
4 Dynamic optimization for non-negative rewards

We show how to optimize a time-homogeneous stochastic controllable dynamical system
with non-negative rewards over an infinite time-horizon15.

Let P be a time-homogeneous stochastic controllable dynamical system with state-space
S and action-space A. Suppose given a reward function

r : S × A → R
+.

Given a control u, define the expected total reward function

V u(x) = E
u
x

∞
∑

n=0

r(Xn, Un),

where, as usual, the notation signifies that (Xn)n>0 is the controlled process of u, starting
from x, and where Un = un(X0, . . . , Xn). Define also the optimal reward or value function

V (x) = sup
u

V u(x).

We are using notation inconsistent with Section 2 because we have defined V as the negative
of the corresponding object in Section 2. The optimality equation transforms straightfor-
wardly under this change of notation – one just replaces the infimum by a supremum.

Define for n > 0

V u
n (x) = E

u
x

n−1
∑

k=0

r(Xk, Uk), Vn(x) = sup
u

V u
n (x).

By monotone convergence16, since r > 0, V u
n (x) ↑ V u(x) as n → ∞, for all x and u. So

V (x) = sup
u

sup
n

V u
n (x) = sup

n
sup

u
V u

n (x) = sup
n

Vn(x).

The functions Vn are finite-horizon optimal reward functions, which, taking advantage of
time-homogeneity, can be computed iteratively using the optimality equation

Vn+1(x) = sup
a

(r + PVn)(x, a),

so we have a way to compute V . This procedure is called value iteration.

Proposition 4.1. The optimal reward function is the minimal non-negative solution of the

dynamic optimality equation

V (x) = sup
a

(r + PV )(x, a), x ∈ S.

Hence, any control u, for which V u also satisfies this equation, is optimal, for all starting

states x.

15This is also called positive programming.
16This fundamental result of measure theory states that, for any sequence of measurable functions

0 6 fn ↑ f , and any measure µ, we have convergence of the corresponding integrals µ(fn) ↑ µ(f). Here, it
justifies the interchange of summation and expectation, for the expectation is a form of integral, and we
just take fn as the partial sum

∑n−1
k=0 r(Xk , Uk).
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Proof. We know that V satisfies the optimality equation by Proposition 2.1. Suppose F
is another non-negative solution. Then F > 0 = V0. Suppose inductively for n > 0 that
F > Vn. Then

F (x) = sup
a

(r + PF )(x, a) > sup
a

(r + PVn)(x, a) = Vn+1(x)

so the induction proceeds. Hence F > supn Vn = V .

Example (Possible lack of an optimal policy). Consider the controllable dynamical
system f(x, a) = a(x+1{x>1}), with state-space Z

+ and action-space {0, 1}. Take as reward
function r(x, a) = (1 − a)(1 − 1/x). Thus, in state x > 1, we can choose to jump up by 1,
or to jump to 0, gaining a reward of 1 − 1/x. Once at 0, no further reward is gained.

The optimality equations are given by V (0) = 0 and

V (x) = max{1 − 1/x, V (x + 1)}, x > 1.

It is straightforward to show that, for any λ ∈ [1,∞), the function Vλ, given by

Vλ(x) = λ1{x>1},

is a solution of the optimality equations, and indeed that there are no other solutions.
Then, by the proposition, we can identify the optimal reward function as the smallest of
these functions, namely V1. However, there is no optimal control. If we wait until we get
to n, then we gain a reward 1 − 1/n. But if we wait for ever, we get nothing. Note that
waiting forever corresponds to the control u(x) = 0 for all x, which has the property that

V (x) = (r + PV )(x, u(x)), x ∈ S.

So we see, contrary to the finite-horizon case, that this is not enough to guarantee opti-
mality. We do have for this control that

V u(x) = (r + PV u)(x, u(x)), x ∈ S.

However, V u, which is the minimal non-negative solution of this equation, is identically
zero.

Example (Optimal gambling). A gambler has one pound and wishes to increase it to N
pounds. She can place bets on a sequence of favorable games, each independently having
probability p > 1/2 of success, but her stake must be a whole number of pounds and may
not exceed her current fortune. What strategy maximizes her chances of reaching her goal?

We take as state-space S = Z
+. It is natural here to allow a state-dependent action-

space17 Ax = {0, 1, . . . , x}. The optimality equations are given by

V (x) = max
a∈Ax

{pV (x + a) + (1 − p)V (x − a)}, 1 6 x 6 N − 1,

with V (0) = 0 and V (x) = 1 for all x > N . There is no systematic approach to solving
these equations, so we guess that the timid strategy of betting one pound each time will

17See footnote 1.
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be optimal. As motivation, we might compare the outcomes, firstly of betting two pounds
once, and secondly, of successively betting one pound until we are either two up or two
down. So, take u(x) = 1 for all x. Then, by a standard Markov chain argument,

V u(x) = pV u(x + 1) + (1 − p)V u(x − 1), 1 6 x 6 N − 1,

with V u(0) = 1 and V u(N) = 1. These equations have unique solution

V u(x) = (1 − λx)/(1 − λN ),

where λ = (1−p)/p ∈ (0, 1). It now follows from the fact that V u is concave that it satisfies
the optimality equations too, so u is optimal.
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