |p) + µ(|g|p)} < ∞.

The case where ‖f + g‖p = 0 is clear, so let us assume ‖f + g‖p > 0. Observe that

‖|f + g|p−1‖q = µ(|f + g|(p−1)q)1/q = µ(|f + g|p)1−1/p.

So, by Hölder’s inequality,

µ(|f + g|p) ≤ µ(|f ||f + g|p−1) + µ(|g||f + g|p−1)

≤ (‖f‖p + ‖g‖p)‖|f + g|p−1‖q.

The result follows on dividing both sides by ‖|f + g|p−1‖q. �
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