
8 Dynamic optimization for long-run average costs

We show how to optimize the long-run average cost for a time-homogeneous stochastic
controllable dynamical system with bounded instantaneous costs.

Let P be a time-homogeneous stochastic controllable dynamical system with state-space
S and action-space A. Suppose given a bounded cost function c : S × A → R. Define, as
usual, for a control u,

V u
n (x) = E

u
x

n−1
∑

k=0

c(Xk, Uk), x ∈ S,

where Uk = uk(X0, . . . , Xk). A control u is optimal, starting from x, if the limit

λ = lim
n→∞

V u
n (x)

n

exists and if, for all other controls ũ,

lim inf
n→∞

V ũ
n (x)

n
> λ.

The limit λ is then the minimal long-run average cost starting from x.

Proposition 8.1. Suppose there exists a constant λ and a bounded function θ on S such

that

λ + θ(x) 6 (c + Pθ)(x, a), x ∈ S, a ∈ A.

Then, for all controls u, and all x ∈ S,

lim inf
n→∞

V u
n (x)

n
> λ.

Proof. Fix u and set

Mn = θ(Xn) +
n−1
∑

k=0

c(Xk, Uk) − nλ.

Then
Mn+1 − Mn = θ(Xn+1) − θ(Xn) + c(Xn, Un) − λ,

so, for all y ∈ S and a ∈ A,

E
u
x(Mn+1 − Mn|Xn = y, Un = a) = Pθ(y, a) − θ(y) + c(y, a) − λ > 0.

Hence
θ(x) = E

u
x(M0) 6 E

u
x(Mn) = E

u
x(θ(Xn)) − nλ + V u

n (x)

and so
V u

n (x)

n
> λ +

θ(x)

n
− E

u
n(θ(Xn))

n

and we conclude by letting n → ∞.

By a similar argument, which is left as an exercise, one can also prove the following
result.
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Proposition 8.2. Suppose there exists a constant λ and a bounded function θ on S, and

a map u : S → A, such that

λ + θ(x) > (c + Pθ)(x, u(x)), x ∈ S.

Then, for all x ∈ S,

lim sup
n→∞

V u
n (x)

n
6 λ.

By combining the above two results, we see that, if λ and θ satisfy the dynamic opti-

mality equation

λ + θ(x) = inf
a

(c + Pθ)(x, a), x ∈ S,

and if the infimum is achieved at u(x) for each x ∈ S, then λ is the minimal long-run
average cost and u defines an optimal control, for all starting states x. Note that, since
P1 = 1, we can add any constant to θ and still have a solution. So, we are free to impose
the condition θ(x0) = 0 for any given x0 ∈ S when looking for solutions. The function θ
can then be thought of as the (un-normalized) extra cost of starting at x rather than x0.

Example (Consultant’s job selection). Each day a consultant is either free or is occu-
pied with some job, which may be of m different types 1, . . . , m. Whenever he is free, he
is given the opportunity to take on a job for the next day. A job of type x is offered with
probability πx and the types of jobs offered on different days are independent. On any day
when he works on a job of type x, he completes it with probability px, independently for
each day, and on its completion he is paid Rx. Which jobs should he accept?

We take as state-space the set {0, 1, . . . , m}, where 0 corresponds to the consultant
being free and 1, . . . , m correspond to his working on a job of that type. The optimality
equations for this problem are given by

λ + θ(0) =
m
∑

x=1

πx max{θ(0), θ(x)},

λ + θ(x) =(1 − px)θ(x) + px(Rx + θ(0)), x = 1, . . . , m.

Take θ(0) = 0, then θ(x) = Rx − (λ/px) for x = 1, . . . , m, so the optimal λ must solve
λ = G(λ), where

G(λ) =
m
∑

x=1

πx max{0, Rx − (λ/px)}.

Since G is non-increasing, there is a unique solution λ. The optimal control is then to
accept jobs of type x if and only if pxRx > λ.

The optimality equation can be written down simply by reflecting on the details of the
problem. A check on the validity of this process is provided by seeing how this particular
problem can be expressed in terms of the general theory. For this, we take for state 0 the
action-space A0 = {(ε1, . . . , εm) : εx ∈ {0, 1}}. Here the action (ε1, . . . , εm) signifies that
we accept a job of type x if and only if εx = 1. There is no choice to be made in states
1, . . . , m. We take, for x = 1, . . . , m,

P (0, ε)x = πxεx, P (0, ε)0 =
m
∑

x=1

πx(1 − εx), P (x)0 = px, P (x)x = 1 − px,
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and
r(0, ε) = 0, r(x) = pxRx.

The reward function here gives the expected reward in state x, as in the discussion in
footnote 10. We leave as an exercise to see that the general form of the optimality equations
specializes to the particular equations claimed. The complicated form of action-space
reflects the fact that, in this example, we in fact make our choice based on knowledge of
the type of job offered, whereas, in the general theory, the action is chosen without such
knowledge.

The following result provides a value iteration approach to long-run optimality. Recall
that the finite-horizon optimality equations are V0(x) = 0 and, for k > 0,

Vk+1(x) = inf
a

(c + PVk)(x, a), x ∈ S.

Set
λ−

k = inf
x
{Vk+1(x) − Vk(x)}, λ+

k = sup
x
{Vk+1(x) − Vk(x)}.

Proposition 8.3. For all k > 0 and all controls u, we have

lim inf
n→∞

V u
n (x)

n
> λ−

k .

Moreover, if there exists u : S → A such that

Vk+1(x) = (c + PVk)(x, u(x)), x ∈ S,

then

lim sup
n→∞

V u
n (x)

n
6 λ+

k .

Proof. Note that

λ−
k + Vk(x) 6 Vk+1(x) 6 (c + PVk)(x, a), x ∈ S, a ∈ A,

and
λ+

k + Vk(x) > Vk+1(x) = (c + PVk)(x, u(x)), x ∈ S,

and apply the preceding two propositions with θ = Vk.
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