
9 Full controllability of linear systems

We begin a detailed study of linear controllable dynamical systems by finding criteria for
existence of controls to get from any given state to any other.

Consider the linear controllable dynamical system, with state-space R
d and action-space

R
m, given by

f(x, a) = Ax + Ba, x ∈ R
d, a ∈ R

m.

Here A is a d × d matrix and B is a d × m matrix. We say that f is fully controllable in

n steps22 if, for all x0, x ∈ R
d, there is a control (u0, . . . , un−1) such that xn = x. Here,

(x0, . . . , xn) is the controlled sequence, given by xk+1 = f(xk, uk) for 0 6 k 6 n − 1. We
then seek to minimize the energy

∑n−1
k=0 |uk|2 over the set of such controls.

Proposition 9.1. The system f is fully controllable in n steps if and only if rank(Mn) = d,
where Mn is the d × nm matrix [An−1B, . . . , AB, B]. Set y = x − Anx0 and Gn = MnMT

n .

Then the minimal energy from x0 to x in n steps is yTG−1
n y and this is achieved uniquely

by the control

uT
k = yTG−1

n An−k−1B, 0 6 k 6 n − 1.

Proof. By induction on n > 0 we obtain

xn = Anx0 + An−1Bu0 + · · · + Bun−1 = Anx0 + Mnu, u =







u0
...

un−1






,

from which the first assertion is clear. Fix x0, x ∈ R
d and a control u such that Mnu = y.

Then, by Cauchy–Schwarz,

yTG−1
n y = yTG−1

n Mnu 6 (yTG−1
n MnMT

n G−1
n y)1/2|u|,

so
∑n−1

k=0 |uk|2 = |u|2 > yTG−1
n y, with equality if and only if uT = yTG−1

n Mn.

Note that rank(Mn) is non-decreasing in n and, by Cayley–Hamilton23, is constant for
n > d.

Consider now the continuous-time linear controllable dynamical system

b(x, u) = Ax + Bu, x ∈ R
d, u ∈ R

m.

Given a starting point x0, the controlled process for control (ut)t>0 is given by the solution
of ẋt = b(xt, ut) for t > 0. We say that b is fully controllable in time t if, for all x0, x ∈ R

d,
there exists a control (us)06s6t such that xt = x. We then seek to minimize the energy
∫ t

0
|us|2ds subject to xt = x. Note that

d

dt
(e−Atxt) = e−At(ẋt − Axt) = e−AtBut,

22This notion is also called controllability in accounts where controllable dynamical systems are called
something else.

23This standard result of linear algebra states that a matrix satisfies its own characteristic equation

25



so

xt = eAtx0 +

∫ t

0

eA(t−s)Busds.

Consider for t > 0 the d × d matrix

G(t) =

∫ t

0

eAsBBT (eAs)T ds.

Lemma 9.2. For all t > 0, G(t) is invertible if and only if rank(Md) = d.

Proof. If rank(Md) 6 d − 1, then we can find v ∈ R
d \ {0} such that vT AnB = 0 for all

n 6 d− 1, and hence for all n > 0 by Cayley–Hamilton. Then vTeAsB = 0 for all s and so
vT G(t)v = 0 for all t > 0. On the other hand, if rank(Md) = d, then, given v ∈ R

d, there
is a smallest n > 0 such that vT AnB 6= 0. Then |vTeAsB| ∼ |vTAnB|sn/n! as s ↓ 0, so
vT G(t)v > 0 for all t > 0.

Proposition 9.3. The system b is fully controllable in time t if and only if G(t) is invertible.

The minimal energy for a control from x0 to x in time t is yTG(t)−1y, where y = x−eAtx0,

and is achieved uniquely by the control

uT
s = yTG(t)−1eA(t−s)B.

The proof is similar to the proof of the discrete-time result and is left as an exercise.
As the invertibility of G(t) does not depend on the value of t > 0, we speak from now of
simply of full controllability in the case of continuous time linear systems.

Example (Broom balancing). You attempt to balance a broom upside-down by sup-
porting the tip of the stick in your palm. Is this possible?

We can resolve the dynamics in components to reduce to a one-dimensional problem.
Write u for the horizontal distance of the tip from a fixed point of reference, and write
θ for angle made by the stick with the vertical. Suppose that all the mass resides in the
head of the broom, at a distance L from the tip. Newton’s Law gives, for the component
perpendicular to the stick of the acceleration of the head

g sin θ = ü cos θ + Lθ̈.

We investigate the linearized dynamics near the fixed point θ = 0 and u = 0. Replace θ by
εθ and u by εu. Then

gεθ = εü + Lεθ̈ + O(ε2),

so, in terms of x = u + Lθ the linearized system is ẍ = α(x − u), where α = g/L, that is,

d

dt

(

x
ẋ

)

= A

(

x
ẋ

)

+ Bu, A =

(

0 1
α 0

)

, B =

(

0
−α

)

.

Then rank[AB, B] = 2, so the linearized system is fully controllable. This provides evidence
that, when the broom is close to vertical, we can bring by a suitable choice of control from
any initial condition to rest while vertical.
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Example (Satellite in a planar orbit). The following equations of motion describe a
satellite moving in a planar orbit with radial thrust ur and tangential thrust uθ:

r̈ = rθ̇2 − c

r2
+ ur, θ̈ = −2ṙθ̇

r
+

uθ

r
.

For each ρ > 0, there is a solution with θ̇ = ω =
√

c/ρ3. We linearize around this solution,

setting r = ρ + εx, θ̇ = ω + εz, urεu and uθ = εv. After some routine calculations, and
introducing y = ẋ, we obtain the linear controllable dynamical system





ẋ
ẏ
ż



 = A





x
y
z



+ B

(

u
v

)

, A =





0 1 0
3ω2 0 2ωρ
0 −2ω/ρ 0



 , B =





0 0
1 0
0 1/ρ



 .

It is straightforward to check that rank[AB, B] = 3, so the linear system is fully controllable.
On the other hand, if the tangential thrust would fail, so v = 0, we would have to replace
B by its first column B1. We have

B1 =





0
1
0



 , AB1 =





1
0

−2ω/ρ



 , A2B1 =





0
−ω2

0



 ,

so rank[A2B1, AB1, B1] = 2 and the system is not fully controllable. In fact, it is the
angular momentum which cannot be controlled, as

d

dt
(r2θ̇2) = (2ωρ, 0, ρ2)T





ẋ
ẏ
ż



 , (2ωρ, 0, ρ2)T AnB = 0, n > 0.
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