5 Dynamic optimization for discounted costs

We show how to optimize a time-homogeneous stochastic controllable dynamical system
with bounded costs, discounted!® at rate 8 € (0, 1).

Let P be a time-homogeneous stochastic controllable dynamical system with state-space
S and action-space A. Suppose given a cost function

c:SxA—-R,

and suppose that |c(z,a)| < C for all x,a, for some constant C' < co. Given a control u,
define the expected discounted cost function

E“Zﬂ” (X, Un).

Define also the infimal discounted cost function
V(z) = inf V*(x).

Our current set-up corresponds in the framework of Section 2, to the case of a time-
dependent cost function (n,z,a) — "c(x,a).
Define, for n > 0 and any control w,

n—1

Vi) =B2 Y Bre(Xy, Up), V(o) = inf V) (z).

k=0

Note that

Vi) Vil < oYt = 2
k=n

so, taking the infimum over u, we have
cpr
1-p

18Such a discounting of future costs is normal in financial models, and reflects the fact that money can
be invested to earn interest. There is a second way in which a discounted problem may arise. Consider the
set-up of Section 4, modified by the introduction of a killing time T, with P(T > n+1) = 8" for all n > 0,
independent of the controlled process (Xp)n>0. The idea is that, at each time step, independently, there
is a probability 0 that some external event will terminate the process, and that no further rewards will be
received. Then consider the expected total reward function for control u given by

[Va(z) = V(2)| <

— 0, asn — oc.

T-1 0o
Vu(x) = Eg Z T(Xna Un) = Eg Z T(Xna Un)l{T>n+1}~
n=0 n=0

Now
EZ(T(Xm U77,)1{T2n+1} |Xn7 Un) - ﬂnT(Xn; Un)a

so our problem reduces to the optimization of the expected discounted reward function

= E} Z B (X, Un).
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Taking advantage of time-homogeneity, the finite-horizon cost functions V,, may be deter-
mined iteratively for n > 0 by Vy(x) = 0 and the optimality equations

Vosi1(z) = inf(c + pPV,)(z,a), z € S.

Hence, as in the case of non-negative rewards, we can compute V' by value iteration.

Proposition 5.1. The infimal discounted cost function is the unique bounded solution of
the dynamic optimality equation

V(z) = ilgf(c—i— BPV)(z,a), x€S.
Moreover, any map u: S — A such that
V(z) = (c+ pPV)(z,u(z)), =x€S,
defines an optimal control, for every starting state x.
Proof. We know that V satisfies the optimality equation by Proposition 2.1, and
V@l <Oy 5= 1o <o,

so V' is bounded. Let now F' be any bounded solution of the optimality equation and let u
be any control. Consider the process

n—1

My, =" (X, Ux) + B°F(X,), n>0.

k=0

Then
Mn-l—l - Mn - ﬁnC(Xnu UTL) + ﬁn—’_lF(X?H-l) - ﬁnF(Xn)7

so, for all y € S and a € A,
Ey (M1 — M| X, =y, U, = a) = 3"c(y,a) + ﬁ"'HPF(y, a)—B"F(y) =0

and so
F(z) = E;(Mo) < EZ(M,) = V,'(z) + B"ESF(X,).

On letting n — oo, using the boundedness of F', we obtain F' < V", Since u was arbitrary,
this implies that F' < V.
In the special case where we can find a stationary Markov control u : S — A such that

F(z) = (¢c+ pPF)(z,u(x)), x€S,

then, for all y € S,
EX (M1 — M,| X, =y) =0.

Hence
F(z) = B3 (M) = E5(M,) = V! (z) + B"EZ F(X,) (2)
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and so, letting n — oo, the final term vanishes and we find that F' = V*. In particular, in
the case ' =V, such a control u is optimal.

We do not know in general that there exists such a minimizing u but, given ¢ > 0, we
can always choose u such that

(c+ BPF)(z,u(x)) < F(x)+e, x€S,
which we can write in the form
F(z) = ¢+ BPF)(z.i(x), = €S,

for a new cost function ¢ > ¢ — . The argument of the preceding paragraph, with ¢ in
place of ¢ and u in place of v now shows that

= . - i € €
F(z) = E;;mc(xk,u(xk)) > Vi) - =5 2 V@ - 15
Since € > 0 was arbitrary, we conclude that V = F. O
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