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1. Measures

1.1. Definitions. Let E be a set. A σ-algebra E on E is a set of subsets of E,
containing the empty set ∅ and such that, for all A ∈ E and all sequences (An : n ∈ N)
in E,

Ac ∈ E,
⋃
n

An ∈ E.

The pair (E,E) is called a measurable space. Given (E,E), each A ∈ E is called a
measurable set.

A measure µ on (E,E) is a function µ : E → [0,∞], with µ(∅) = 0, such that, for
any sequence (An : n ∈ N) of disjoint elements of E,

µ

(⋃
n

An

)
=
∑
n

µ(An).

This property is called countable additivity. The triple (E,E, µ) is called a measure
space.

1.2. Discrete measure theory. Let E be a countable set and let E be the set of
all subsets of E. A mass function is any function m : E → [0,∞]. If µ is a measure
on (E,E), then, by countable additivity,

µ(A) =
∑
x∈A

µ({x}), A ⊆ E.

So there is a one-to-one correspondence between measures and mass functions, given
by

m(x) = µ({x}), µ(A) =
∑
x∈A

m(x).

This sort of measure space provides a toy version of the general theory, where each
of the results we prove for general measure spaces reduces to some straightforward
fact about the convergence of series. This is all one needs to do elementary discrete
probability and discrete-time Markov chains, so these topics are usually introduced
without discussing measure theory.

Discrete measure theory is essentially the only context where one can define a
measure explicitly, because, in general, σ-algebras are not amenable to an explicit
presentation which would allow us to make such a definition. Instead one specifies
the values to be taken on some smaller set of subsets, which generates the σ-algebra.
This gives rise to two problems: first to know that there is a measure extending the
given set function, second to know that there is not more than one. The first problem,
which is one of construction, is often dealt with by Carathéodory’s extension theorem.
The second problem, that of uniqueness, is often dealt with by Dynkin’s π-system
lemma.
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1.3. Generated σ-algebras. Let A be a set of subsets of E. Define

σ(A) = {A ⊆ E : A ∈ E for all σ-algebras E containing A}.

Then σ(A) is a σ-algebra, which is called the σ-algebra generated by A . It is the
smallest σ-algebra containing A.

1.4. π-systems and d-systems. Let A be a set of subsets of E. Say that A is a
π-system if ∅ ∈ A and, for all A,B ∈ A,

A ∩B ∈ A.

Say that A is a d-system if E ∈ A and, for all A,B ∈ A with A ⊆ B and all increasing
sequences (An : n ∈ N) in A,

B \ A ∈ A,
⋃
n

An ∈ A.

Note that, if A is both a π-system and a d-system, then A is a σ-algebra.

Lemma 1.4.1 (Dynkin’s π-system lemma). Let A be a π-system. Then any d-system
containing A contains also the σ-algebra generated by A.

Proof. Denote by D the intersection of all d-systems containing A. Then D is itself
a d-system. We shall show that D is also a π-system and hence a σ-algebra, thus
proving the lemma. Consider

D′ = {B ∈ D : B ∩ A ∈ D for all A ∈ A}.

Then A ⊆ D′ because A is a π-system. Let us check that D′ is a d-system: clearly
E ∈ D′; next, suppose B1, B2 ∈ D′ with B1 ⊆ B2, then for A ∈ A we have

(B2 \B1) ∩ A = (B2 ∩ A) \ (B1 ∩ A) ∈ D

because D is a d-system, so B2 \ B1 ∈ D′; finally, if Bn ∈ D′, n ∈ N, and Bn ↑ B,
then for A ∈ A we have

Bn ∩ A ↑ B ∩ A

so B ∩ A ∈ D and B ∈ D′. Hence D = D′.

Now consider

D′′ = {B ∈ D : B ∩ A ∈ D for all A ∈ D}.

Then A ⊆ D′′ because D = D′. We can check that D′′ is a d-system, just as we did
for D′. Hence D′′ = D which shows that D is a π-system as promised. �
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1.5. Set functions and properties. Let A be any set of subsets of E containing
the empty set ∅. A set function is a function µ : A→ [0,∞] with µ(∅) = 0. Let µ be
a set function. Say that µ is increasing if, for all A,B ∈ A with A ⊆ B,

µ(A) ≤ µ(B).

Say that µ is additive if, for all disjoint sets A,B ∈ A with A ∪B ∈ A,

µ(A ∪B) = µ(A) + µ(B).

Say that µ is countably additive if, for all sequences of disjoint sets (An : n ∈ N) in
A with

⋃
nAn ∈ A,

µ

(⋃
n

An

)
=
∑
n

µ(An).

Say that µ is countably subadditive if, for all sequences (An : n ∈ N) in A with⋃
nAn ∈ A,

µ

(⋃
n

An

)
≤
∑
n

µ(An).

1.6. Construction of measures. Let A be a set of subsets of E. Say that A is a
ring on E if ∅ ∈ A and, for all A,B ∈ A,

B \ A ∈ A, A ∪B ∈ A.

Say that A is an algebra on E if ∅ ∈ A and, for all A,B ∈ A,

Ac ∈ A, A ∪B ∈ A.

Theorem 1.6.1 (Carathéodory’s extension theorem). Let A be a ring of subsets of
E and let µ : A → [0,∞] be a countably additive set function. Then µ extends to a
measure on the σ-algebra generated by A.

Proof. For any B ⊆ E, define the outer measure

µ∗(B) = inf
∑
n

µ(An)

where the infimum is taken over all sequences (An : n ∈ N) in A such that B ⊆
⋃
nAn

and is taken to be ∞ if there is no such sequence. Note that µ∗ is increasing and
µ∗(∅) = 0. Let us say that A ⊆ E is µ∗-measurable if, for all B ⊆ E,

µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac).

Write M for the set of all µ∗-measurable sets. We shall show that M is a σ-algebra
containing A and that µ∗ restricts to a measure on M, extending µ. This will prove
the theorem.
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Step I. We show that µ∗ is countably subadditive. Suppose that B ⊆
⋃
nBn. We have

to show that
µ∗(B) ≤

∑
n

µ∗(Bn).

It will suffice to consider the case where µ∗(Bn) < ∞ for all n. Then, given ε > 0,
there exist sequences (Anm : m ∈ N) in A, with

Bn ⊆
⋃
m

Anm, µ∗(Bn) + ε/2n ≥
∑
m

µ(Anm).

Now
B ⊆

⋃
n

⋃
m

Anm

so
µ∗(B) ≤

∑
n

∑
m

µ(Anm) ≤
∑
n

µ∗(Bn) + ε.

Since ε > 0 was arbitrary, we are done.

Step II. We show that µ∗ extends µ. Since A is a ring and µ is countably additive,
µ is countably subadditive and increasing. Hence, for A ∈ A and any sequence
(An : n ∈ N) in A with A ⊆

⋃
nAn,

µ(A) ≤
∑
n

µ(A ∩ An) ≤
∑
n

µ(An).

On taking the infimum over all such sequences, we see that µ(A) ≤ µ∗(A). On the
other hand, it is obvious that µ∗(A) ≤ µ(A) for A ∈ A.

Step III. We show that M contains A. Let A ∈ A and B ⊆ E. We have to show that

µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac).
By subadditivity of µ∗, it is enough to show that

µ∗(B) ≥ µ∗(B ∩ A) + µ∗(B ∩ Ac).
If µ∗(B) = ∞, this is clearly true, so let us assume that µ∗(B) < ∞. Then, given
ε > 0, we can find a sequence (An : n ∈ N) in A such that

B ⊆
⋃
n

An, µ∗(B) + ε ≥
∑
n

µ(An).

Then
B ∩ A ⊆

⋃
n

(An ∩ A), B ∩ Ac ⊆
⋃
n

(An ∩ Ac)

so

µ∗(B ∩A) + µ∗(B ∩Ac) ≤
∑
n

µ(An ∩A) +
∑
n

µ(An ∩Ac) =
∑
n

µ(An) ≤ µ∗(B) + ε.

Since ε > 0 was arbitrary, we are done.
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Step IV. We show that M is an algebra. Clearly E ∈ M and Ac ∈ M whenever
A ∈M. Suppose that A1, A2 ∈M and B ⊆ E. Then

µ∗(B) = µ∗(B ∩ A1) + µ∗(B ∩ Ac1)
= µ∗(B ∩ A1 ∩ A2) + µ∗(B ∩ A1 ∩ Ac2) + µ∗(B ∩ Ac1)
= µ∗(B ∩ A1 ∩ A2) + µ∗(B ∩ (A1 ∩ A2)

c ∩ A1) + µ∗(B ∩ (A1 ∩ A2)
c ∩ Ac1)

= µ∗(B ∩ (A1 ∩ A2)) + µ∗(B ∩ (A1 ∩ A2)
c).

Hence A1 ∩ A2 ∈M.

Step V. We show that M is a σ-algebra and that µ∗ restricts to a measure on M. We
already know that M is an algebra, so it suffices to show that, for any sequence of
disjoint sets (An : n ∈ N) in M, for A =

⋃
nAn we have

A ∈M, µ∗(A) =
∑
n

µ∗(An).

So, take any B ⊆ E, then

µ∗(B) = µ∗(B ∩ A1) + µ∗(B ∩ Ac1)
= µ∗(B ∩ A1) + µ∗(B ∩ A2) + µ∗(B ∩ Ac1 ∩ Ac2)

= · · · =
n∑
i=1

µ∗(B ∩ Ai) + µ∗(B ∩ Ac1 ∩ · · · ∩ Acn).

Note that µ∗(B ∩ Ac1 ∩ · · · ∩ Acn) ≥ µ∗(B ∩ Ac) for all n. Hence, on letting n → ∞
and using countable subadditivity, we get

µ∗(B) ≥
∞∑
n=1

µ∗(B ∩ An) + µ∗(B ∩ Ac) ≥ µ∗(B ∩ A) + µ∗(B ∩ Ac).

The reverse inequality holds by subadditivity, so we have equality. Hence A ∈ M

and, setting B = A, we get

µ∗(A) =
∞∑
n=1

µ∗(An).

�

1.7. Uniqueness of measures.

Theorem 1.7.1 (Uniqueness of extension). Let µ1, µ2 be measures on (E,E) with
µ1(E) = µ2(E) < ∞. Suppose that µ1 = µ2 on A, for some π-system A generating
E. Then µ1 = µ2 on E.

Proof. Consider D = {A ∈ E : µ1(A) = µ2(A)}. By hypothesis, E ∈ D; for A,B ∈ E

with A ⊆ B, we have

µ1(A) + µ1(B \ A) = µ1(B) <∞, µ2(A) + µ2(B \ A) = µ2(B) <∞
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so, if A,B ∈ D, then also B \ A ∈ D; if An ∈ D, n ∈ N, with An ↑ A, then

µ1(A) = lim
n
µ1(An) = lim

n
µ2(An) = µ2(A)

so A ∈ D. Thus D is a d-system containing the π-system A, so D = E by Dynkin’s
lemma. �

1.8. Borel sets and measures. Let E be a Hausdorff topological space. The σ-
algebra generated by the set of open sets is E is called the Borel σ-algebra of E and
is denoted B(E). The Borel σ-algebra of R is denoted simply by B. A measure µ on
(E,B(E)) is called a Borel measure on E. If moreover µ(K) < ∞ for all compact
sets K, then µ is called a Radon measure on E.

1.9. Probability measures, finite and σ-finite measures. If µ(E) = 1 then µ
is a probability measure and (E,E, µ) is a probability space. The notation (Ω,F,P) is
often used to denote a probability space. If µ(E) < ∞, then µ is a finite measure.
If there exists a sequence of sets (En : n ∈ N) in E with µ(En) < ∞ for all n and⋃
nEn = E, then µ is a σ-finite measure.

1.10. Lebesgue measure.

Theorem 1.10.1. There exists a unique Borel measure µ on R such that, for all
a, b ∈ R with a < b,

µ((a, b]) = b− a.

The measure µ is called Lebesgue measure on R.

Proof. (Existence.) Consider the ring A of finite unions of disjoint intervals of the
form

A = (a1, b1] ∪ · · · ∪ (an, bn].

We note that A generates B. Define for such A ∈ A

µ(A) =
n∑
i=1

(bi − ai).

Note that the presentation of A is not unique, as (a, b] ∪ (b, c] = (a, c] whenever
a < b < c. Nevertheless, it is easy to check that µ is well-defined and additive. We
aim to show that µ is countably additive on A, from which the existence of a Borel
measure extending µ follows by Carathéodory’s extension theorem.

By additivity, it suffices to show that, if A ∈ A and if (An : n ∈ N) is an increasing
sequence in A with An ↑ A, then µ(An)→ µ(A). Set Bn = A \An then Bn ∈ A and
Bn ↓ ∅. By additivity again, it suffices to show that µ(Bn) → 0. Suppose, in fact,
that for some ε > 0, we have µ(Bn) ≥ 2ε for all n. For each n we can find Cn ∈ A

with C̄n ⊆ Bn and µ(Bn \ Cn) ≤ ε2−n. Then

µ(Bn \ (C1 ∩ · · · ∩ Cn)) ≤ µ((B1 \ C1) ∪ · · · ∪ (Bn \ Cn)) ≤
∑
n∈N

ε2−n = ε.
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Since µ(Bn) ≥ 2ε, we must have µ(C1 ∩ · · · ∩ Cn) ≥ ε, so C1 ∩ · · · ∩ Cn 6= ∅, and
so Kn = C̄1 ∩ · · · ∩ C̄n 6= ∅. Now (Kn : n ∈ N) is a decreasing sequence of bounded
non-empty closed sets in R, so ∅ 6=

⋂
nKn ⊆

⋂
nBn, which is a contradiction.

(Uniqueness.) Let λ be any measure on B with λ((a, b]) = b− a for all a < b. Fix n
and consider

µn(A) = µ((n, n+ 1] ∩ A), λn(A) = λ((n, n+ 1] ∩ A).

Then µn and λn are probability measures on B and µn = λn on the π-system of
intervals of the form (a, b], which generates B. So, by Theorem 1.7.1, µn = λn on B.
Hence, for all A ∈ B, we have

µ(A) =
∑
n

µn(A) =
∑
n

λn(A) = λ(A).

�
The condition which characterizes Lebesgue measure µ on B allows us to check

that µ is translation invariant: define for x ∈ R and B ∈ B

µx(B) = µ(B + x), B + x = {b+ x : b ∈ B}
then µx((a, b]) = (b+x)− (a+x) = b−a, so µx = µ, that is to say µ(B+x) = µ(B).

The restriction of Lebesgue measure to B((0, 1]) has another sort of translation
invariance, where now we understand B + x as the subset of (0, 1] obtained after
translation by x and reduction modulo 1. This can be checked by a similar argument.

If we inspect the proof of Carathéodory’s Extension Theorem, and consider its
application in Theorem 1.10.1, we see we have constructed not only a Borel measure
µ but also an extension of µ to the set of outer measurable sets M. In this context, the
extension is also called Lebesgue measure and M is called the Lebesgue σ-algebra.
In fact, the Lebesgue σ-algebra can be identified also as the set of all sets of the
form A ∪ N , where A ∈ B and N ⊆ B for some B ∈ B with µ(B) = 0. Moreover
µ(A ∪N) = µ(A) in this case.

1.11. Existence of a non-Lebesgue-measurable subset of R. For x, y ∈ [0, 1),
let us write x ∼ y if x− y ∈ Q. Then ∼ is an equivalence relation. Using the Axiom
of Choice, we can find a subset S of [0, 1) containing exactly one representative of
each equivalence class. We will show that S cannot be Lebesgue measurable.

Set Q = Q ∩ [0, 1) and, for each q ∈ Q, define S + q = {s + q (mod 1): s ∈ S}.
It is an easy exercise to check that the sets S + q are all disjoint and their union is
[0, 1). On the other hand, the Lebesgue σ-algebra and Lebesgue measure on (0, 1] are
translation invariant for addition modulo 1. Hence, if we suppose that S is Lebesgue
measurable, then so is S + q, with µ(S + q) = µ(S). But then

1 = µ([0, 1)) =
∑
q∈Q

µ(S + q) =
∑
q∈Q

µ(S)

which is impossible. Hence S is not Lebesgue measurable.
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1.12. Independence. A probability space (Ω,F,P) provides a model for an experi-
ment whose outcome is subject to chance, according to the following interpretation:

Ω is the set of possible outcomes
F is the set of observable sets of outcomes, or events
P(A) is the probability of the event A.

Relative to measure theory, probability theory is enriched by the significance attached
to the notion of independence. Let I be a countable set. Say that a family (Ai : i ∈ I)
of events is independent if, for all finite subsets J ⊆ I,

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai).

Say that a family (Ai : i ∈ I) of sub-σ-algebras of F is independent if the family
(Ai : i ∈ I) is independent whenever Ai ∈ Ai for all i. Here is a useful way to
establish the independence of two σ-algebras.

Theorem 1.12.1. Let A1 and A2 be π-systems contained in F and suppose that

P(A1 ∩ A2) = P(A1)P(A2)

whenever A1 ∈ A1 and A2 ∈ A2. Then σ(A1) and σ(A2) are independent.

Proof. Fix A1 ∈ A1 and define for A ∈ F

µ(A) = P(A1 ∩ A), ν(A) = P(A1)P(A).

Then µ and ν are measures which agree on the π-system A2, with µ(Ω) = ν(Ω) =
P(A1) <∞. So, by uniqueness of extension, for all A2 ∈ σ(A2),

P(A1 ∩ A2) = µ(A2) = ν(A2) = P(A1)P(A2).

Now fix A2 ∈ σ(A2) and repeat the argument with

µ′(A) = P(A ∩ A2), ν ′(A) = P(A)P(A2)

to show that, for all A1 ∈ σ(A1),

P(A1 ∩ A2) = P(A1)P(A2).

�

1.13. Borel-Cantelli lemmas. Given a sequence of events (An : n ∈ N), we may
ask for the probability that infinitely many occur. Set

lim supAn =
⋂
n

⋃
m≥n

Am, lim inf An =
⋃
n

⋂
m≥n

Am.

We sometimes write {An infinitely often} as an alternative for lim supAn, because
ω ∈ lim supAn if and only if ω ∈ An for infinitely many n. Similarly, we write
{An eventually} for lim inf An. The abbreviations i.o. and ev. are often used.
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Lemma 1.13.1 (First Borel–Cantelli lemma). If
∑

n P(An) <∞, then P(An i.o.) =
0.

Proof. As n→∞ we have

P(An i.o.) ≤ P(
⋃
m≥n

Am) ≤
∑
m≥n

P(Am)→ 0.

�

We note that this argument is valid whether or not P is a probability measure.

Lemma 1.13.2 (Second Borel–Cantelli lemma). Assume that the events (An : n ∈ N)
are independent. If

∑
n P(An) =∞, then P(An i.o.) = 1.

Proof. We use the inequality 1− a ≤ e−a. The events (Acn : n ∈ N) are also indepen-
dent. Set an = P(An). For all n and for N ≥ n with N →∞ we have

P(
N⋂

m=n

Acm) =
N∏

m=n

(1− am) ≤ exp{−
N∑

m=n

am} → 0.

Hence P(
⋂
m≥nA

c
m) = 0 for all n, and so P(An i.o.) = 1− P(

⋃
n

⋂
m≥nA

c
m) = 1. �

2. Measurable functions and random variables

2.1. Measurable functions. Let (E,E) and (G,G) be measurable spaces. A func-
tion f : E → G is measurable if f−1(A) ∈ E whenever A ∈ G. Here f−1(A) denotes
the inverse image of A by f

f−1(A) = {x ∈ E : f(x) ∈ A}.

In the case (G,G) = (R,B) we simply call f a measurable function on E. In the
case (G,G) = ([0,∞],B([0,∞])) we call f a non-negative measurable function on E.
This terminology is convenient but it has the consequence that some non-negative
measurable functions are not (real-valued) measurable functions. If E is a topological
space and E = B(E), then a measurable function on E is called a Borel function.
For any function f : E → G, the inverse image preserves set operations

f−1

(⋃
i

Ai

)
=
⋃
i

f−1(Ai), f−1(G \ A) = E \ f−1(A).

Therefore, the set {f−1(A) : A ∈ G} is a σ-algebra on E and {A ⊆ G : f−1(A) ∈ E} is
a σ-algebra on G. In particular, if G = σ(A) and f−1(A) ∈ E whenever A ∈ A, then
{A : f−1(A) ∈ E} is a σ-algebra containing A and hence G, so f is measurable. In the
case G = R, the Borel σ-algebra is generated by intervals of the form (−∞, y], y ∈ R,
so, to show that f : E → R is Borel measurable, it suffices to show that {x ∈ E :
f(x) ≤ y} ∈ E for all y.
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If E is any topological space and f : E → R is continuous, then f−1(U) is open in
E and hence measurable, whenever U is open in R; the open sets U generate B, so
any continuous function is measurable.

For A ⊆ E, the indicator function 1A of A is the function 1A : E → {0, 1}
which takes the value 1 on A and 0 otherwise. Note that the indicator function of
any measurable set is a measurable function. Also, the composition of measurable
functions is measurable.

Given any family of functions fi : E → G, i ∈ I, we can make them all measurable
by taking

E = σ(f−1i (A) : A ∈ G, i ∈ I).

Then E is the σ-algebra generated by (fi : i ∈ I).

Proposition 2.1.1. Let (fn : n ∈ N) be a sequence of non-negative measurable
functions on E. Then the functions f1 + f2 and f1f2 are measurable, and so are the
following functions:

inf
n
fn, sup

n
fn, lim inf

n
fn, lim sup

n
fn.

The same conclusion holds for real-valued measurable functions provided the limit
functions are also real-valued.

Theorem 2.1.2 (Monotone class theorem). Let (E,E) be a measurable space and let
A be a π-system generating E. Let V be a vector space of bounded functions f : E → R
such that:

(i) 1 ∈ V and 1A ∈ V for all A ∈ A;
(ii) if fn ∈ V for all n and f is bounded with 0 ≤ fn ↑ f , then f ∈ V.

Then V contains every bounded measurable function.

Proof. Consider D = {A ∈ E : 1A ∈ V}. Then D is a d-system containing A, so
D = E. Since V is a vector space, it contains all finite linear combinations of indicator
functions of measurable sets. If f is a bounded and non-negative measurable function,
then the functions fn = 2−nb2nfc, n ∈ N, belong to V and 0 ≤ fn ↑ f , so f ∈ V.
Finally, any bounded measurable function is the difference of two non-negative such
functions, hence in V. �

2.2. Image measures. Let (E,E) and (G,G) be measurable spaces and let µ be a
measure on E. Then any measurable function f : E → G induces an image measure
ν = µ ◦ f−1 on G, given by

ν(A) = µ(f−1(A)).

We shall construct some new measures from Lebesgue measure in this way.

Lemma 2.2.1. Let g : R→ R be non-constant, right-continuous and non-decreasing.
Set g(±∞) = limx→±∞ g(x) and write I = (g(−∞), g(∞)). Define f : I → R
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by f(x) = inf{y ∈ R : x ≤ g(y)}. Then f is left-continuous and non-decreasing.
Moreover, for x ∈ I and y ∈ R,

f(x) ≤ y if and only if x ≤ g(y).

Proof. Fix x ∈ I and consider the set Jx = {y ∈ R : x ≤ g(y)}. Note that Jx is
non-empty and is not the whole of R. Since g is non-decreasing, if y ∈ Jx and y′ ≥ y,
then y′ ∈ Jx. Since g is right-continuous, if yn ∈ Jx and yn ↓ y, then y ∈ Jx. Hence
Jx = [f(x),∞) and x ≤ g(y) if and only if f(x) ≤ y. For x ≤ x′, we have Jx ⊇ Jx′
and so f(x) ≤ f(x′). For xn ↑ x, we have Jx = ∩nJxn , so f(xn) → f(x). So f is
left-continuous and non-decreasing, as claimed. �

Theorem 2.2.2. Let g : R→ R be non-constant, right-continuous and non-decreasing.
Then there exists a unique Radon measure dg on R such that, for all a, b ∈ R with
a < b,

dg((a, b]) = g(b)− g(a).

Moreover, we obtain in this way all non-zero Radon measures on R.

The measure dg is called the Lebesgue-Stieltjes measure associated with g.

Proof. Define I and f as in the lemma and let µ denote Lebesgue measure on I.
Then f is Borel measurable and the induced measure dg = µ ◦ f−1 on R satisfies

dg((a, b]) = µ({x : f(x) > a and f(x) ≤ b}) = µ((g(a), g(b)]) = g(b)− g(a).

The argument used for uniqueness of Lebesgue measure shows that there is at most
one Borel measure with this property. Finally, if ν is any Radon measure on R, we
can define g : R→ R, right-continuous and non-decreasing, by

g(y) =

{
ν((0, y]), if y ≥ 0,
−ν((y, 0]), if y < 0.

Then ν((a, b]) = g(b)− g(a) whenever a < b, so ν = dg by uniqueness. �

2.3. Random variables. Let (Ω,F,P) be a probability space and let (E,E) be a
measurable space. A measurable function X : Ω→ E is called a random variable in
E. It has the interpretation of a quantity, or state, determined by chance. Where no
space E is mentioned, it is assumed that X takes values in R. The image measure
µX = P◦X−1 is called the law or distribution of X. For real-valued random variables,
µX is uniquely determined by its values on the π-system of intervals ((−∞, x] : x ∈
R), given by

FX(x) = µX((−∞, x]) = P(X ≤ x).

The function FX is called the distribution function of X.
Note that F = FX is increasing and right-continuous, with

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1.

13



Let us call any function F : R → [0, 1] satisfying these conditions a distribution
function.

Let Ω = (0, 1). Write F for the Borel σ-algebra on Ω and P for the restriction
of Lebesgue measure to F. Then (Ω,F,P) is a probability space. Let F be any
distribution function. Define X : Ω→ R by

X(ω) = inf{x : ω ≤ F (x)}.
Then, by Lemma 2.2.1, X is a random variable and X(ω) ≤ x if and only if ω ≤ F (x).
So

FX(x) = P(X ≤ x) = P((0, F (x)]) = F (x).

Thus every distribution function is the distribution function of a random variable.
A countable family of random variables (Xi : i ∈ I) is said to be independent if

the family of σ-algebras (σ(Xi) : i ∈ I) is independent. For a sequence (Xn : n ∈ N)
of real valued random variables, this is equivalent to the condition

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) . . .P(Xn ≤ xn)

for all x1, . . . , xn ∈ R and all n. A sequence of random variables (Xn : n ≥ 0) is often
regarded as a process evolving in time. The σ-algebra generated by X0, . . . , Xn

Fn = σ(X0, . . . , Xn)

contains those events depending (measurably) on X0, . . . , Xn and represents what is
known about the process by time n.

2.4. Rademacher functions. We continue with the particular choice of probabil-
ity space (Ω,F,P) made in the preceding section. Provided that we forbid infinite
sequences of 0’s, each ω ∈ Ω has a unique binary expansion

ω = 0.ω1ω2ω3 . . . .

Define random variables Rn : Ω→ {0, 1} by Rn(ω) = ωn. Then

R1 = 1( 1
2
,1], R2 = 1( 1

4
, 1
2
] + 1( 3

4
,1], R3 = 1( 1

8
, 1
4
] + 1( 3

8
, 1
2
] + 1( 5

8
, 3
4
] + 1( 7

8
,1].

These are called the Rademacher functions. The random variables R1, R2, . . . are
independent and Bernoulli , that is to say

P(Rn = 0) = P(Rn = 1) = 1/2.

The strong law of large numbers (proved in §10) applies here to show that

P
({

ω ∈ (0, 1) :
|{k ≤ n : ωk = 1}|

n
→ 1

2

})
= P

(
R1 + · · ·+Rn

n
→ 1

2

)
= 1.

This is called Borel’s normal number theorem: almost every point in (0, 1) is normal,
that is, has ‘equal’ proportions of 0’s and 1’s in its binary expansion.

We now use a trick involving the Rademacher functions to construct on Ω =
(0, 1), not just one random variable, but an infinite sequence of independent random
variables with given distribution functions.
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Proposition 2.4.1. Let (Ω,F,P) be the probability space of Lebesgue measure on the
Borel subsets of (0, 1). Let (Fn : n ∈ N) be a sequence of distribution functions. Then
there exists a sequence (Xn : n ∈ N) of independent random variables on (Ω,F,P)
such that Xn has distribution function FXn = Fn for all n.

Proof. Choose a bijection m : N2 → N and set Yk,n = Rm(k,n), where Rm is the mth
Rademacher function. Set

Yn =
∞∑
k=1

2−kYk,n.

Then Y1, Y2, . . . are independent and, for all n, for i2−k = 0.y1 . . . yk, we have

P(i2−k < Yn ≤ (i+ 1)2−k) = P(Y1,n = y1, . . . , Yk,n = yk) = 2−k

so P(Yn ≤ x) = x for all x ∈ [0, 1]. Set

Gn(y) = inf{x : y ≤ Fn(x)}

then, by Lemma 2.2.1, Gn is Borel and Gn(y) ≤ x if and only if y ≤ Fn(x). So, if we
set Xn = Gn(Yn), then X1, X2, . . . are independent random variables on Ω and

P(Xn ≤ x) = P(Gn(Yn) ≤ x) = P(Yn ≤ Fn(x)) = Fn(x).

�

2.5. Convergence of measurable functions and random variables.
Let (E,E, µ) be a measure space. A set A ∈ E is sometimes defined by a property
shared by its elements. If µ(Ac) = 0, then we say that this property holds almost
everywhere (or a.e.). When (E,E, µ) is a probability space, we say instead that the
property holds almost surely (or a.s.). Thus, for a sequence of measurable functions
(fn : n ∈ N), we say fn converges to f almost everywhere to mean that

µ({x ∈ E : fn(x) 6→ f(x)}) = 0.

If, on the other hand, we have that

µ({x ∈ E : |fn(x)− f(x)| > ε})→ 0, for all ε > 0,

then we say fn converges to f in measure or in probability when µ(E) = 1. For a
sequence (Xn : n ∈ N) of (real-valued) random variables there is a third notion of
convergence. We say that Xn converges to X in distribution if FXn(x) → FX(x) as
n → ∞ at all points x ∈ R where FX is continuous. Note that the last definition
does not require the random variables to be defined on the same probability space.

Theorem 2.5.1. Let (fn : n ∈ N) be a sequence of measurable functions.

(a) Assume that µ(E) <∞. If fn → 0 a.e., then fn → 0 in measure.

(b) If fn → 0 in measure, then fnk
→ 0 a.e. for some subsequence (nk).
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Proof. (a) Suppose fn → 0 a.e.. For each ε > 0,

µ(|fn| ≤ ε) ≥ µ

(⋂
m≥n

{|fm| ≤ ε}

)
↑ µ(|fn| ≤ ε ev.) ≥ µ(fn → 0) = µ(E).

Hence µ(|fn| > ε)→ 0 and fn → 0 in measure.

(b) Suppose fn → 0 in measure, then we can find a subsequence (nk) such that∑
k

µ(|fnk
| > 1/k) <∞.

So, by the first Borel–Cantelli lemma,

µ(|fnk
| > 1/k i.o.) = 0

so fnk
→ 0 a.e.. �

Theorem 2.5.2. Let X and (Xn : n ∈ N) be real-valued random variables.

(a) If X and (Xn : n ∈ N) are defined on the same probability space (Ω,F,P) and
Xn → X in probability, then Xn → X in distribution.

(b) If Xn → X in distribution, then there are random variables X̃ and (X̃n : n ∈ N)
defined on a common probability space (Ω,F,P) such that X̃ has the same distribution
as X, X̃n has the same distribution as Xn for all n, and X̃n → X̃ almost surely.

Proof. Write S for the subset of R where FX is continuous.

(a) Suppose Xn → X in probability. Given x ∈ S and ε > 0, there exists δ > 0 such
that FX(x − δ) ≥ FX(x) − ε/2 and FX(x + δ) ≤ FX(x) + ε/2. then there exists N
such that, for all n ≥ N , we have P(|Xn −X| > δ) ≤ ε/2, which implies

FXn(x) ≤ P(X ≤ x+ δ) + P(|Xn −X| > δ) ≤ FX(x) + ε

and
FXn(x) ≥ P(X ≤ x− δ)− P(|Xn −X| > δ) ≥ FX(x)− ε.

(b) Suppose now that Xn → X in distribution. Take (Ω,F,P) to be the interval
(0, 1) equipped with its Borel σ-algebra and Lebesgue measure. Define for ω ∈ (0, 1)

X̃n(ω) = inf{x ∈ R : ω ≤ FXn(x)}, X̃(ω) = inf{x ∈ R : ω ≤ FX(x)}.
Then X̃ has the same distribution asX, and X̃n has the same distribution asXn for all
n. Write Ω0 for the subset of (0, 1) where X̃ is continuous. Since X̃ is non-decreasing,
(0, 1) \Ω0 is countable, so P(Ω0) = 1. Since FX is non-decreasing, R \S is countable,
so S is dense. Given ω ∈ Ω0 and ε > 0, there exist x−, x+ ∈ S with x− < X̃(ω) < x+

and x+ − x− < ε, and there exists ω+ ∈ (ω, 1) such that X̃(ω+) ≤ x+. Then
FX(x−) < ω and FX(x+) ≥ ω+ > ω. So there exists N such that, for all n ≥ N , we
have FXn(x−) < ω and FXn(x+) ≥ ω, which implies X̃n(ω) > x− and X̃n(ω) ≤ x+,
and hence |X̃n(ω)− X̃(ω)| < ε. �
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2.6. Tail events. Let (Xn : n ∈ N) be a sequence of random variables. Define

Tn = σ(Xn+1, Xn+2, . . . ), T =
⋂
n

Tn.

Then T is a σ-algebra, called the tail σ-algebra of (Xn : n ∈ N). It contains the
events which depend only on the limiting behaviour of the sequence.

Theorem 2.6.1 (Kolmogorov’s zero-one law). Suppose that (Xn : n ∈ N) is a se-
quence of independent random variables. Then the tail σ-algebra T of (Xn : n ∈ N)
contains only events of probability 0 or 1. Moreover, any T-measurable random vari-
able is almost surely constant.

Proof. Set Fn = σ(X1, . . . , Xn). Then Fn is generated by the π-system of events

A = {X1 ≤ x1, . . . , Xn ≤ xn}

whereas Tn is generated by the π-system of events

B = {Xn+1 ≤ xn+1, . . . , Xn+k ≤ xn+k}, k ∈ N.

We have P(A∩B) = P(A)P(B) for all such A and B, by independence. Hence Fn and
Tn are independent, by Theorem 1.12.1. It follows that Fn and T are independent.
Now

⋃
n Fn is a π-system which generates the σ-algebra F∞ = σ(Xn : n ∈ N). So by

Theorem 1.12.1 again, F∞ and T are independent. But T ⊆ F∞. So, if A ∈ T,

P(A) = P(A ∩ A) = P(A)P(A)

so P(A) ∈ {0, 1}.
Finally, if Y is any T-measurable random variable, then FY (y) = P(Y ≤ y) takes

values in {0, 1}, so P(Y = c) = 1, where c = inf{y : FY (y) = 1}. �

2.7. Large values in sequences of independent identically distributed ran-
dom variables. Consider a sequence (Xn : n ∈ N) of independent random vari-
ables, all having the same distribution function F . Assume that F (x) < 1 for all
x ∈ R. Then, almost surely, the sequence (Xn : n ∈ N) is unbounded above, so
lim supnXn = ∞. A way to describe the occurrence of large values in the sequence
is to find a function g : N→ (0,∞) such that, almost surely,

lim sup
n

Xn/g(n) = 1.

We now show that g(n) = log n is the right choice when F (x) = 1− e−x. The same
method adapts to other distributions.

Fix α > 0 and consider the event An = {Xn ≥ α log n}. Then P(An) = e−α logn =
n−a, so the series

∑
n P(An) converges if and only if α > 1. By the Borel–Cantelli

Lemmas, we deduce that, for all ε > 0,

P(Xn/ log n ≥ 1 i.o.) = 1, P(Xn/ log n ≥ 1 + ε i.o.) = 0.
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Hence, almost surely,

lim sup
n

Xn/ log n = 1.

3. Integration

3.1. Definition of the integral and basic properties. Let (E,E, µ) be a measure
space. We shall define for non-negative measurable functions f on E, and (under a
natural condition) for (real-valued) measurable functions f on E, the integral of f ,
to be denoted

µ(f) =

∫
E

fdµ =

∫
E

f(x)µ(dx).

When (E,E) = (R,B) and µ is Lebesgue measure, the usual notation is

µ(f) =

∫
R
f(x)dx.

For a random variable X on a probability space (Ω,F,P), the integral is usually called
instead the expectation of X and written E(X).

A simple function is one of the form

f =
m∑
k=1

ak1Ak

where 0 ≤ ak < ∞ and Ak ∈ E for all k, and where m ∈ N. For simple functions f ,
we define

µ(f) =
m∑
k=1

akµ(Ak),

where we adopt the convention 0.∞ = 0. Although the representation of f is not
unique, it is straightforward to check that µ(f) is well defined and, for simple func-
tions f, g and constants α, β ≥ 0, we have

(a) µ(αf + βg) = αµ(f) + βµ(g),

(b) f ≤ g implies µ(f) ≤ µ(g),

(c) f = 0 a.e. if and only if µ(f) = 0.

We define the integral µ(f) of a non-negative measurable function f by

µ(f) = sup{µ(g) : g simple, g ≤ f}.
This is consistent with the definition for simple functions by property (b) above. Note
that, for all non-negative measurable functions f, g with f ≤ g, we have µ(f) ≤ µ(g).
For any measurable function f , set f+ = f ∨0 and f− = (−f)∨0. Then f = f+−f−
and |f | = f+ + f−. If µ(|f |) <∞, then we say that f is integrable and define

µ(f) = µ(f+)− µ(f−).
18



Note that |µ(f)| ≤ µ(|f |) for all integrable functions f . We sometimes define the
integral µ(f) by the same formula, even when f is not integrable, but when one of
µ(f−) and µ(f+) is finite. In such cases the integral takes the value ∞ or −∞.

Here is the key result for the theory of integration. For x ∈ [0,∞] and a sequence
(xn : n ∈ N) in [0,∞], we write xn ↑ x to mean that xn ≤ xn+1 for all n and xn → x
as n → ∞. For a non-negative function f on E and a sequence of such functions
(fn : n ∈ N), we write fn ↑ f to mean that fn(x) ↑ f(x) for all x ∈ E.

Theorem 3.1.1 (Monotone convergence). Let f be a non-negative measurable func-
tion and let (fn : n ∈ N) be a sequence of such functions. Suppose that fn ↑ f . Then
µ(fn) ↑ µ(f).

Proof. Case 1: fn = 1An , f = 1A.
The result is a simple consequence of countable additivity.
Case 2: fn simple, f = 1A.
Fix ε > 0 and set An = {fn > 1− ε}. Then An ↑ A and

(1− ε)1An ≤ fn ≤ 1A

so

(1− ε)µ(An) ≤ µ(fn) ≤ µ(A).

But µ(An) ↑ µ(A) by Case 1 and ε > 0 was arbitrary, so the result follows.

Case 3: fn simple, f simple.
We can write f in the form

f =
m∑
k=1

ak1Ak

with ak > 0 for all k and the sets Ak disjoint. Then fn ↑ f implies

a−1k 1Ak
fn ↑ 1Ak

so, by Case 2,

µ(fn) =
∑
k

µ(1Ak
fn) ↑

∑
k

akµ(Ak) = µ(f).

Case 4: fn simple, f ≥ 0 measurable.
Let g be simple with g ≤ f . Then fn ↑ f implies fn ∧ g ↑ g so, by Case 3,

µ(fn) ≥ µ(fn ∧ g) ↑ µ(g).

Since g was arbitrary, the result follows.
Case 5: fn ≥ 0 measurable, f ≥ 0 measurable.
Set gn = (2−nb2nfnc) ∧ n then gn is simple and gn ≤ fn ≤ f , so

µ(gn) ≤ µ(fn) ≤ µ(f).

But fn ↑ f forces gn ↑ f , so µ(gn) ↑ µ(f), by Case 4, and so µ(fn) ↑ µ(f). �
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Second proof. Set M = supn µ(fn). We know that

µ(fn) ↑M ≤ µ(f) = sup{µ(g) : g simple , g ≤ f}
so it will suffice to show that µ(g) ≤M for all simple functions

g =
m∑
i=1

ak1Ak
≤ f.

Without loss of generality, we may assume that the sets Ak are disjoint. Define
functions gn by

gn(x) =
(
2−nb2nfn(x)c

)
∧ g(x), x ∈ E.

Then gn is simple and gn ≤ fn for all n. Fix ε ∈ (0, 1) and consider the sets

Ak(n) = {x ∈ Ak : gn(x) ≥ (1− ε)ak}.
Now gn ↑ g and g = ak on Ak, so Ak(n) ↑ Ak, and so µ(Ak(n) ↑ µ(Ak) by countable
additivity. Also, we have

1Ak
gn ≥ (1− ε)ak1Ak(n)

so

µ(1Ak
gn) ≥ (1− ε)akµ(Ak(n)).

Finally, we have

gn =
m∑
k=1

1Ak
gn

and the integral is additive on simple functions, so

µ(gn) =
m∑
k=1

µ(1Ak
gn) ≥ (1− ε)

m∑
k=1

akµ(Ak(n)) ↑ (1− ε)
m∑
k=1

akµ(Ak) = (1− ε)µ(g)

But µ(gn) ≤ µ(fn) ≤M for all n and ε ∈ (0, 1) is arbitrary, so we see that µ(g) ≤M ,
as required. �

Theorem 3.1.2. For all non-negative measurable functions f, g and all constants
α, β ≥ 0,

(a) µ(αf + βg) = αµ(f) + βµ(g),

(b) f ≤ g implies µ(f) ≤ µ(g),

(c) f = 0 a.e. if and only if µ(f) = 0.

Proof. Define simple functions fn, gn by

fn = (2−nb2nfc) ∧ n, gn = (2−nb2ngc) ∧ n.
Then fn ↑ f and gn ↑ g, so αfn +βgn ↑ αf +βg. Hence, by monotone convergence,

µ(fn) ↑ µ(f), µ(gn) ↑ µ(g), µ(αfn + βgn) ↑ µ(αf + βg).
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We know that µ(αfn + βgn) = αµ(fn) + βµ(gn), so we obtain (a) on letting n→∞.
As we noted above, (b) is obvious from the definition of the integral. If f = 0 a.e.,
then fn = 0 a.e., for all n, so µ(fn) = 0 and µ(f) = 0. On the other hand, if µ(f) = 0,
then µ(fn) = 0 for all n, so fn = 0 a.e. and f = 0 a.e.. �

Theorem 3.1.3. For all integrable functions f, g and all constants α, β ∈ R,

(a) µ(αf + βg) = αµ(f) + βµ(g),

(b) f ≤ g implies µ(f) ≤ µ(g),

(c) f = 0 a.e. implies µ(f) = 0.

Proof. We note that µ(−f) = −µ(f). For α ≥ 0, we have

µ(αf) = µ(αf+)− µ(αf−) = αµ(f+)− αµ(f−) = αµ(f).

If h = f + g then h+ + f− + g− = h− + f+ + g+, so

µ(h+) + µ(f−) + µ(g−) = µ(h−) + µ(f+) + µ(g+)

and so µ(h) = µ(f)+µ(g). That proves (a). If f ≤ g then µ(g)−µ(f) = µ(g−f) ≥ 0,
by (a). Finally, if f = 0 a.e., then f± = 0 a.e., so µ(f±) = 0 and so µ(f) = 0. �

Note that in Theorem 3.1.3(c) we lose the reverse implication. The following result
is sometimes useful:

Proposition 3.1.4. Let A be a π-system containing E and generating E. Then, for
any integrable function f ,

µ(f1A) = 0 for all A ∈ A implies f = 0 a.e..

Here are some minor variants on the monotone convergence theorem.

Proposition 3.1.5. Let (fn : n ∈ N) be a sequence of non-negative measurable
functions. Then

fn ↑ f a.e. =⇒ µ(fn) ↑ µ(f).

Proposition 3.1.6. Let (gn : n ∈ N) be a sequence of non-negative measurable
functions. Then

∞∑
n=1

µ(gn) = µ

(
∞∑
n=1

gn

)
.

This reformulation of monotone convergence makes it clear that it is the coun-
terpart for the integration of functions of the countable additivity property of the
measure on sets.
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3.2. Integrals and limits. In the monotone convergence theorem, the hypothesis
that the given sequence of functions is non-decreasing is essential. In this section we
obtain some results on the integrals of limits of functions without such a hypothesis.

Lemma 3.2.1 (Fatou’s lemma). Let (fn : n ∈ N) be a sequence of non-negative
measurable functions. Then

µ(lim inf fn) ≤ lim inf µ(fn).

Proof. For k ≥ n, we have

inf
m≥n

fm ≤ fk

so

µ( inf
m≥n

fm) ≤ inf
k≥n

µ(fk) ≤ lim inf µ(fn).

But, as n→∞,

inf
m≥n

fm ↑ sup
n

(
inf
m≥n

fm

)
= lim inf fn

so, by monotone convergence,

µ( inf
m≥n

fm) ↑ µ(lim inf fn).

�

Theorem 3.2.2 (Dominated convergence). Let f be a measurable function and let
(fn : n ∈ N) be a sequence of such functions. Suppose that fn(x) → f(x) for all
x ∈ E and that |fn| ≤ g for all n, for some integrable function g. Then f and fn are
integrable, for all n, and µ(fn)→ µ(f).

Proof. The limit f is measurable and |f | ≤ g, so µ(|f |) ≤ µ(g) <∞, so f is integrable.
We have 0 ≤ g± fn → g± f so certainly lim inf(g± fn) = g± f . By Fatou’s lemma,

µ(g) + µ(f) = µ(lim inf(g + fn)) ≤ lim inf µ(g + fn) = µ(g) + lim inf µ(fn),

µ(g)− µ(f) = µ(lim inf(g − fn)) ≤ lim inf µ(g − fn) = µ(g)− lim supµ(fn).

Since µ(g) <∞, we can deduce that

µ(f) ≤ lim inf µ(fn) ≤ lim supµ(fn) ≤ µ(f).

This proves that µ(fn)→ µ(f) as n→∞. �

3.3. Transformations of integrals.

Proposition 3.3.1. Let (E,E, µ) be a measure space and let A ∈ E. Then the set
EA of measurable subsets of A is a σ-algebra and the restriction µA of µ to EA is a
measure. Moreover, for any non-negative measurable function f on E, we have

µ(f1A) = µA(f |A).
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In the case of Lebesgue measure on R, we write, for any interval I with inf I = a
and sup I = b, ∫

R
f1I(x)dx =

∫
I

f(x)dx =

∫ b

a

f(x)dx.

Note that the sets {a} and {b} have measure zero, so we do not need to specify
whether they are included in I or not.

Proposition 3.3.2. Let (E,E) and (G,G) be measure spaces and let f : E → G be
a measurable function. Given a measure µ on (E,E), define ν = µ ◦ f−1, the image
measure on (G,G). Then, for all non-negative measurable functions g on G,

ν(g) = µ(g ◦ f).

In particular, for a G-valued random variable X on a probability space (Ω,F,P),
for any non-negative measurable function g on G, we have

E(g(X)) = µX(g).

Proposition 3.3.3. Let (E,E, µ) be a measure space and let f be a non-negative
measurable function on E. Define ν(A) = µ(f1A), A ∈ E. Then ν is a measure on E
and, for all non-negative measurable functions g on E,

ν(g) = µ(fg).

In particular, to each non-negative Borel function f on R, there corresponds a
Borel measure µ on R given by µ(A) =

∫
A
f(x)dx. Then, for all non-negative Borel

functions g,

µ(g) =

∫
Rn

g(x)f(x)dx.

We say that µ has density f (with respect to Lebesgue measure).
If the law µX of a real-valued random variable X has a density fX , then we call fX

a density function for X. Then P(X ∈ A) =
∫
A
fX(x)dx, for all Borel sets A, and,

for for all non-negative Borel functions g on R,

E(g(X)) = µX(g) =

∫
R
g(x)fX(x)dx.

3.4. Fundamental theorem of calculus. We show that integration with respect
to Lebesgue measure on R acts as an inverse to differentiation. Since we restrict here
to the integration of continuous functions, the proof is the same as for the Riemann
integral.

Theorem 3.4.1 (Fundamental theorem of calculus).

(a) Let f : [a, b]→ R be a continuous function and set

Fa(t) =

∫ t

a

f(x)dx.
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Then Fa is differentiable on [a, b], with F ′a = f .

(b) Let F : [a, b]→ R be differentiable with continuous derivative f . Then∫ b

a

f(x)dx = F (b)− F (a).

Proof. Fix t ∈ [a, b). Given ε > 0, there exists δ > 0 such that |f(x) − f(t)| ≤ ε
whenever |x− t| ≤ δ. So, for 0 < h ≤ δ,∣∣∣∣Fa(t+ h)− Fa(t)

h
− f(t)

∣∣∣∣ =
1

h

∣∣∣∣∫ t+h

t

(f(x)− f(t))dx

∣∣∣∣
≤ 1

h

∫ t+h

t

|f(x)− f(t)|dx ≤ ε

h

∫ t+h

t

dx = ε.

Hence Fa is differentiable on the right at t with derivative f(t). Similarly, for all t ∈
(a, b], Fa is differentiable on the left at t with derivative f(t). Finally, (F−Fa)′(t) = 0
for all t ∈ (a, b) so F − Fa is constant (by the mean value theorem), and so

F (b)− F (a) = Fa(b)− Fa(a) =

∫ b

a

f(x)dx.

�

Proposition 3.4.2. Let φ : [a, b] → R be continuously differentiable and strictly
increasing. Then, for all non-negative Borel functions g on [φ(a), φ(b)],∫ φ(b)

φ(a)

g(y)dy =

∫ b

a

g(φ(x))φ′(x)dx.

The proposition can be proved as follows. First, the case where g is the indicator
function of an interval follows from the Fundamental Theorem of Calculus. Next,
show that the set of Borel sets B such that the conclusion holds for g = 1B is a
d-system, which must then be the whole Borel σ-algebra by Dynkin’s lemma. The
identity extends to simple functions by linearity and then to all non-negative mea-
surable functions g by monotone convergence, using approximating simple functions
(2−nb2ngc) ∧ n.

A general formulation of this procedure, which is often used, is given in the mono-
tone class theorem Theorem 2.1.2.

3.5. Differentiation under the integral sign. Integration in one variable and
differentiation in another can be interchanged subject to some regularity conditions.

Theorem 3.5.1 (Differentiation under the integral sign). Let U ⊆ R be open and
suppose that f : U × E → R satisfies:

(i) x 7→ f(t, x) is integrable for all t,
(ii) t 7→ f(t, x) is differentiable for all x,
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(iii) for some integrable function g, for all x ∈ E and all t ∈ U ,∣∣∣∣∂f∂t (t, x)

∣∣∣∣ ≤ g(x).

Then the function x 7→ (∂f/∂t)(t, x) is integrable for all t. Moreover, the function
F : U → R, defined by

F (t) =

∫
E

f(t, x)µ(dx),

is differentiable and
d

dt
F (t) =

∫
E

∂f

∂t
(t, x)µ(dx).

Proof. Take any sequence hn → 0 and set

gn(x) =
f(t+ hn, x)− f(t, x)

hn
− ∂f

∂t
(t, x).

Then gn(x) → 0 for all x ∈ E and, by the mean value theorem, |gn| ≤ 2g for all
n. In particular, for all t, the function x 7→ (∂f/∂t)(t, x) is the limit of measur-
able functions, hence measurable, and hence integrable, by (iii).Then, by dominated
convergence,

F (t+ hn)− F (t)

hn
−
∫
E

∂f

∂t
(t, x)µ(dx) =

∫
E

gn(x)µ(dx)→ 0.

�

3.6. Product measure and Fubini’s theorem. Let (E1,E1, µ1) and (E2,E2, µ2)
be finite measure spaces. The set

A = {A1 × A2 : A1 ∈ E1, A2 ∈ E2}

is a π-system of subsets of E = E1 × E2. Define the product σ-algebra

E1 ⊗ E2 = σ(A).

Set E = E1 ⊗ E2.

Lemma 3.6.1. Let f : E → R be E-measurable. Then, for all x1 ∈ E1, the function
x2 7→ f(x1, x2) : E2 → R is E2-measurable.

Proof. Denote by V the set of bounded E-measurable functions for which the conclu-
sion holds. Then V is a vector space, containing the indicator function 1A of every
set A ∈ A. Moreover, if fn ∈ V for all n and if f is bounded with 0 ≤ fn ↑ f , then
also f ∈ V. So, by the monotone class theorem, V contains all bounded E-measurable
functions. The rest is easy. �
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Lemma 3.6.2. Let f be a bounded or non-negative measurable function on E. Define
for x1 ∈ E1

f1(x1) =

∫
E2

f(x1, x2)µ2(dx2).

If f is bounded then f1 : E1 → R is a bounded E1-measurable function. On the other
hand, if f is non-negative, then f1 : E1 → [0,∞] is also an E1-measurable function.

Proof. Apply the monotone class theorem, as in the preceding lemma. Note that
finiteness of µ2 is needed for the boundedness of f1 when f is bounded. �

Theorem 3.6.3 (Product measure). There exists a unique measure µ = µ1 ⊗ µ2 on
E such that

µ(A1 × A2) = µ1(A1)µ2(A2)

for all A1 ∈ E1 and A2 ∈ E2.

Proof. Uniqueness holds because A is a π-system generating E. For existence, by the
lemmas, we can define

µ(A) =

∫
E1

(∫
E2

1A(x1, x2)µ2(dx2)

)
µ1(dx1)

and use monotone convergence to see that µ is countably additive. �

Proposition 3.6.4. Let Ê = E2⊗E1 and µ̂ = µ2⊗µ1. For a function f on E1×E2,
write f̂ for the function on E2 × E1 given by f̂(x2, x1) = f(x1, x2). Let f be a non-

negative E-measurable function. Then f̂ is a non-negative Ê-measurable function and
µ̂(f̂) = µ(f).

Theorem 3.6.5 (Fubini’s theorem).

(a) Let f be a non-negative E-measurable function. Then

µ(f) =

∫
E1

(∫
E2

f(x1, x2)µ2(dx2)

)
µ1(dx1).

(b) Let f be a µ-integrable function. Define

A1 = {x1 ∈ E1 :

∫
E2

|f(x1, x2)|µ2(dx2) <∞}

and define f1 : E1 → R by

f1(x1) =

∫
E2

f(x1, x2)µ2(dx2)

for x1 ∈ A1 and f1(x1) = 0 otherwise. Then µ1(E1 \ A1) = 0 and f1 is µ1-integrable
with µ1(f1) = µ(f).
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Note that the iterated integral in (a) is well defined, for all bounded or non-negative
measurable functions f , by Lemmas 3.6.1 and 3.6.2. Note also that, in combination
with Proposition 3.6.4, Fubini’s theorem allows us to interchange the order of inte-
gration in multiple integrals,whenever the integrand is non-negative or µ-integrable.

Proof. The conclusion of (a) holds for f = 1A with A ∈ E by definition of the product
measure µ. It extends to simple functions on E by linearity of the integrals. For f
non-negative measurable, consider the sequence of simple functions fn = (2−nb2nfc)∧
n. Then (a) holds for fn and fn ↑ f . By monotone convergence µ(fn) ↑ µ(f) and,
for all x1 ∈ E1, ∫

E2

fn(x1, x2)µ2(dx2) ↑
∫
E2

f(x1, x2)µ2(dx2)

and hence∫
E1

(∫
E2

fn(x1, x2)µ2(dx2)

)
µ1(dx1) ↑

∫
E1

(∫
E2

f(x1, x2)µ2(dx2)

)
µ1(dx1).

Hence (a) extends to f .
Suppose now that f is µ-integrable. By Lemma 3.6.2, the function

x1 7→
∫
E2

|f(x1, x2)|µ2(dx2) : E1 → [0,∞]

is E1-measurable, and it is then integrable because, using (a),∫
E1

(∫
E2

|f(x1, x2)|µ2(dx2)

)
µ1(dx1) = µ(|f |) <∞.

Hence A1 ∈ E1 and µ1(E1 \A1) = 0. We see also that f1 is well defined and, if we set

f
(±)
1 (x1) =

∫
E2

f±(x1, x2)µ2(dx2)

then f1 = (f
(+)
1 − f (−)

1 )1A1 . Finally, by part (a),

µ(f) = µ(f+)− µ(f−) = µ1(f
(+)
1 )− µ1(f

(−)
1 ) = µ1(f1)

as required. �

The existence of product measure and Fubini’s theorem extend easily to σ-finite
measure spaces. The operation of taking the product of two measure spaces is as-
sociative, by a π-system uniqueness argument. So we can, by induction, take the
product of a finite number, without specifying the order. The measure obtained by
taking the n-fold product of Lebesgue measure on R is called Lebesgue measure on
Rn. The corresponding integral is written∫

Rn

f(x)dx.
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3.7. Laws of independent random variables. Recall that a family X1, . . . , Xn

of random variables on (Ω,F,P) is said to be independent if the family of σ-algebras
σ(X1), . . . , σ(Xn) is independent.

Proposition 3.7.1. Let X1, . . . , Xn be random variables on (Ω,F,P), with values in
(E1,E1), . . . , (En,En) say. Set E = E1×· · ·×En and E = E1⊗· · ·⊗En. Consider the
function X : Ω→ E given by X(ω) = (X1(ω), . . . , Xn(ω)). Then X is E-measurable.
Moreover, the following are equivalent:

(a) X1, . . . , Xn are independent;

(b) µX = µX1 ⊗ · · · ⊗ µXn;

(c) for all bounded measurable functions f1, . . . , fn we have

E

(
n∏
k=1

fk(Xk)

)
=

n∏
k=1

E(fk(Xk)).

Proof. Set ν = µX1 ⊗ · · · ⊗µXn . Consider the π-system A = {
∏n

k=1Ak : Ak ∈ Ek}. If
(a) holds, then for all A ∈ A we have

µX(A) = P(X ∈ A) = P(∩nk=1{Xk ∈ Ak}) =
n∏
k=1

P(Xk ∈ Ak) =
n∏
k=1

µXk
(Ak) = ν(A)

and since A generates E this implies that µ = ν on E, so (b) holds. If (b) holds, then
by Fubini’s theorem

E

(
n∏
k=1

fk(Xk)

)
=

∫
E

n∏
k=1

fk(xk)µXk
(dxk) =

n∏
k=1

∫
Ek

fk(xk)µXk
(dxk) =

n∏
k=1

E(fk(Xk))

so (c) holds. Finally (a) follows from (c) by taking fk = 1Ak
with Ak ∈ Ek. �

4. Norms and inequalities

4.1. Lp-norms. Let (E,E, µ) be a measure space. For 1 ≤ p < ∞, we denote by
Lp = Lp(E,E, µ) the set of measurable functions f with finite Lp-norm:

‖f‖p =

(∫
E

|f |pdµ
)1/p

<∞.

We denote by L∞ = L∞(E,E, µ) the set of measurable functions f with finite L∞-
norm:

‖f‖∞ = inf{λ : |f | ≤ λ a.e.}.
Note that ‖f‖p ≤ µ(E)1/p‖f‖∞ for all 1 ≤ p < ∞. For 1 ≤ p ≤ ∞ and fn, f ∈ Lp,
we say that fn converges to f in Lp if ‖fn − f‖p → 0.
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4.2. Chebyshev’s inequality. Let f be a non-negative measurable function and
let λ ≥ 0. We use the notation {f ≥ λ} for the set {x ∈ E : f(x) ≥ λ}. Note that

λ1{f≥λ} ≤ f

so on integrating we obtain Chebyshev’s inequality

λµ(f ≥ λ) ≤ µ(f).

Now let g be any measurable function. We can deduce inequalities for g by choosing
some non-negative measurable function φ and applying Chebyshev’s inequality to
f = φ ◦ g. For example, if g ∈ Lp, p <∞ and λ > 0, then

µ(|g| ≥ λ) = µ(|g|p ≥ λp) ≤ λ−pµ(|g|p) <∞.
So we obtain the tail estimate

µ(|g| ≥ λ) = O(λ−p), as λ→∞.

4.3. Jensen’s inequality. Let I ⊆ R be an interval. A function c : I → R is convex
if, for all x, y ∈ I and t ∈ [0, 1],

c(tx+ (1− t)y) ≤ tc(x) + (1− t)c(y).

Lemma 4.3.1. Let c : I → R be convex and let m be a point in the interior of I.
Then there exist a, b ∈ R such c(x) ≥ ax+ b for all x, with equality at x = m.

Proof. By convexity, for m,x, y ∈ I with x < m < y, we have

c(m)− c(x)

m− x
≤ c(y)− c(m)

y −m
.

So, fixing an interior point m, there exists a ∈ R such that, for all x < m and all
y > m

c(m)− c(x)

m− x
≤ a ≤ c(y)− c(m)

y −m
.

Then c(x) ≥ a(x−m) + c(m), for all x ∈ I. �

Theorem 4.3.2 (Jensen’s inequality). Let X be an integrable random variable with
values in I and let c : I → R be convex. Then E(c(X)) is well defined and

E(c(X)) ≥ c(E(X)).

Proof. The case where X is almost surely constant is easy. We exclude it. Then
m = E(X) must lie in the interior of I. Choose a, b ∈ R as in the lemma. Then
c(X) ≥ aX + b. In particular E(c(X)−) ≤ |a|E(|X|) + |b| < ∞, so E(c(X)) is well
defined. Moreover

E(c(X)) ≥ aE(X) + b = am+ b = c(m) = c(E(X)).

�
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We deduce from Jensen’s inequality the monotonicity of Lp-norms with respect to
a probability measure. Let 1 ≤ p < q <∞. Set c(x) = |x|q/p, then c is convex on R.
So, for any X ∈ Lp(P),

‖X‖p = (E|X|p)1/p = (c(E|X|p))1/q ≤ (E c(|X|p))1/q = (E|X|q)1/q = ‖X‖q.
In particular, Lp(P) ⊇ Lq(P).

4.4. Hölder’s inequality and Minkowski’s inequality. For p, q ∈ [1,∞], we say
that p and q are conjugate indices if

1

p
+

1

q
= 1.

Theorem 4.4.1 (Hölder’s inequality). Let p, q ∈ (1,∞) be conjugate indices. Then,
for all measurable functions f and g, we have

µ(|fg|) ≤ ‖f‖p‖g‖q.

Proof. The cases where ‖f‖p = 0 or ‖f‖p = ∞ are obvious. We exclude them.
Then, by multiplying f by an appropriate constant, we are reduced to the case where
‖f‖p = 1. So we can define a probability measure P on E by

P(A) =

∫
A

|f |pdµ.

For measurable functions X ≥ 0,

E(X) = µ(X|f |p), E(X) ≤ E(Xq)1/q.

Note that q(p− 1) = p. Then

µ(|fg|) = µ

(
|g|
|f |p−1

1{|f |>0}|f |p
)

= E
(
|g|
|f |p−1

1{|f |>0}

)
≤ E

(
|g|q

|f |q(p−1)
1{|f |>0}

)1/q

≤ µ(|g|q)1/q = ‖f‖p‖g‖q.

�

Theorem 4.4.2 (Minkowski’s inequality). For p ∈ [1,∞) and measurable functions
f and g, we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. The cases where p = 1 or where ‖f‖p =∞ or ‖g‖p =∞ are easy. We exclude
them. Then, since |f + g|p ≤ 2p(|f |p + |g|p), we have

µ(|f + g|p) ≤ 2p{µ(|f |p) + µ(|g|p)} <∞.
The case where ‖f + g‖p = 0 is clear, so let us assume ‖f + g‖p > 0. Observe that

‖|f + g|p−1‖q = µ(|f + g|(p−1)q)1/q = µ(|f + g|p)1−1/p.
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So, by Hölder’s inequality,

µ(|f + g|p) ≤ µ(|f ||f + g|p−1) + µ(|g||f + g|p−1)
≤ (‖f‖p + ‖g‖p)‖|f + g|p−1‖q.

The result follows on dividing both sides by ‖|f + g|p−1‖q. �

4.5. Approximation in Lp.

Theorem 4.5.1. Let A be a π-system on E generating E, with µ(A) < ∞ for all
A ∈ A, and such that En ↑ E for some sequence (En : n ∈ N) in A. Define

V0 =

{
n∑
k=1

ak1Ak
: ak ∈ R, Ak ∈ A, n ∈ N

}
.

Let p ∈ [1,∞). Then V0 ⊆ Lp. Moreover, for all f ∈ Lp and all ε > 0 there exists
v ∈ V0 such that ‖v − f‖p ≤ ε.

Proof. For all A ∈ A, we have ‖1A‖p = µ(A)1/p < ∞, so 1A ∈ Lp. Hence V0 ⊆ Lp

because Lp is a vector space.
Write V for the set of all f ∈ Lp for which the conclusion holds. By Minkowski’s

inequality, V is a vector space. Consider for now the case E ∈ A and define D =
{A ∈ E : 1A ∈ V }. Then A ⊆ D so E ∈ D. For A,B ∈ D with A ⊆ B, we
have 1B\A = 1B − 1A ∈ V , so B \ A ∈ D. For An ∈ D with An ↑ A, we have

‖1A− 1An‖p = µ(A \An)1/p → 0, so A ∈ D. Hence D is a d-system and so D = E by
Dynkin’s Lemma. Since V is a vector space it then contains all simple functions. For
f ∈ Lp with f ≥ 0, consider the sequence of simple functions fn = (2−nb2nfc)∧n ↑ f .
Then, |f |p ≥ |f − fn|p → 0 pointwise so, by dominated convergence, ‖f − fn‖p → 0.
Hence f ∈ V . Hence, as a vector space, V = Lp.

Returning to the general case, we now know that, for all f ∈ Lp and all n ∈ N, we
have f1En ∈ V . But |f |p ≥ |f −f1En|p → 0 pointwise so, by dominated convergence,
‖f − f1En‖p → 0, and so f ∈ V . �

5. Completeness of Lp and orthogonal projection

5.1. Lp as a Banach space. Let V be a vector space. A map v 7→ ‖v‖ : V → [0,∞)
is a norm if

(i) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V ,
(ii) ‖αv‖ = |α|‖v‖ for all v ∈ V and α ∈ R,

(iii) ‖v‖ = 0 implies v = 0.

We note that, for any norm, if ‖vn − v‖ → 0 then ‖vn‖ → ‖v‖.
A symmetric bilinear map (u, v) 7→ 〈u, v〉 : V × V → R is an inner product

if 〈v, v〉 ≥ 0, with equality only if v = 0. For any inner product, 〈., .〉, the map

v 7→
√
〈v, v〉 is a norm, by the Cauchy–Schwarz inequality.
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Minkowski’s inequality shows that each Lp space is a vector space and that the
Lp-norms satisfy condition (i) above. Condition (ii) also holds. Condition (iii) fails,
because ‖f‖p = 0 does not imply that f = 0, only that f = 0 a.e.. For f, g ∈ Lp,
write f ∼ g if f = g almost everywhere. Then ∼ is an equivalence relation. Write
[f ] for the equivalence class of f and define

Lp = {[f ] : f ∈ Lp}.

Note that, for f ∈ L2, we have ‖f‖22 = 〈f, f〉, where 〈., .〉 is the symmetric bilinear
form on L2 given by

〈f, g〉 =

∫
E

fgdµ.

Thus L2 is an inner product space. The notion of convergence in Lp defined in §4.1
is the usual notion of convergence in a normed space.

A normed vector space V is complete if every Cauchy sequence in V converges,
that is to say, given any sequence (vn : n ∈ N) in V such that ‖vn − vm‖ → 0 as
n,m→∞, there exists v ∈ V such that ‖vn−v‖ → 0 as n→∞. A complete normed
vector space is called a Banach space. A complete inner product space is called a
Hilbert space. Such spaces have many useful properties, which makes the following
result important.

Theorem 5.1.1 (Completeness of Lp). Let p ∈ [1,∞]. Let (fn : n ∈ N) be a sequence
in Lp such that

‖fn − fm‖p → 0 as n,m→∞.
Then there exists f ∈ Lp such that

‖fn − f‖p → 0 as n→∞.

Proof. Some modifications of the following argument are necessary in the case p =∞,
which are left as an exercise. We assume from now on that p < ∞. Choose a
subsequence (nk) such that

S =
∞∑
k=1

‖fnk+1
− fnk

‖p <∞.

By Minkowski’s inequality, for any K ∈ N,

‖
K∑
k=1

|fnk+1
− fnk

|‖p ≤ S.

By monotone convergence this bound holds also for K =∞, so

∞∑
k=1

|fnk+1
− fnk

| <∞ a.e..
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Hence, by completeness of R, fnk
converges a.e.. We define a measurable function f

by

f(x) =
{

lim fnk
(x) if the limit exists,

0 otherwise.
Given ε > 0, we can find N so that n ≥ N implies

µ(|fn − fm|p) ≤ ε, for all m ≥ n,

in particular µ(|fn − fnk
|p) ≤ ε for all sufficiently large k. Hence, by Fatou’s lemma,

for n ≥ N ,

µ(|fn − f |p) = µ(lim inf
k
|fn − fnk

|p) ≤ lim inf
k

µ(|fn − fnk
|p) ≤ ε.

Hence f ∈ Lp and, since ε > 0 was arbitrary, ‖fn − f‖p → 0. �

Corollary 5.1.2. We have

(a) Lp is a Banach space, for all 1 ≤ p ≤ ∞,

(b) L2 is a Hilbert space.

5.2. L2 as a Hilbert space. We shall apply some general Hilbert space arguments
to L2. First, we note Pythagoras’ rule

‖f + g‖22 = ‖f‖22 + 2〈f, g〉+ ‖g‖22
and the parallelogram law

‖f + g‖22 + ‖f − g‖22 = 2(‖f‖22 + ‖g‖22).

If 〈f, g〉 = 0, then we say that f and g are orthogonal . For any subset V ⊆ L2, we
define

V ⊥ = {f ∈ L2 : 〈f, v〉 = 0 for all v ∈ V }.
A subset V ⊆ L2 is closed if, for every sequence (fn : n ∈ N) in V , with fn → f in
L2, we have f = v a.e., for some v ∈ V .

Theorem 5.2.1 (Orthogonal projection). Let V be a closed subspace of L2. Then
each f ∈ L2 has a decomposition f = v + u, with v ∈ V and u ∈ V ⊥. Moreover,
‖f − v‖2 ≤ ‖f − g‖2 for all g ∈ V , with equality only if g = v a.e..

The function v is called (a version of ) the orthogonal projection of f on V .

Proof. Choose a sequence gn ∈ V such that

‖f − gn‖2 → d(f, V ) = inf{‖f − g‖2 : g ∈ V }.

By the parallelogram law,

‖2(f − (gn + gm)/2)‖22 + ‖gn − gm‖22 = 2(‖f − gn‖22 + ‖f − gm‖22).
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But ‖2(f−(gn+gm)/2)‖22 ≥ 4d(f, V )2, so we must have ‖gn−gm‖2 → 0 as n,m→∞.
By completeness, ‖gn − g‖2 → 0, for some g ∈ L2. By closure, g = v a.e., for some
v ∈ V . Hence

‖f − v‖2 = lim
n
‖f − gn‖2 = d(f, V ).

Now, for any h ∈ V and t ∈ R, we have

d(f, V )2 ≤ ‖f − (v + th)‖22 = d(f, V )2 − 2t〈f − v, h〉+ t2‖h‖22.
So we must have 〈f − v, h〉 = 0. Hence u = f − v ∈ V ⊥, as required. �

5.3. Variance, covariance and conditional expectation. In this section we look
at some L2 notions relevant to probability. For X, Y ∈ L2(P), with means mX =
E(X),mY = E(Y ), we define variance, covariance and correlation by

var(X) = E[(X −mX)2],

cov(X, Y ) = E[(X −mX)(Y −mY )],

corr(X, Y ) = cov(X, Y )/
√

var(X) var(Y ).

Note that var(X) = 0 if and only if X = mX a.s.. Note also that, if X and Y are
independent, then cov(X, Y ) = 0. The converse is generally false. For a random
variable X = (X1, . . . , Xn) in Rn, we define its covariance matrix

var(X) = (cov(Xi, Xj))
n
i,j=1.

Proposition 5.3.1. Every covariance matrix is non-negative definite.

Suppose now we are given a countable family of disjoint events (Gi : i ∈ I), whose
union is Ω. Set G = σ(Gi : i ∈ I). Let X be an integrable random variable. The
conditional expectation of X given G is given by

Y =
∑
i

E(X|Gi)1Gi
,

where we set E(X|Gi) = E(X1Gi
)/P(Gi) when P(Gi) > 0, and define E(X|Gi) in

some arbitrary way when P(Gi) = 0. Set V = L2(G,P) and note that Y ∈ V . Then
V is a subspace of L2(F,P), and V is complete and therefore closed.

Proposition 5.3.2. If X ∈ L2, then Y is a version of the orthogonal projection of
X on V .

6. Convergence in L1(P)

6.1. Bounded convergence. We begin with a basic, but easy to use, condition for
convergence in L1(P).

Theorem 6.1.1 (Bounded convergence). Let (Xn : n ∈ N) be a sequence of random
variables, with Xn → X in probability and |Xn| ≤ C for all n, for some constant
C <∞. Then Xn → X in L1.
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Proof. By Theorem 2.5.1, X is the almost sure limit of a subsequence, so |X| ≤ C
a.s.. For ε > 0, there exists N such that n ≥ N implies

P(|Xn −X| > ε/2) ≤ ε/(4C).

Then

E|Xn−X| = E(|Xn−X|1|Xn−X|>ε/2)+E(|Xn−X|1|Xn−X|≤ε/2) ≤ 2C(ε/4C)+ε/2 = ε.

�

6.2. Uniform integrability.

Lemma 6.2.1. Let X be an integrable random variable and set

IX(δ) = sup{E(|X|1A) : A ∈ F,P(A) ≤ δ}.

Then IX(δ) ↓ 0 as δ ↓ 0.

Proof. Suppose not. Then, for some ε > 0, there exist An ∈ F, with P(An) ≤ 2−n

and E(|X|1An) ≥ ε for all n. By the first Borel–Cantelli lemma, P(An i.o.) = 0. But
then, by dominated convergence,

ε ≤ E(|X|1⋃
m≥n Am)→ E(|X|1{An i.o.}) = 0

which is a contradiction. �

Let X be a family of random variables. For 1 ≤ p ≤ ∞, we say that X is bounded
in Lp if supX∈X ‖X‖p <∞. Let us define

IX(δ) = sup{E(|X|1A) : X ∈ X, A ∈ F,P(A) ≤ δ}.

Obviously, X is bounded in L1 if and only if IX(1) <∞. We say that X is uniformly
integrable or UI if X is bounded in L1 and

IX(δ) ↓ 0, as δ ↓ 0.

Note that, by Hölder’s inequality, for conjugate indices p, q ∈ (1,∞),

E(|X|1A) ≤ ‖X‖p(P(A))1/q.

Hence, if X is bounded in Lp, for some p ∈ (1,∞), then X is UI. The sequence
Xn = n1(0,1/n) is bounded in L1 for Lebesgue measure on (0, 1), but not uniformly
integrable.

Lemma 6.2.1 shows that any single integrable random variable is uniformly inte-
grable. This extends easily to any finite collection of integrable random variables.
Moreover, for any integrable random variable Y , the set

X = {X : X a random variable, |X| ≤ Y }

is uniformly integrable, because E(|X|1A) ≤ E(Y 1A) for all A.
The following result gives an alternative characterization of uniform integrability.
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Lemma 6.2.2. Let X be a family of random variables. Then X is UI if and only if

sup{E(|X|1|X|≥K) : X ∈ X} → 0, as K →∞.

Proof. Suppose X is UI. Given ε > 0, choose δ > 0 so that IX(δ) < ε, then choose
K < ∞ so that IX(1) ≤ Kδ. Then, for X ∈ X and A = {|X| ≥ K}, we have
P(A) ≤ δ so E(|X|1A) < ε. Hence, as K →∞,

sup{E(|X|1|X|≥K) : X ∈ X} → 0.

On the other hand, if this condition holds, then, since

E(|X|) ≤ K + E(|X|1|X|≥K),

we have IX(1) < ∞. Given ε > 0, choose K < ∞ so that E(|X|1|X|≥K) < ε/2 for
all X ∈ X. Then choose δ > 0 so that Kδ < ε/2. For all X ∈ X and A ∈ F with
P(A) < δ, we have

E(|X|1A) ≤ E(|X|1|X|≥K) +KP(A) < ε.

Hence X is UI. �

Here is the definitive result on L1-convergence of random variables.

Theorem 6.2.3. Let X be a random variable and let (Xn : n ∈ N) be a sequence of
random variables. The following are equivalent:

(a) Xn ∈ L1 for all n, X ∈ L1 and Xn → X in L1,

(b) {Xn : n ∈ N} is UI and Xn → X in probability.

Proof. Suppose (a) holds. By Chebyshev’s inequality, for ε > 0,

P(|Xn −X| > ε) ≤ ε−1E(|Xn −X|)→ 0

so Xn → X in probability. Moreover, given ε > 0, there exists N such that E(|Xn −
X|) < ε/2 whenever n ≥ N . Then we can find δ > 0 so that P(A) ≤ δ implies

E(|X|1A) ≤ ε/2, E(|Xn|1A) ≤ ε, n = 1, . . . , N.

Then, for n ≥ N and P(A) ≤ δ,

E(|Xn|1A) ≤ E(|Xn −X|) + E(|X|1A) ≤ ε.

Hence {Xn : n ∈ N} is UI. We have shown that (a) implies (b).

Suppose, on the other hand, that (b) holds. Then there is a subsequence (nk) such
that Xnk

→ X a.s.. So, by Fatou’s lemma, E(|X|) ≤ lim infk E(|Xnk
|) < ∞. Now,

given ε > 0, there exists K <∞ such that, for all n,

E(|Xn|1|Xn|≥K) < ε/3, E(|X|1|X|≥K) < ε/3.
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Consider the uniformly bounded sequence XK
n = (−K) ∨ Xn ∧ K and set XK =

(−K) ∨X ∧K. Then XK
n → XK in probability, so, by bounded convergence, there

exists N such that, for all n ≥ N ,

E|XK
n −XK | < ε/3.

But then, for all n ≥ N ,

E|Xn −X| ≤ E(|Xn|1|Xn|≥K) + E|XK
n −XK |+ E(|X|1|X|≥K) < ε.

Since ε > 0 was arbitrary, we have shown that (b) implies (a). �

7. Fourier transforms

7.1. Definitions. In this section (only), for p ∈ [1,∞), we will write Lp = Lp(Rd)
for the set of complex-valued Borel measurable functions on Rd such that

‖f‖p =

(∫
Rd

|f(x)|pdx
)1/p

<∞.

The Fourier transform f̂ of a function f ∈ L1(Rd) is defined by

f̂(u) =

∫
Rd

f(x)ei〈u,x〉dx, u ∈ Rd.

Here, 〈., .〉 denotes the usual inner product on Rd. Note that |f̂(u)| ≤ ‖f‖1 and, by

the dominated convergence theorem, f̂(un) → f̂(u) whenever un → u. Thus f̂ is a
continuous bounded (complex-valued) function on Rd.

For f ∈ L1(Rd) with f̂ ∈ L1(Rd), we say that the Fourier inversion formula holds
for f if

f(x) =
1

(2π)d

∫
Rd

f̂(u)e−i〈u,x〉du

for almost all x ∈ Rd. For f ∈ L1 ∩L2(Rd), we say that the Plancherel identity holds
for f if

‖f̂‖2 = (2π)d/2‖f‖2.
The main results of this section establish that, for all f ∈ L1(Rd), the inversion

formula holds whenever f̂ ∈ L1(Rd) and the Plancherel identity holds whenever
f ∈ L2(Rd).

The Fourier transform µ̂ of a finite Borel measure µ on Rd is defined by

µ̂(u) =

∫
Rd

ei〈u,x〉µ(dx), u ∈ Rd.

Then µ̂ is a continuous function on Rd with |µ̂(u)| ≤ µ(Rd) for all u. The definitions
are consistent in that, if µ has density f with respect to Lebesgue measure, then
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µ̂ = f̂ . The characteristic function φX of a random variable X in Rd is the Fourier
tranform of its law µX . Thus

φX(u) = µ̂X(u) = E(ei〈u,X〉), u ∈ Rd.

7.2. Convolutions. For p ∈ [1,∞) and f ∈ Lp(Rd) and for a probability measure ν
on Rd, we define the convolution f ∗ ν ∈ Lp(Rd) by

f ∗ ν(x) =

∫
Rd

f(x− y)ν(dy)

whenever the integral exists, setting f ∗ ν(x) = 0 otherwise. By Jensen’s inequality
and Fubini’s theorem,∫

Rd

(∫
Rd

|f(x− y)|ν(dy)

)p
dx ≤

∫
Rd

∫
Rd

|f(x− y)|pν(dy)dx

=

∫
Rd

∫
Rd

|f(x− y)|pdxν(dy) =

∫
Rd

∫
Rd

|f(x)|pdxν(dy) = ‖f‖pp <∞.

Hence, the integral defining the convolution exists for almost all x, and then

‖f ∗ ν‖p =

(∫
Rd

∣∣∣∣∫
Rd

f(x− y)ν(dy)

∣∣∣∣p dx)1/p

≤ ‖f‖p.

In the case where ν has a density function g, then we write f ∗ g for f ∗ ν.
For probability measures µ, ν on Rd, we define the convolution µ ∗ ν to be the

distribution of X + Y for independent random variables X, Y having distributions
µ, ν. Thus

µ ∗ ν(A) =

∫
Rd×Rd

1A(x+ y)µ(dx)ν(dy), A ∈ B.

Note that, if µ has density function f , then by Fubini’s theorem

µ ∗ ν(A) =

∫
Rd

∫
Rd

1A(x+ y)f(x)dxν(dy)

=

∫
Rd

∫
Rd

1A(x)f(x− y)dxν(dy) =

∫
Rd

1A(x)f ∗ ν(x)dx

so µ ∗ ν has density function f ∗ ν.

It is easy to check using Fubini’s theorem that f̂ ∗ ν(u) = f̂(u)ν̂(u) for all f ∈
L1(Rd) and all probability measures ν on Rd. Similarly, we have

µ̂ ∗ ν(u) = E(ei〈u,X+Y 〉) = E(ei〈u,X〉)E(ei〈u,Y 〉) = µ̂(u)ν̂(u).
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7.3. Gaussians. Consider for t ∈ (0,∞) the centred Gaussian probability density
function gt on Rd of variance t, given by

gt(x) =
1

(2πt)d/2
e−|x|

2/(2t).

The Fourier transform ĝt may be identified as follows. Let Z be a standard one-
dimensional normal random variable. Since Z is integrable, by Theorem 3.5.1, the
characteristic function φZ is differentiable and we can differentiate under the integral
sign to obtain

φ′Z(u) = E(iZeiuZ) =
1√
2π

∫
R
eiuxixe−x

2/2dx = −uφZ(u)

where we integrated by parts for the last equality. Hence

d

du
(eu

2/2φZ(u)) = 0

so

φZ(u) = φZ(0)e−u
2/2 = e−u

2/2.

Consider now d independent standard normal random variables Z1, . . . , Zd and set
Z = (Z1, . . . , Zd). Then

√
tZ has density function gt. So

ĝt(u) = E(ei〈u,
√
tZ〉) = E

(
d∏
j=1

eiuj
√
tZj

)
=

d∏
j=1

φZ(uj
√
t) = e−|u|

2t/2.

Hence ĝt = (2π)d/2t−d/2g1/t and ˆ̂gt = (2π)dgt. Then

gt(x) = gt(−x) = (2π)−d ˆ̂gt(−x) =
1

(2π)d

∫
Rd

ĝt(u)e−i〈u,x〉du

so the Fourier inversion formula holds for gt.

7.4. Gaussian convolutions. By a Gaussian convolution we mean any convolution
f ∗ gt of a function f ∈ L1(Rd) with a Gaussian gt and with t ∈ (0,∞). We note that
f ∗ gt is a continuous function and that

‖f ∗ gt‖1 ≤ ‖f‖1, ‖f ∗ gt‖∞ ≤ (2π)−d/2t−d/2‖f‖1.

Also f̂ ∗ gt(u) = f̂(u)ĝt(u) and we know ĝt explicitly, so

‖f̂ ∗ gt‖1 ≤ (2π)d/2t−d/2‖f‖1, ‖f̂ ∗ gt‖∞ ≤ ‖f‖1.
A straightforward calculation (using the parallelogram identity in Rd) shows that
gs ∗ gs = g2s for all s ∈ (0,∞). Then, for any probability measure µ on Rd and any
t = 2s ∈ (0,∞), we have µ∗ gs ∈ L1(Rd) and hence µ∗ gt = µ∗ (gs ∗ gs) = (µ∗ gs)∗ gs
is a Gaussian convolution.

Lemma 7.4.1. The Fourier inversion formula holds for all Gaussian convolutions.
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Proof. Let f ∈ L1(Rd) and let t > 0. We use the Fourier inversion formula for gt and
Fubini’s theorem to see that

(2π)df ∗ gt(x) = (2π)d
∫
Rd

f(x− y)gt(y)dy

=

∫
Rd×Rd

f(x− y)ĝt(u)e−i〈u,y〉dudy

=

∫
Rd×Rd

f(x− y)ei〈u,x−y〉ĝt(u)e−i〈u,x〉dudy

=

∫
Rd

f̂(u)ĝt(u)e−i〈u,x〉du =

∫
Rd

f̂ ∗ gt(u)e−i〈u,x〉du.

�

Lemma 7.4.2. Let f ∈ Lp(Rd) with p ∈ [1,∞). Then ‖f ∗ gt − f‖p → 0 as t→ 0.

Proof. Given ε > 0, there exists a continuous function h of compact support such
that ‖f − h‖p ≤ ε/3. Then ‖f ∗ gt− h ∗ gt‖p = ‖(f − h) ∗ gt‖p ≤ ‖f − h‖p ≤ ε/3. Set

e(y) =

∫
Rd

|h(x− y)− h(x)|pdx.

Then e(y) ≤ 2p‖h‖pp for all y and e(y)→ 0 as y → 0 by dominated convergence. By
Jensen’s inequality and then bounded convergence,

‖h ∗ gt − h‖pp =

∫
Rd

∣∣∣∣∫
Rd

(h(x− y)− h(x))gt(y)dy

∣∣∣∣p dx
≤
∫
Rd

∫
Rd

|h(x− y)− h(x))|pgt(y)dydx

=

∫
Rd

e(y)gt(y)dy =

∫
Rd

e(
√
ty)g1(y)dy → 0

as t → 0. Now ‖f ∗ gt − f‖p ≤ ‖f ∗ gt − h ∗ gt‖p + ‖h ∗ gt − h‖p + ‖h − f‖p. So
‖f ∗ gt − f‖p < ε for all sufficiently small t > 0, as required. �

7.5. Uniqueness and inversion.

Theorem 7.5.1. Let f ∈ L1(Rd). Define for t > 0 and x ∈ Rd

ft(x) =
1

(2π)d

∫
Rd

f̂(u)e−|u|
2t/2e−i〈u,x〉du.

Then ‖ft − f‖1 → 0 as t → 0. Moreover, the Fourier inversion formula holds

whenever f ∈ L1(Rd) and f̂ ∈ L1(Rd).

Proof. Consider the Gaussian convolution f ∗ gt. Then f̂ ∗ gt(u) = f̂(u)e−|u|
2t/2. So

ft = f ∗ gt by Lemma 7.4.1 and so ‖ft − f‖1 → 0 as t→ 0 by Lemma 7.4.2.
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Now, if f̂ ∈ L1(Rd), then by dominated convergence with dominating function |f̂ |,

ft(x)→ 1

(2π)d

∫
Rd

f̂(u)e−i〈u,x〉du

as t→ 0 for all x. On the other hand, ftn → f almost everywhere for some sequence
tn → 0. Hence the inversion formula holds for f . �

7.6. Fourier transform in L2(Rd).

Theorem 7.6.1. The Plancherel identity holds for all f ∈ L1 ∩ L2(Rd). Moreover
there is a unique Hilbert space automorphism F on L2 such that

F [f ] = [(2π)−d/2f̂ ]

for all f ∈ L1 ∩ L2(Rd).

Proof. Suppose to begin that f ∈ L1 and f̂ ∈ L1. Then the inversion formula holds
and f, f̂ ∈ L∞. Also (x, u) 7→ f(x)f̂(u) is integrable on Rd × Rd. So, by Fubini’s
theorem, we obtain the Plancherel identity for f :

(2π)d‖f‖22 = (2π)d
∫
Rd

f(x)f(x)dx =

∫
Rd

(∫
Rd

f̂(u)e−i〈u,x〉du

)
f(x)dx

=

∫
Rd

f̂(u)

(∫
Rd

f(x)ei〈u,x〉dx

)
du =

∫
Rd

f̂(u)f̂(u)du = ‖f̂‖22.

Now let f ∈ L1 ∩ L2 and consider for t > 0 the Gaussian convolution ft = f ∗ gt.
We consider the limit t → 0. By Lemma 7.4.2, ft → f in L2, so ‖ft‖2 → ‖f‖2. We

have f̂t = f̂ ĝt and ĝt(u) = e−|u|
2t/2, so ‖f̂t‖22 ↑ ‖f̂‖22 by monotone convergence. The

Plancherel identity holds for ft because ft, f̂t ∈ L1. On letting t → 0 we obtain the
identity for f .

Define F0 : L1 ∩ L2 → L2 by F0[f ] = [(2π)−d/2f̂ ]. Then F0 preserves the L2

norm. Since L1 ∩ L2 is dense in L2, F0 then extends uniquely to an isometry F of
L2 into itself. Finally, by the inversion formula, F maps the set V = {[f ] : f ∈
L1 and f̂ ∈ L1} into itself and F 4[f ] = [f ] for all [f ] ∈ V . But V contains all
Gaussian convolutions and hence is dense in L2, so F must be onto L2. �

7.7. Weak convergence and characteristic functions. Let µ be a Borel proba-
bility measure on Rd and let (µn : n ∈ N) be a sequence of such measures. We say
that µn converges weakly to µ if µn(f)→ µ(f) as n→∞ for all continuous bounded
functions f on Rd. Given a random variable X in Rd and a sequence of such random
variables (Xn : n ∈ N), we say that Xn converges weakly to X if µXn converges weakly
to µX . There is no requirement that the random variables are defined on a common
probability space. Note that a sequence of measures can have at most one weak limit,
but if X is a weak limit of the sequence of random variables (Xn : n ∈ N), then so is
any other random variable with the same distribution as X. In the case d = 1, weak
convergence is equivalent to convergence in distribution, as defined in Section 2.5.
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Theorem 7.7.1. Let X be random variable in Rd. Then the distribution µX of X is
uniquely determined by its characteristic function φX . Moreover, in the case where
φX is integrable, µX has a continuous bounded density function given by

fX(x) =
1

(2π)d

∫
Rd

φX(u)e−i〈u,x〉du.

Moreover, if (Xn : n ∈ N) is a sequence of random variables in Rd such that φXn(u)→
φX(u) as n→∞ for all u ∈ Rd, then Xn converges weakly to X.

Proof. Let Z be a random variable in Rd, independent of X, and having the standard
Gaussian density g1. Then

√
tZ has density gt and X+

√
tZ has density given by the

Gaussian convolution ft = µX ∗ gt. We have f̂t(u) = φX(u)e−|u|
2t/2 so, by the Fourier

inversion formula,

ft(x) =
1

(2π)d

∫
Rd

φX(u)e−|u|
2t/2e−i〈u,x〉du.

By bounded convergence, for all continuous bounded functions g on Rd, as t→ 0∫
Rd

g(x)ft(x)dx = E(g(X +
√
tZ))→ E(g(X)) =

∫
Rd

g(x)µX(dx).

Hence φX determines µX uniquely.
If φX is integrable, then |ft(x)| ≤ (2π)−d‖φX‖1 for all x and by dominated con-

vergence with dominating function |φX |, we have ft(x) → fX(x) for all x. Hence
fX(x) ≥ 0 for all x and, for g continuous of compact support, by bounded conver-
gence, ∫

Rd

g(x)µX(dx) = lim
t→0

∫
Rd

g(x)ft(x)dx =

∫
Rd

g(x)fX(x)dx

which implies that µX has density fX , as claimed.
Suppose now that (Xn : n ∈ N) is a sequence of random variables such that

φXn(u)→ φX(u) for all u. We shall show that E(g(Xn))→ E(g(X)) for all integrable
functions g on Rd whose derivative is bounded, which implies that Xn converges
weakly to X. Given ε > 0, we can choose t > 0 so that

√
t‖∇g‖∞E|Z| ≤ ε/3. Then

E|g(X +
√
tZ) − g(X)| ≤ ε/3 and E|g(Xn +

√
tZ) − g(X)| ≤ ε/3. On the other

hand, by the Fourier inversion formula, and dominated convergence with dominating
function |g(x)|e−|u|2t/2, we have

E(g(Xn +
√
tZ)) =

1

(2π)d

∫
Rd×Rd

g(x)φXn(u)e−|u|
2t/2e−i〈x,u〉dudx

→ 1

(2π)d

∫
Rd×Rd

g(x)φX(u)e−|u|
2t/2e−i〈x,u〉dudx = E(g(X +

√
tZ))

as n → ∞. Hence |E(g(Xn))− E(g(X))| < ε for all sufficiently large n, as required.
�
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There is a stronger version of the last assertion of Theorem 7.7.1 called Lévy’s
continuity theorem for characteristic functions: if φXn(u) converges as n→∞, with
limit φ(u) say, for all u ∈ R, and if φ is continuous in a neighbourhood of 0, then φ is
the characteristic function of some random variable X, and Xn → X in distribution.
We will not prove this.

8. Gaussian random variables

8.1. Gaussian random variables in R. A random variable X in R is Gaussian if,
for some µ ∈ R and some σ2 ∈ (0,∞), X has density function

fX(x) =
1√

2πσ2
e−(x−µ)

2/2σ2

.

We also admit as Gaussian any random variable X with X = µ a.s., this degenerate
case corresponding to taking σ2 = 0. We write X ∼ N(µ, σ2).

Proposition 8.1.1. Suppose X ∼ N(µ, σ2) and a, b ∈ R. Then (a) E(X) = µ, (b)

var(X) = σ2, (c) aX + b ∼ N(aµ+ b, a2σ2), (d) φX(u) = eiuµ−u
2σ2/2.

8.2. Gaussian random variables in Rn. A random variable X in Rn is Gaussian if
〈u,X〉 is Gaussian, for all u ∈ Rn. An example of such a random variable is provided
by X = (X1, . . . , Xn), where X1, . . . , Xn are independent N(0, 1) random variables.
To see this, we note that

E ei〈u,X〉 = E
∏
k

eiukXk = e−|u|
2/2

so 〈u,X〉 is N(0, |u|2) for all u ∈ Rn.

Theorem 8.2.1. Let X be a Gaussian random variable in Rn. Let A be an m × n
matrix and let b ∈ Rm. Then

(a) AX + b is a Gaussian random variable in Rm,

(b) X ∈ L2 and µX is determined by µ = E(X) and V = var(X),

(c) φX(u) = ei〈u,µ〉−〈u,V u〉/2,

(d) if V is invertible, then X has a density function on Rn, given by

fX(x) = (2π)−n/2(detV )−1/2 exp{−〈x− µ, V −1(x− µ)〉/2},

(e) suppose X = (X1, X2), with X1 in Rn1 and X2 in Rn2, then

cov(X1, X2) = 0 implies X1, X2 independent.

Proof. For u ∈ Rn, we have 〈u,AX+b〉 = 〈ATu,X〉+〈u, b〉 so 〈u,AX+b〉 is Gaussian,
by Proposition 8.1.1. This proves (a).

Each component Xk is Gaussian, so X ∈ L2. Set µ = E(X) and V = var(X).
For u ∈ Rn we have E(〈u,X〉) = 〈u, µ〉 and var(〈u,X〉) = cov(〈u,X〉, 〈u,X〉) =
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〈u, V u〉. Since 〈u,X〉 is Gaussian, by Proposition 8.1.1, we must have 〈u,X〉 ∼
N(〈u, µ〉, 〈u, V u〉) and φX(u) = E ei〈u,X〉 = ei〈u,µ〉−〈u,V u〉/2. This is (c) and (b) follows
by uniqueness of characteristic functions.

Let Y1, . . . , Yn be independent N(0, 1) random variables. Then Y = (Y1, . . . , Yn)
has density

fY (y) = (2π)−n/2 exp{−|y|2/2}.
Set X̃ = V 1/2Y +µ, then X̃ is Gaussian, with E(X̃) = µ and var(X̃) = V , so X̃ ∼ X.
If V is invertible, then X̃ and hence X has the density claimed in (d), by a linear
change of variables in Rn.

Finally, if X = (X1, X2) with cov(X1, X2) = 0, then, for u = (u1, u2), we have

〈u, V u〉 = 〈u1, V11u1〉+ 〈u2, V22u2〉,

where V11 = var(X1) and V22 = var(X2). Then φX(u) = φX1(u1)φX2(u2) so X1 and
X2 are independent. �

9. Ergodic theory

9.1. Measure-preserving transformations. Let (E,E, µ) be a measure space. A
measurable function θ : E → E is called a measure-preserving transformation if

µ(θ−1(A)) = µ(A), for all A ∈ E.

A set A ∈ E is invariant if θ−1(A) = A. A measurable function f is invariant if
f = f ◦ θ. The set of all invariant sets forms a σ-algebra, which we denote by Eθ.
Then f is invariant if and only if f is Eθ-measurable. We say that θ is ergodic if Eθ
contains only sets of measure zero and their complements.

Here are two simple examples of measure preserving transformations.

(i) Translation map on the torus. Take E = [0, 1)n with Lebesgue measure on its
Borel σ-algebra, and consider addition modulo 1 in each coordinate. For a ∈ E set

θa(x1, . . . , xn) = (x1 + a1, . . . , xn + an).

(ii) Bakers’ map. Take E = [0, 1) with Lebesgue measure. Set

θ(x) = 2x− b2xc.

Proposition 9.1.1. If f is integrable and θ is measure-preserving, then f ◦ θ is
integrable and ∫

E

fdµ =

∫
E

f ◦ θ dµ.

Proposition 9.1.2. If θ is ergodic and f is invariant, then f = c a.e., for some
constant c.
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9.2. Bernoulli shifts. Let m be a probability measure on R. In §2.4, we constructed
a probability space (Ω,F,P) on which there exists a sequence of independent random
variables (Yn : n ∈ N), all having distribution m. Consider now the infinite product
space

E = RN = {x = (xn : n ∈ N) : xn ∈ R for all n}
and the σ-algebra E on E generated by the coordinate maps Xn(x) = xn

E = σ(Xn : n ∈ N).

Note that E is also generated by the π-system

A = {
∏
n∈N

An : An ∈ B for all n, An = R for sufficiently large n}.

Define Y : Ω→ E by Y (ω) = (Yn(ω) : n ∈ N). Then Y is measurable and the image
measure µ = P ◦ Y −1 satisfies, for A =

∏
n∈NAn ∈ A,

µ(A) =
∏
n∈N

m(An).

By uniqueness of extension, µ is the unique measure on E having this property.
Note that, under the probability measure µ, the coordinate maps (Xn : n ∈ N) are
themselves a sequence of independent random variables with law m. The probability
space (E,E, µ) is called the canonical model for such sequences. Define the shift map
θ : E → E by

θ(x1, x2, . . . ) = (x2, x3, . . . ).

Theorem 9.2.1. The shift map is an ergodic measure-preserving transformation.

Proof. The details of showing that θ is measurable and measure-preserving are left
as an exercise. To see that θ is ergodic, we recall the definition of the tail σ-algebras

Tn = σ(Xm : m ≥ n+ 1), T =
⋂
n

Tn.

For A =
∏

n∈NAn ∈ A we have

θ−n(A) = {Xn+k ∈ Ak for all k} ∈ Tn.

Since Tn is a σ-algebra, it follows that θ−n(A) ∈ Tn for all A ∈ E, so Eθ ⊆ T. Hence
θ is ergodic by Kolmogorov’s zero-one law. �

9.3. Birkhoff’s and von Neumann’s ergodic theorems. Throughout this sec-
tion, (E,E, µ) will denote a measure space, on which is given a measure-preserving
transformation θ. Given an measurable function f , set S0 = 0 and define, for n ≥ 1,

Sn = Sn(f) = f + f ◦ θ + · · ·+ f ◦ θn−1.
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Lemma 9.3.1 (Maximal ergodic lemma). Let f be an integrable function on E. Set
S∗ = supn≥0 Sn(f). Then ∫

{S∗>0}
fdµ ≥ 0.

Proof. Set S∗n = max0≤m≤n Sm and An = {S∗n > 0}. Then, for m = 1, . . . , n,

Sm = f + Sm−1 ◦ θ ≤ f + S∗n ◦ θ.

On An, we have S∗n = max1≤m≤n Sm, so

S∗n ≤ f + S∗n ◦ θ.

On Acn, we have

S∗n = 0 ≤ S∗n ◦ θ.
So, integrating and adding, we obtain∫

E

S∗ndµ ≤
∫
An

fdµ+

∫
E

S∗n ◦ θdµ.

But S∗n is integrable, so ∫
E

S∗n ◦ θdµ =

∫
E

S∗ndµ <∞

which forces ∫
An

fdµ ≥ 0.

As n→∞, An ↑ {S∗ > 0} so, by dominated convergence, with dominating function
|f |, ∫

{S∗>0}
fdµ = lim

n→∞

∫
An

fdµ ≥ 0.

�

Theorem 9.3.2 (Birkhoff’s almost everywhere ergodic theorem). Assume that (E,E, µ)
is σ-finite and that f is an integrable function on E. Then there exists an invariant
function f̄ , with µ(|f̄ |) ≤ µ(|f |), such that Sn(f)/n→ f̄ a.e. as n→∞.

Proof. The functions lim infn(Sn/n) and lim supn(Sn/n) are invariant. Therefore, for
a < b, so is the following set

D = D(a, b) = {lim inf
n

(Sn/n) < a < b < lim sup
n

(Sn/n)}.

We shall show that µ(D) = 0. First, by invariance, we can restrict everything to D
and thereby reduce to the case D = E. Note that either b > 0 or a < 0. We can
interchange the two cases by replacing f by −f . Let us assume then that b > 0.
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Let B ∈ E with µ(B) < ∞, then g = f − b1B is integrable and, for each x ∈ D,
for some n,

Sn(g)(x) ≥ Sn(f)(x)− nb > 0.

Hence S∗(g) > 0 everywhere and, by the maximal ergodic lemma,

0 ≤
∫
D

(f − b1B)dµ =

∫
D

fdµ− bµ(B).

Since µ is σ-finite, there is a sequence of sets Bn ∈ E, with µ(Bn) <∞ for all n and
Bn ↑ D. Hence,

bµ(D) = lim
n→∞

bµ(Bn) ≤
∫
D

fdµ.

In particular, we see that µ(D) < ∞. A similar argument applied to −f and −a,
this time with B = D, shows that

(−a)µ(D) ≤
∫
D

(−f)dµ.

Hence

bµ(D) ≤
∫
D

fdµ ≤ aµ(D).

Since a < b and the integral is finite, this forces µ(D) = 0. Set

∆ = {lim inf
n

(Sn/n) < lim sup
n

(Sn/n)}

then ∆ is invariant. Also, ∆ =
⋃
a,b∈Q,a<bD(a, b), so µ(∆) = 0. On the complement

of ∆, Sn/n converges in [−∞,∞], so we can define an invariant function f̄ by

f̄ =
{

limn(Sn/n) on ∆c

0 on ∆.

Finally, µ(|f ◦ θn|) = µ(|f |), so µ(|Sn|) ≤ nµ(|f |) for all n. Hence, by Fatou’s lemma,

µ(|f̄ |) = µ(lim inf
n
|Sn/n|) ≤ lim inf

n
µ(|Sn/n|) ≤ µ(|f |).

�

Theorem 9.3.3 (von Neumann’s Lp ergodic theorem). Assume that µ(E) <∞. Let
p ∈ [1,∞). Then, for all f ∈ Lp(µ), Sn(f)/n→ f̄ in Lp.

Proof. We have

‖f ◦ θn‖p =

(∫
E

|f |p ◦ θndµ
)1/p

= ‖f‖p.

So, by Minkowski’s inequality,

‖Sn(f)/n‖p ≤ ‖f‖p.
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Given ε > 0, choose K < ∞ so that ‖f − g‖p < ε/3, where g = (−K) ∨ f ∧ K.
By Birkhoff’s theorem, Sn(g)/n → ḡ a.e.. We have |Sn(g)/n| ≤ K for all n so, by
bounded convergence, there exists N such that, for n ≥ N ,

‖Sn(g)/n− ḡ‖p < ε/3.

By Fatou’s lemma,

‖f̄ − ḡ‖pp =

∫
E

lim inf
n
|Sn(f − g)/n|pdµ

≤ lim inf
n

∫
E

|Sn(f − g)/n|pdµ ≤ ‖f − g‖pp.

Hence, for n ≥ N ,

‖Sn(f)/n− f̄‖p ≤ ‖Sn(f − g)/n‖p + ‖Sn(g)/n− ḡ‖p + ‖ḡ − f̄‖p
< ε/3 + ε/3 + ε/3 = ε.

�

10. Sums of independent random variables

10.1. Strong law of large numbers for finite fourth moment. The result we
obtain in this section will be largely superseded in the next. We include it because
its proof is much more elementary than that needed for the definitive version of the
strong law which follows.

Theorem 10.1.1. Let (Xn : n ∈ N) be a sequence of independent random variables
such that, for some constants µ ∈ R and M <∞,

E(Xn) = µ, E(X4
n) ≤M for all n.

Set Sn = X1 + · · ·+Xn. Then

Sn/n→ µ a.s., as n→∞.

Proof. Consider Yn = Xn − µ. Then Y 4
n ≤ 24(X4

n + µ4), so

E(Y 4
n ) ≤ 16(M + µ4)

and it suffices to show that (Y1 + · · ·+Yn)/n→ 0 a.s.. So we are reduced to the case
where µ = 0.

Note that Xn, X
2
n, X

3
n are all integrable since X4

n is. Since µ = 0, by independence,

E(XiX
3
j ) = E(XiXjX

2
k) = E(XiXjXkXl) = 0

for distinct indices i, j, k, l. Hence

E(S4
n) = E

( ∑
1≤i≤n

X4
k + 6

∑
1≤i<j≤n

X2
iX

2
j

)
.
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Now for i < j, by independence and the Cauchy–Schwarz inequality

E(X2
iX

2
j ) = E(X2

i )E(X2
j ) ≤ E(X4

i )1/2E(X4
j )1/2 ≤M.

So we get the bound

E(S4
n) ≤ nM + 3n(n− 1)M ≤ 3n2M.

Thus

E
∑
n

(Sn/n)4 ≤ 3M
∑
n

1/n2 <∞

which implies ∑
n

(Sn/n)4 <∞ a.s.

and hence Sn/n→ 0 a.s.. �

10.2. Strong law of large numbers.

Theorem 10.2.1. Let m be a probability measure on R, with∫
R
|x|m(dx) <∞,

∫
R
xm(dx) = ν.

Let (E,E, µ) be the canonical model for a sequence of independent random variables
with law m. Then

µ({x : (x1 + · · ·+ xn)/n→ ν as n→∞}) = 1.

Proof. By Theorem 9.2.1, the shift map θ on E is measure-preserving and ergodic.
The coordinate function f = X1 is integrable and Sn(f) = f +f ◦ θ+ · · ·+f ◦ θn−1 =
X1 + · · · + Xn. So (X1 + · · · + Xn)/n → f̄ a.e., for some invariant function f̄ ,
by Birkhoff’s ergodic theorem. Moreover, this convergence holds also in L1 by von
Neumann’s ergodic theorem. Since θ is ergodic, f̄ = c a.e., for some constant c and
then c = µ(f̄) = limn µ(Sn/n) = ν. �

Theorem 10.2.2 (Strong law of large numbers). Let (Yn : n ∈ N) be a sequence
of independent, identically distributed, integrable random variables with mean ν. Set
Sn = Y1 + · · ·+ Yn. Then

Sn/n→ ν a.s., as n→∞.

Proof. In the notation of Theorem 10.2.1, takem to be the law of the random variables
Yn. Then µ = P ◦ Y −1, where Y : Ω→ E is given by Y (ω) = (Yn(ω) : n ∈ N). Hence

P(Sn/n→ ν as n→∞) = µ({x : (x1 + · · ·+ xn)/n→ ν as n→∞}) = 1.

�
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10.3. Central limit theorem.

Theorem 10.3.1 (Central limit theorem). Let (Xn : n ∈ N) be a sequence of inde-
pendent, identically distributed, random variables with mean 0 and variance 1. Set
Sn = X1 + · · ·+Xn. Then, for all x ∈ R, as n→∞,

P
(
Sn√
n
≤ x

)
→
∫ x

−∞

1√
2π
e−y

2/2dy.

Proof. Set φ(u) = E(eiuX1). Since E(X2
1 ) < ∞, we can differentiate E(eiuX1) twice

under the expectation, to show that

φ(0) = 1, φ′(0) = 0, φ′′(0) = −1.

Hence, by Taylor’s theorem, as u→ 0,

φ(u) = 1− u2/2 + o(u2).

So, for the characteristic function φn of Sn/
√
n,

φn(u) = E(eiu(X1+···+Xn)/
√
n) = {E(ei(u/

√
n)X1)}n = (1− u2/2n+ o(u2/n))n.

The complex logarithm satisfies, as z → 0,

log(1 + z) = z + o(|z|)
so, for each u ∈ R, as n→∞,

log φn(u) = n log(1− u2/2n+ o(u2/n)) = −u2/2 + o(1).

Hence φn(u)→ e−u
2/2 for all u. But e−u

2/2 is the characteristic function of the N(0, 1)
distribution, so Sn/

√
n→ N(0, 1) in distribution by Theorem 7.7.1, as required. �
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