3 Finite-horizon dynamic optimization

We show how to optimize a controllable dynamical system over finitely many time steps.
Fix a time horizon n € Z* and assume that

c¢(n,z,a) =C(z) and c(k,x,a)=0, k=2n+1, x€S8, a€A.

Thus the total cost function is given by
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Vik,z) =) c(j,zj,uj) +C(zn), 0<k<n,
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in the deterministic case, and in the stochastic case by

n—1
Vi(k,x) =Ef (Z c(4, X;,U;) + C’(Xn)> , 0<Ek<n.
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Note that V(k,z) = 0 for all £ > n + 1. Hence, the optimality equation can be written in
the form

V(n,z) = C(z), x €S,
V(k,z) = inf{c(k,z,a) + V(k + 1, f(k,z,a))}, 0<k<n-—-1, z€S,

in the deterministic case, and in the stochastic case by!?

V(n,z) = C(z), x €S,
V(k,z) = inf(c + PV)(k,x,a), 0<k<n-1, zeb.

Both these equations have a unique solution, which moreover may be computed by a
straightforward!® backwards recursion from time n. Once we have computed V, an opti-
mal control can be identified whenever we can find a minimizing action in the optimality
equations for 0 < k < n — 1. The following easy result verifies this for the deterministic
case.

12Tt is often convenient to write the equation in terms of the time to go m = n — k. Assume that P
is time-homogeneous and set V,(x) = V(k,z) and ¢,,(x,a) = ¢(k,x,a), then the optimality equations
become Vy(z) = C(z) and

Va1 (x) = inf(ep, + PVy)(z,a), 0<m<n—1, xz€bf.

In particular, in the case where both P and ¢ are time-homogeneous, if we define
n—1

Vi(e) =Ep Y e(X;,Up),  Valz) =inf Vi (2),

x
Jj=0

then the functions V,, are given by Vy(z) = 0 and, for n > 0,

Vot1(z) =inf(c+ PV,)(z,a), z€S.

13 Although straightforward in concept, the size of the state space may make this a demanding procedure
in practice. It is worth remembering, as a possible alternative, the following interchange argument, when



Proposition 3.1. Suppose we can find a control u, with controlled sequence (xq, ..., xy,)
such that

V(k,x) = c(k,xp,ur) + V(k+ 1, f(k,zp,ug), 0<k<n-—1
Then u is optimal for (0, ).

Proof. Fix a such a control u, and set
k—
Z c(j,xj,u;) + Vik,ay), 0<k<n.
j=0

Then, for 0 < k < n — 1, since xy1 = f(k, xg, ug), we have
Mgy — Mg = C(kyxk,uk) + V(k + 17l’k+1) - V(k7xk) =0.

Hence
n—1

V(O7$0) =My =My = ZC(j, Zj, U]) + C(.Tn)
=0
O

Example (Managing spending and saving). An investor holds a capital sum in a
building society, which pays a fixed rate of interest 6 x 100% on the sum held at each time
k=0,1,...,n—1. The investor can choose to reinvest a proportion a of the interest paid,
which then itself attracts interest. No amounts invested can be withdrawn. How should
the investor act to maximize total consumption by time n — 1?7

Take as state the present income x € R* and as action the proportion a € [0, 1] which
is reinvested. The income next time is then

f(z,a) =z + bax
and the reward this time is 7(z,a) = (1 — a)z. The optimality equation is given by

V(k,x) = max{(l—a):v+V(k+1 (I1+6a)x)}, 0<k<n-—1,

0<a<l
seeking to optimize the order in which one performs a sequence of n tasks. Label the tasks {1,...,n} and
write ¢(o) for the cost of performing the tasks in the order ¢ = (o1,...,0,). We examine the effect on
¢(o) of interchanging the order of two of the tasks. Suppose we can find a function f on {1,...,n} such

that, for all o and all 0 <i < n —1,
c(o’) < c(o) whenever f(o;) > f(oiy1),

where ¢’ is obtained from o by interchanging the order of tasks o; and ;1. Then the condition f(o;) <
. < f(on) is necessary for optimality of 0. This may be enough to reduce the number of possible optimal
orders to 1. In any case, if we have also, for all c and all 0 < i < n—1,

e(0) = c(o) whenever f(oi41) = f(0),

then our optimality condition is also sufficient.



with V(n,z) = 0. Working back from time n, we see that V(k,z) = ¢,_xx for some
constants cg, ..., c,, given by ¢y = 0 and

Cm1 = max{c, +1,(1+68)c,}, 0<m<n—1.

Hence

*

S m, m < m”,
" m*(14+6)™"™, m >m*,

where m* = [1/6]. By Proposition 3.1, the optimal control is to reinvest everything before
time k* = n — m* and to consume everything from then on.

The optimality of a control in the stochastic case can verified using the following result.

Proposition 3.2. Suppose we can find a Markov control u such that
V(k,z) = (c+ PV)(k,z,ux(x)), 0<k<n-—1 xz€b.
Then u is optimal for all (k,x).

Proof. Fix such a Markov control v and write (Xo, ..., X,,) for the associated Markov chain
starting from (0, z). Define
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Mk: C(j,Xj,Uj)+V(k,Xk), ng < n.
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Then, for 0 < k< n—1,
Miy1 — My = c(k, X3, Up) + V(E+ 1, Xpy1) — V(E, Xp),
so, for all y € S,

E*(My11 — Mi| Xy = y) = (c+ PV)(k,y,ur(y)) — V(k,y) = 0.

Hence )
V(0,z) = EY(My) = EX(M, (Zc 3, X;,U;) + C(X ))
7=0
The same argument works for all starting times k. O

Example (Exercising a stock option). You hold an option to buy a share at a fixed
price p, which can be exercised at any time k£ = 0,1,...,n — 1. The share price satisfies
Yit1 = Yi+€kt1, where (€)g>1 is a sequence of independent identically distributed random
variables'!, with E(|e|) < co. How should you act to maximise your expected return?
Take as state the share price x € R, until we exercise the option, when we move to a
terminal state 0. Take as action space the set {0, 1}, where a = 1 corresponds to exercising
the option. The problem specifies a realised stochastic controllable dynamical system. We

“Thus we allow, unrealistically, the possibility that the price could be negative. This model might
perhaps be used over a small time interval, with Y, large.



are working outside the countable framework here, but in the realised case, where PV is
given straightforwardly by 1. The rewards and dynamics before termination are given by

r+e, ifa=0,
r(xz,a) =a(x —p), G(x,a,¢e)= ) .
(5,0) = alz —p), Glz,0) {67 e
Hence the optimality equation is given by

V(k,z) =max{z —p,E(V(k+ 1,z +¢))}, k=0,1,....,n—1,

with V(n,z) = 0. Note that V(n—1,z) = (x —p)". By backwards induction, we can show
that V' (k,.) is convex for all k, and increases as k decreases. Set py = inf{z > 0:V(k,z) =
x — p}. Then p increases as k decreases and the optimal control is to exercise the option
as soon as Y, = pg.
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