6 Dynamic optimization for non-negative costs

We show how to optimize a time-homogeneous stochastic controllable dynamical system with non-negative costs over an infinite time-horizon¹⁹.

Let P be a time-homogeneous stochastic controllable dynamical system with state-space S and action-space A. Suppose given a *cost function*

$$c: S \times A \to \mathbb{R}^+.$$

Given a control u, define, as above, the *expected total cost function* V^u and the *infimal cost function* V by

$$V^{u}(x) = \mathbb{E}_{x}^{u} \sum_{n=0}^{\infty} c(X_{n}, U_{n}), \quad V(x) = \inf_{u} V^{u}(x).$$

Recall from Section 4 that $V_n^u(x) \uparrow V^u(x)$ as $n \to \infty$, where

$$V_n^u(x) = \mathbb{E}_x^u \sum_{k=0}^{n-1} c(X_k, U_k).$$

Proposition 6.1. Assume that A is finite. Then the infimal cost function is the minimal non-negative solution of the dynamic optimality equation

$$V(x) = \min(c + PV)(x, a), \quad x \in S.$$

Moreover, any map $u: S \to A$ such that

$$V(x) = (c + PV)(x, u(x)), \quad x \in S,$$

defines an optimal control, for every starting state x.

Proof. We know by Proposition 2.1 that V is a solution of the optimality equation. Suppose that F is another non-negative solution. We use the finiteness of A to find a map $\tilde{u} : S \to A$ such that

$$F(x) = (c + PF)(x, \tilde{u}(x)), \quad x \in S$$

The argument leading to equation (2) is valid when $\beta = 1$, so we have

$$F(x) = V_n^{\tilde{u}}(x) + \mathbb{E}_x^{\tilde{u}} F(X_n) \ge V_n^{\tilde{u}}(x).$$

On letting $n \to \infty$, we obtain $F \ge V^{\tilde{u}} \ge V$. Finally, when F = V we can take $\tilde{u} = u$ to see that $V \ge V^u$, and hence that u defines an optimal control.

The proposition allows us to see, in particular, that *value iteration* remains an effective way to approximate the infimal cost function in the current case. For let us set

$$V_n(x) = \inf_u V_n^u(x)$$

¹⁹This is also called negative programming – the problem can be recast in terms of non-positive rewards.

and note that $V_n(x) \uparrow V_{\infty}(x)$ as $n \to \infty$ for some function V_{∞} . Now $V_n^u \leq V^u$ for all n so, taking an infimum over controls we obtain $V_n \leq V$ and hence $V_{\infty} \leq V$. On the other hand we have the finite-horizon optimality equations

$$V_{n+1}(x) = \min_{a} (c + PV_n)(x, a), \quad x \in S,$$

and we can pass to the limit as $n \to \infty$ to see that V_{∞} satisfies the optimality equation. But V is the minimal non-negative solution of this equation, so $V_{\infty} \ge V$, so $V_{\infty} = V$.

A second iterative approach to optimality is the method of *policy improvement*. We know that, for any given map $u: S \to A$, we have

$$V^{u}(x) = (c + PV^{u})(x, u(x)), \quad x \in S.$$

If V^u does not satisfy the optimality equation, then we can find a strictly better control by choosing $\tilde{u}: S \to A$ such that

$$V^{u}(x) \ge (c + PV^{u})(x, \tilde{u}(x)), \quad x \in S,$$

with strict inequality at some state x_0 . Then, obviously, $V^u \ge V_0^{\tilde{u}} = 0$. Suppose inductively that $V^u \ge V_n^{\tilde{u}}$. Then

$$V^{u}(x) \ge (c + PV^{u})(x, \tilde{u}(x)) \ge (c + PV_{n}^{\tilde{u}})(x, \tilde{u}(x)) = V_{n+1}^{\tilde{u}}(x), \quad x \in S,$$

so the induction proceeds and, letting $n \to \infty$, we obtain $V^u \ge V^{\tilde{u}}$, with strict inequality at x_0 .