
Optimization and Control: Examples Sheet 2
LQG models

1. A simple model of the rolling motion of a ship represents it as a damped simple pendulum
driven by wave motion. For small roll angles the equation is

θ̈ + 2γωθ̇ + ω2θ = ω2u,

where θ(t) is the roll angle and u(t) is the effective rolling torque from wave motion; ω and
γ are positive constants.

Show that θ and θ̇ can in principle be moved from any values to any other values in an
arbitrary short time by an appropriate control u.

2. Consider a scalar deterministic linear system, xk+1 = Axk + Buk, with n-horizon total
cost function

∑n−1

k=0
Qu2

k +x2
n. By considering a suitable dynamic optimality equation, show

that the infimal cost function Vn(x) has the form Πnx2 for some constant Πn, and that the
sequence Π−1

n obeys a linear recurrence. Hence show that

Πn =

(

B2

Q(A2
− 1)

+

(

1 −

B2

Q(A2
− 1)

)

A−2n

)

−1

.

Under what conditions does Πn tend to a limit as n → ∞? Investigate the limiting forms
of Πn and of the gain factor Γn.

3. Successive attempts are made to regulate the speed of a clock, but each deliberate
change in setting introduces also a random change whose size tends to increase with the
size of the intended change. Explicitly, let Xn be the error in the speed of the clock after
n corrections. On the basis of the observed value of Xn one attempts to correct the speed
by an amount Un. The actual error in speed then becomes

Xn+1 = Xn − Un + εn+1

where, conditional on events up to the choice of Un, the variable εn+1 is normally distributed
with zero mean and variance αU2

n. If, after all attempts at regulation, one leaves the clock
with an error x, then there is a cost x2.

Suppose exactly n attempts are to be made to regulate the clock with initial error x.
Determine the optimal policy and the minimal expected cost.

4. Consider the scalar-state control problem with plant equation Xk+1 = Xk + Uk + εk+1

and total cost function
∑n−1

k=0
U2

k +DX2
n. Here, the initial state X0 = x is given, the current

state Xk is observable, the horizon point n is prescribed, and the disturbances ε1, . . . , εn

are independent with zero mean and common variance v. Find the minimal expected total
cost (i) when, for k = 0, 1, . . . , n−1, the control Uk may be chosen to depend on X0, . . . , Xk

and (ii) when all controls Uk must be chosen at the outset. (These are called closed loop

and open loop controls respectively.)
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5. Consider the real-valued system defined by

Xn+1 = aXn + ξnUn (n = 0, 1, . . . ),

where Un is the control at time n and (ξn)n>0 is a sequence of independent random variables
with mean b and variance σ2. Suppose that the cost incurred at time n is X2

n + U2
n, and

that there are no terminal costs. Find the recursions satisfied by the finite-horizon infimal
cost functions. Is the optimal control certainty-equivalent?

6. Suppose that a discrete-time system with d-dimensional state variable x has a plant
equation which is linear in state, xk+1 = Akxk + b(k, uk), an instantaneous cost c(k, uk)
which is independent of state, and a terminal cost at time n that is a function of dT xn, for
a given vector d. Show that the infimal cost function takes the form V (k, x) = φ(k, ξk),
where ξk = dTzk is the ‘predicted miss distance’ and zk = An−1 . . . Akxk is the the value
that xn would take starting from xk at time k if we could take b = 0 from then on. Show
that the optimal control at time k is also a function of ξk and k alone.

7. Consider the linear system given by X0 = x, V0 = v and, for n > 0,

Xn+1 = Xn + Vn, Vn+1 = Vn + Un + εn.

Here (Xn, Vn) are the state variables, representing the position and velocity of a body, Un

is the control variable, which may be chosen as a function of the history of the system up
to time n, and (εn)n>0 is a sequence of independent zero-mean disturbances, with common
variance σ2. The objective is to minimize the expected value of

∑n−1

k=0
U2

k + P0X
2
n. For a

given choice of controls, how does Xn depend on (x, v)? Show that the optimal choice of
U0 is

U0 = −(n − 1)Pn(x + nv),

where
P−1

n = P−1

0 + 1

6
n(n − 1)(2n − 1).

8. A one-dimensional model of the problem faced by a juggler trying to balance a light
stick with a weight on top is given by the equation

ẍ1 = α(x1 − u)

where x1 is the horizontal displacement of the top of the stick from some fixed point and
u is the horizontal displacement of the bottom. (The stick is assumed to be nearly upright
and stationary and α > 0 is inversely proportional to the length.) Show that the juggler
can control x1 by manipulating u.

If he tries to balance d such weighted sticks on top of one another, the equations
governing stick k (k = 2, . . . , d) are (provided the weights on the sticks get smaller fast
enough as d increases)

ẍk = α(xk − xk−1)

Show that the d-stick system is fully controllable. [You may find it helpful to take the state
vector as (ẋ1, x1, ẋ2, x2, . . . , ẋd, xd)

T .]
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9. Consider the following control problem with imperfect state observation

Yn = CXn + ηn, Xn+1 = AXn + BUn + εn+1.

Here X0 ∼ N(µ0, V0) and η0,
(

ε1

η1

)

,
(

ε2

η2

)

, . . . are independent non-degenerate zero-mean Gaus-
sians, and Un is to be chosen as a function of the observations Y0, . . . , Yn. Compute the
conditional distribution of X0 given Y0. Find a way to transform this problem to the
standard LQG model.

10. Consider the controlled system Xn+1 = Xn +Un +3εn+1, where (εn)n>1 is a sequence of
independent N(0, 1) variables. The instantaneous cost at time n is X2

n+2U2
n. Assuming that

Xn is observable at time n, calculate the optimal control under steady-state (stationary)
conditions and find the expected cost per unit time incurred when this control is used.

Suppose now that one can observe at time n only Yn = Xn−1 + 2ηn, for n > 1, where
(ηn)n>1 is another sequence of independent N(0, 1) variables, independent of (εn)n>1. Show
that, in a steady state, the conditional variance of Xn, given (Y1, . . . , Yn), is 12.

Determine the optimal control and a recursion for the optimal estimate of state under
stationary conditions.
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