
7 Optimal stopping

We show how optimal stopping problems for Markov chains can be treated as dynamic
optimization problems.

Let (Xn)n>0 be a Markov chain on S, with transition matrix P . Suppose given two
bounded functions

c : S → R, f : S → R,

respectively the continuation cost and the stopping cost. A random variable T , with values
in Z

+ ∪ {∞}, is a stopping time if, for all n ∈ Z
+, the event {T = n} depends only on

X0, . . . , Xn. Define the expected total cost function V T by

V T (x) = Ex

(

T−1
∑

k=0

c(Xk) + f(XT )1{T<∞}

)

, x ∈ S,

and define for n ∈ Z
+ and x ∈ S,

Vn(x) = inf
T6n

V T (x), V∗(x) = inf
T<∞

V T (x), V (x) = inf
T

V T (x),

where the infima are taken over all stopping times T , first with the restriction T 6 n, then
with T < ∞, and finally unrestricted. Where unbounded stopping times are involved, we
assume that c and f are non-negative, so the sums and expectations are well defined. It is
clear that Vn(x) > Vn+1(x) > V∗(x) > V (x) for all n and x, as the infima are taken over
progressively larger sets. The calculation of these functions and the determination, where
possible, of minimizing stopping times are known as optimal stopping problems20.

We translate these problems now into dynamic optimization problems, with state-space
S∪{∂} and action space {0, 1}. Action 0 will correspond to continuing, action 1 to stopping.
On stopping, we go to ∂ and stay there. Define, for x ∈ S,

P (x, 0)y = pxy, P (x, 1)∂ = δy∂,

and

c(x, a) =

{

c(x), a = 0,

f(x), a = 1.

Given a stopping time T , there exists for each n > 0 a set Bn ⊆ Sn+1 such that {T = n} =
{(X0, . . . , Xn) ∈ Bn}. Define a control u by

un(x0, . . . , xn) =

{

1, if (x0, . . . , xn) ∈ Bn,

0, otherwise.

Note that we obtain all controls for starting time 0 in this way and that the controlled
process is given by

X̃n =

{

Xn, n 6 T,

∂, n > T + 1.

20We limit our discussion to the time-homogeneous case. If there is a time dependence in the transi-
tion matrix or in the costs, a reduction to the time-homogeneous case can be achieved as in footnote 3,
specifically, by considering the process X̃n = (k + n, Xn+k).
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Hence, Vn is the infimal cost function for the n-horizon problem, with final cost f , so
satisfies V0(x) = f(x) and, for all n > 0,

Vn+1(x) = min{f(x), (c + PVn)(x)}, x ∈ S.

Moreover, V is the infimal cost function for the infinite-horizon problem, so, if c and f are
non-negative, then V is the minimal non-negative solution to

V (x) = min{f(x), (c + PV )(x)}, x ∈ S.

The V∗ problem corresponds to a type of restriction on controls which we have not seen
before. However the argument of Proposition 2.1 can be adapted to show that V∗ also
satisfies the optimality equation

V∗(x) = min{f(x), (c + PV∗)(x)}, x ∈ S.

Example. Consider a simple symmetric random walk on the integers with continuation
cost c(x) = 0 and stopping cost f(x) = 1 + e−x. Since f is convex, specifically since
f(x) 6

1
2
f(x + 1) + 1

2
f(x − 1) for all x, a simple inductive argument21 using the finite-

horizon optimality equations shows that Vn = f for all n. Since (Xn)n>0 is recurrent, the
stopping time Tn = inf{n > 0 : Xn = N} is finite for all N , for every starting point x.
So V∗(x) 6 V Tn(x) = 1 + e−N . Obviously, V∗(x) > 1, so V∗(x) = 1 for all x. Finally,
V = V ∞ = 0. We note that infn Vn(x) > V∗(x) > V (x) for all x.

Proposition 7.1 (One step look ahead rule). Suppose that (Xn)n>0 cannot escape from

the set

S0 = {x ∈ S : f(x) 6 (c + Pf)(x)}.
Then, for all n > 0, the following stopping time is optimal for the n-horizon problem

Tn = inf{k > 0 : Xk ∈ S0} ∧ n.

Proof. The case n = 0 is trivially true. Suppose inductively that the claim holds for n.
Then Vn = f on S0, so PVn = Pf on S0 as we cannot escape. So, for x ∈ S0,

Vn+1(x) = min{f(x), (c + PVn)(x)} = f(x)

and it is optimal to stop immediately. But, for x 6∈ S0, it is better to wait, if we can. Hence
the claim holds for n + 1 and the induction proceeds.

21An alternative analysis of this example may be based on the optional stopping theorem, which is a
fundamental result of martingale theory. This is introduced in the course Stochastic Financial Models
and in the Part III course Advanced Probability. The random walk is a martingale, so, since f is convex,
(f(Xn))n>0 is a submartingale. By optional stopping, Ex(f(XT )) > Ex(f(X0)) = f(x) for all bounded
stopping times T , so Vn(x) = f(x) for all x. The fact that the conclusion of the optional stopping theorem
does not extend to TN is a well known sort of counterexample in martingale theory.
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Example (Optimal parking). Suppose that you intend to park on the Backs, and wish
to minimize the expected distance you will have to walk to Garrett Hostel Lane, and that
a proportion p of the parking spaces are free. Assume that each parking space is free or
occupied independently, that a queue of cars behind you take up immediately any space
you pass by, and that no new spaces are vacated. Where should you park?

If you reach Garrett Hostel Lane without parking, then you should park in the next
available space. This lies at a random distance (in spaces) D, with P(D = n) = (1 − p)pn,
for n > 0, so the expected distance to walk is E(D) = q/p, where q = 1 − p. Here we have
made the simplifying assumptions that Queen’s Road is infinitely long and that there are
no gaps between the spaces.

Write Vn for the minimal expected distance starting from n spaces before Garrett Hostel
Lane. Then V0 = q/p and, for n > 1, Vn = qVn−1 + p min{n, Vn−1}. Set n∗ = inf{n >

0 : Vn < n}. For n 6 n∗, we have Vn = qVn−1 + pn, so Vn = n + (2qn − 1)q/p. Hence
n∗ = inf{n > 0 : 2qn < 1}. For n > n∗, we have Vn = Vn∗. The optimal time to stop is
thus the first free space no more than n∗ spaces before the Lane. We leave as an exercise
the to express this argument in terms of the general framework described above.
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