
5 Dynamic optimization for discounted costs

We show how to optimize a time-homogeneous stochastic controllable dynamical system
with bounded costs, discounted18 at rate β ∈ (0, 1).

Let P be a time-homogeneous stochastic controllable dynamical system with state-space
S and action-space A. Suppose given a cost function

c : S × A → R,

and suppose that |c(x, a)| 6 C for all x, a, for some constant C < ∞. Given a control u,
define the expected discounted cost function

V u(x) = E
u
x

∞
∑

n=0

βnc(Xn, Un).

Define also the infimal discounted cost function

V (x) = inf
u

V u(x).

Our current set-up corresponds in the framework of Section 2, to the case of a time-
dependent cost function (n, x, a) 7→ βnc(x, a).

Define, for n > 0 and any control u,

V u
n (x) = E

u
x

n−1
∑

k=0

βkc(Xk, Uk), Vn(x) = inf
u

V u
n (x).

Note that

|V u
n (x) − V u(x)| 6 C

∞
∑

k=n

βk =
Cβn

1 − β
,

so, taking the infimum over u, we have

|Vn(x) − V (x)| 6
Cβn

1 − β
→ 0, as n → ∞.

18Such a discounting of future costs is normal in financial models, and reflects the fact that money can
be invested to earn interest. There is a second way in which a discounted problem may arise. Consider the
set-up of Section 4, modified by the introduction of a killing time T , with P(T > n + 1) = βn for all n > 0,
independent of the controlled process (Xn)n>0. The idea is that, at each time step, independently, there
is a probability β that some external event will terminate the process, and that no further rewards will be
received. Then consider the expected total reward function for control u given by

V u(x) = E
u
x

T−1
∑

n=0

r(Xn, Un) = E
u
x

∞
∑

n=0

r(Xn, Un)1{T>n+1}.

Now
E

u
x(r(Xn, Un)1{T>n+1}|Xn, Un) = βnr(Xn, Un),

so our problem reduces to the optimization of the expected discounted reward function

V u(x) = E
u
x

∞
∑

n=0

βnr(Xn, Un).
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Taking advantage of time-homogeneity, the finite-horizon cost functions Vn may be deter-
mined iteratively for n > 0 by V0(x) = 0 and the optimality equations

Vn+1(x) = inf
a

(c + βPVn)(x, a), x ∈ S.

Hence, as in the case of non-negative rewards, we can compute V by value iteration.

Proposition 5.1. The infimal discounted cost function is the unique bounded solution of

the dynamic optimality equation

V (x) = inf
a

(c + βPV )(x, a), x ∈ S.

Moreover, any map u : S → A such that

V (x) = (c + βPV )(x, u(x)), x ∈ S,

defines an optimal control, for every starting state x.

Proof. We know that V satisfies the optimality equation by Proposition 2.1, and

|V (x)| 6 C
∞
∑

n=0

βn =
C

1 − β
< ∞,

so V is bounded. Let now F be any bounded solution of the optimality equation and let u
be any control. Consider the process

Mn =
n−1
∑

k=0

βkc(Xk, Uk) + βnF (Xn), n > 0.

Then
Mn+1 − Mn = βnc(Xn, Un) + βn+1F (Xn+1) − βnF (Xn),

so, for all y ∈ S and a ∈ A,

E
u
x(Mn+1 − Mn|Xn = y, Un = a) = βnc(y, a) + βn+1PF (y, a)− βnF (y) > 0

and so
F (x) = E

u
x(M0) 6 E

u
x(Mn) = V u

n (x) + βn
E

u
xF (Xn).

On letting n → ∞, using the boundedness of F , we obtain F 6 V u. Since u was arbitrary,
this implies that F 6 V .

In the special case where we can find a stationary Markov control u : S → A such that

F (x) = (c + βPF )(x, u(x)), x ∈ S,

then, for all y ∈ S,
E

u
x(Mn+1 − Mn|Xn = y) = 0.

Hence
F (x) = E

u
x(M0) = E

u
x(Mn) = V u

n (x) + βn
E

u
xF (Xn) (2)
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and so, letting n → ∞, the final term vanishes and we find that F = V u. In particular, in
the case F = V , such a control u is optimal.

We do not know in general that there exists such a minimizing u but, given ε > 0, we
can always choose ũ such that

(c + βPF )(x, ũ(x)) 6 F (x) + ε, x ∈ S,

which we can write in the form

F (x) = (c̃ + βPF )(x, ũ(x)), x ∈ S,

for a new cost function c̃ > c − ε. The argument of the preceding paragraph, with c̃ in
place of c and ũ in place of u now shows that

F (x) = E
u
x

∞
∑

k=0

βkc̃(Xk, ũ(Xk)) > V ũ(x) − ε

1 − β
> V (x) − ε

1 − β
.

Since ε > 0 was arbitrary, we conclude that V = F .
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