Optimization and Control: Examples Sheet 2
LQG models

1. A simple model of the rolling motion of a ship represents it as a damped simple pendulum driven by wave motion. For small roll angles the equation is

\[\ddot{\theta} + 2\gamma \omega \dot{\theta} + \omega^2 \theta = \omega^2 u, \]

where \(\theta(t) \) is the roll angle and \(u(t) \) is the effective rolling torque from wave motion; \(\omega \) and \(\gamma \) are positive constants.

Show that \(\theta \) and \(\dot{\theta} \) can in principle be moved from any values to any other values in an arbitrary short time by an appropriate control \(u \).

2. Consider a scalar deterministic linear system,

\[x_{k+1} = Ax_k + Bu_k, \]

with \(n \)-horizon total cost function \(\sum_{k=0}^{n-1} Qu_k^2 + x_n^2 \). By considering a suitable dynamic optimality equation, show that the infimal cost function \(V_n(x) \) has the form \(\Pi_n x^2 \) for some constant \(\Pi_n \), and that the sequence \(\Pi_{n-1} \) obeys a linear recurrence. Hence show that

\[\Pi_n = \left(\frac{B^2}{Q(A^2 - 1)} + \left(1 - \frac{B^2}{Q(A^2 - 1)} \right) A^{-2n} \right)^{-1}. \]

Under what conditions does \(\Pi_n \) tend to a limit as \(n \to \infty \)? Investigate the limiting forms of \(\Pi_n \) and of the gain factor \(\Gamma_n \).

3. Successive attempts are made to regulate the speed of a clock, but each deliberate change in setting introduces also a random change whose size tends to increase with the size of the intended change. Explicitly, let \(X_n \) be the error in the speed of the clock after \(n \) corrections. On the basis of the observed value of \(X_n \) one attempts to correct the speed by an amount \(U_n \). The actual error in speed then becomes

\[X_{n+1} = X_n - U_n + \varepsilon_{n+1} \]

where, conditional on events up to the choice of \(U_n \), the variable \(\varepsilon_{n+1} \) is normally distributed with zero mean and variance \(\alpha U_n^2 \). If, after all attempts at regulation, one leaves the clock with an error \(x \), then there is a cost \(x^2 \).

Suppose exactly \(n \) attempts are to be made to regulate the clock with initial error \(x \). Determine the optimal policy and the minimal expected cost.

4. Consider the scalar-state control problem with plant equation

\[X_{k+1} = X_k + U_k + \varepsilon_{k+1} \]

and total cost function \(\sum_{k=0}^{n-1} U_k^2 + DX_n^2 \). Here, the initial state \(X_0 = x \) is given, the current state \(X_k \) is observable, the horizon point \(n \) is prescribed, and the disturbances \(\varepsilon_1, \ldots, \varepsilon_n \) are independent with zero mean and common variance \(v \). Find the minimal expected total cost \(i) \) when, for \(k = 0, 1, \ldots, n-1 \), the control \(U_k \) may be chosen to depend on \(X_0, \ldots, X_k \) and \(ii) \) when all controls \(U_k \) must be chosen at the outset. (These are called closed loop and open loop controls respectively.)
5. Consider the real-valued system defined by
\[X_{n+1} = aX_n + \xi_n U_n \quad (n = 0, 1, \ldots), \]
where \(U_n \) is the control at time \(n \) and \((\xi_n)_{n \geq 0} \) is a sequence of independent random variables with mean \(b \) and variance \(\sigma^2 \). Suppose that the cost incurred at time \(n \) is \(X_n^2 + U_n^2 \), and that there are no terminal costs. Find the recursions satisfied by the finite-horizon infimal cost functions. Is the optimal control certainty-equivalent?

6. Suppose that a discrete-time system with \(d \)-dimensional state variable \(x \) has a plant equation which is linear in state, \(x_{k+1} = A_k x_k + b(k, u_k) \), an instantaneous cost \(c(k, u_k) \) which is independent of state, and a terminal cost at time \(n \) that is a function of \(d^T x_n \), for a given vector \(d \). Show that the infimal cost function takes the form \(V(k, x) = \phi(k, \xi_k) \), where \(\xi_k = d^T z_k \) is the ‘predicted miss distance’ and \(z_k = A_{n-1} \ldots A_k x_k \) is the the value that \(x_n \) would take starting from \(x_k \) at time \(k \) if we could take \(b = 0 \) from then on. Show that the optimal control at time \(k \) is also a function of \(\xi_k \) and \(k \) alone.

7. Consider the linear system given by \(X_0 = x, V_0 = v \) and, for \(n \geq 0 \),
\[X_{n+1} = X_n + V_n, \quad V_{n+1} = V_n + U_n + \varepsilon_n. \]
Here \((X_n, V_n)\) are the state variables, representing the position and velocity of a body, \(U_n \) is the control variable, which may be chosen as a function of the history of the system up to time \(n \), and \((\varepsilon_n)_{n \geq 0} \) is a sequence of independent zero-mean disturbances, with common variance \(\sigma^2 \). The objective is to minimize the expected value of \(\sum_{k=0}^{n-1} U_k^2 + P_0 X_n^2 \). For a given choice of controls, how does \(X_n \) depend on \((x, v)\)? Show that the optimal choice of \(U_0 \) is
\[U_0 = -(n-1)P_n(x + nv), \]
where
\[P_n^{-1} = P_0^{-1} + \frac{1}{n}(n-1)(2n-1). \]

8. A one-dimensional model of the problem faced by a juggler trying to balance a light stick with a weight on top is given by the equation
\[\ddot{x}_1 = \alpha(x_1 - u) \]
where \(x_1 \) is the horizontal displacement of the top of the stick from some fixed point and \(u \) is the horizontal displacement of the bottom. (The stick is assumed to be nearly upright and stationary and \(\alpha > 0 \) is inversely proportional to the length.) Show that the juggler can control \(x_1 \) by manipulating \(u \).

If he tries to balance \(d \) such weighted sticks on top of one another, the equations governing stick \(k \) \((k = 2, \ldots, d)\) are (provided the weights on the sticks get smaller fast enough as \(d \) increases)
\[\ddot{x}_k = \alpha(x_k - x_{k-1}) \]
Show that the \(d \)-stick system is fully controllable. [You may find it helpful to take the state vector as \((\dot{x}_1, x_1, \dot{x}_2, x_2, \ldots, \dot{x}_d, x_d)^T\).]
9. Consider the following control problem with imperfect state observation

\[Y_n = CX_n + \eta_n, \quad X_{n+1} = AX_n + BU_n + \varepsilon_{n+1}. \]

Here \(X_0 \sim N(\mu_0, V_0) \) and \(\eta_0, (\varepsilon^1_1, \varepsilon^2_1), \ldots \) are independent non-degenerate zero-mean Gaussians, and \(U_n \) is to be chosen as a function of the observations \(Y_0, \ldots, Y_n \). Compute the conditional distribution of \(X_0 \) given \(Y_0 \). Find a way to transform this problem to the standard LQG model.

10. Consider the controlled system \(X_{n+1} = X_n + U_n + 3\varepsilon_{n+1} \), where \((\varepsilon_n)_{n \geq 1} \) is a sequence of independent \(N(0, 1) \) variables. The instantaneous cost at time \(n \) is \(X_n^2 + 2U_n^2 \). Assuming that \(X_n \) is observable at time \(n \), calculate the optimal control under steady-state (stationary) conditions and find the expected cost per unit time incurred when this control is used.

Suppose now that one can observe at time \(n \) only \(Y_n = X_{n-1} + 2\eta_n \), for \(n \geq 1 \), where \((\eta_n)_{n \geq 1} \) is another sequence of independent \(N(0, 1) \) variables, independent of \((\varepsilon_n)_{n \geq 1} \). Show that, in a steady state, the conditional variance of \(X_n \), given \((Y_1, \ldots, Y_n) \), is 12.

Determine the optimal control and a recursion for the optimal estimate of state under stationary conditions.