
3 Finite-horizon dynamic optimization

We show how to optimize a controllable dynamical system over finitely many time steps.
Fix a time horizon n ∈ Z

+ and assume that

c(n, x, a) = C(x) and c(k, x, a) = 0, k > n + 1, x ∈ S, a ∈ A.

Thus the total cost function is given by

V u(k, x) =
n−1
∑

j=k

c(j, xj, uj) + C(xn), 0 6 k 6 n,

in the deterministic case, and in the stochastic case by

V u(k, x) = E
u
(k,x)

(

n−1
∑

j=k

c(j, Xj, Uj) + C(Xn)

)

, 0 6 k 6 n.

Note that V (k, x) = 0 for all k > n + 1. Hence, the optimality equation can be written in
the form

V (n, x) = C(x), x ∈ S,

V (k, x) = inf
a
{c(k, x, a) + V (k + 1, f(k, x, a))}, 0 6 k 6 n − 1, x ∈ S,

in the deterministic case, and in the stochastic case by12

V (n, x) = C(x), x ∈ S,

V (k, x) = inf
a

(c + PV )(k, x, a), 0 6 k 6 n − 1, x ∈ S.

Both these equations have a unique solution, which moreover may be computed by a
straightforward13 backwards recursion from time n. Once we have computed V , an opti-
mal control can be identified whenever we can find a minimizing action in the optimality
equations for 0 6 k 6 n − 1. The following easy result verifies this for the deterministic
case.

12It is often convenient to write the equation in terms of the time to go m = n − k. Assume that P

is time-homogeneous and set Vm(x) = V (k, x) and cm(x, a) = c(k, x, a), then the optimality equations
become V0(x) = C(x) and

Vm+1(x) = inf
a

(cm + PVm)(x, a), 0 6 m 6 n − 1, x ∈ S.

In particular, in the case where both P and c are time-homogeneous, if we define

V u
n (x) = E

u
x

n−1
∑

j=0

c(Xj , Uj), Vn(x) = inf
u

V u
n (x),

then the functions Vn are given by V0(x) = 0 and, for n > 0,

Vn+1(x) = inf
a

(c + PVn)(x, a), x ∈ S.

13Although straightforward in concept, the size of the state space may make this a demanding procedure
in practice. It is worth remembering, as a possible alternative, the following interchange argument, when
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Proposition 3.1. Suppose we can find a control u, with controlled sequence (x0, . . . , xn)
such that

V (k, xk) = c(k, xk, uk) + V (k + 1, f(k, xk, uk)), 0 6 k 6 n − 1.

Then u is optimal for (0, x0).

Proof. Fix a such a control u, and set

mk =

k−1
∑

j=0

c(j, xj, uj) + V (k, xk), 0 6 k 6 n.

Then, for 0 6 k 6 n − 1, since xk+1 = f(k, xk, uk), we have

mk+1 − mk = c(k, xk, uk) + V (k + 1, xk+1) − V (k, xk) = 0.

Hence

V (0, x0) = m0 = mn =
n−1
∑

j=0

c(j, xj, uj) + C(xn).

Example (Managing spending and saving). An investor holds a capital sum in a
building society, which pays a fixed rate of interest θ × 100% on the sum held at each time
k = 0, 1, . . . , n− 1. The investor can choose to reinvest a proportion a of the interest paid,
which then itself attracts interest. No amounts invested can be withdrawn. How should
the investor act to maximize total consumption by time n − 1?

Take as state the present income x ∈ R
+ and as action the proportion a ∈ [0, 1] which

is reinvested. The income next time is then

f(x, a) = x + θax

and the reward this time is r(x, a) = (1 − a)x. The optimality equation is given by

V (k, x) = max
06a61

{(1 − a)x + V (k + 1, (1 + θa)x)}, 0 6 k 6 n − 1,

seeking to optimize the order in which one performs a sequence of n tasks. Label the tasks {1, . . . , n} and
write c(σ) for the cost of performing the tasks in the order σ = (σ1, . . . , σn). We examine the effect on
c(σ) of interchanging the order of two of the tasks. Suppose we can find a function f on {1, . . . , n} such
that, for all σ and all 0 6 i 6 n − 1,

c(σ′) < c(σ) whenever f(σi) > f(σi+1),

where σ′ is obtained from σ by interchanging the order of tasks σi and σi+1. Then the condition f(σ1) 6

. . . 6 f(σn) is necessary for optimality of σ. This may be enough to reduce the number of possible optimal
orders to 1. In any case, if we have also, for all σ and all 0 6 i 6 n − 1,

c(σ′) = c(σ) whenever f(σi+1) = f(σi),

then our optimality condition is also sufficient.
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with V (n, x) = 0. Working back from time n, we see that V (k, x) = cn−kx for some
constants c0, . . . , cn, given by c0 = 0 and

cm+1 = max{cm + 1, (1 + θ)cm}, 0 6 m 6 n − 1.

Hence

cm =

{

m, m 6 m∗,

m∗(1 + θ)m−m∗

, m > m∗,

where m∗ = d1/θe. By Proposition 3.1, the optimal control is to reinvest everything before
time k∗ = n − m∗ and to consume everything from then on.

The optimality of a control in the stochastic case can verified using the following result.

Proposition 3.2. Suppose we can find a Markov control u such that

V (k, x) = (c + PV )(k, x, uk(x)), 0 6 k 6 n − 1, x ∈ S.

Then u is optimal for all (k, x).

Proof. Fix such a Markov control u and write (X0, . . . , Xn) for the associated Markov chain
starting from (0, x). Define

Mk =

k−1
∑

j=0

c(j, Xj, Uj) + V (k, Xk), 0 6 k 6 n.

Then, for 0 6 k 6 n − 1,

Mk+1 − Mk = c(k, Xk, Uk) + V (k + 1, Xk+1) − V (k, Xk),

so, for all y ∈ S,

E
u(Mk+1 − Mk|Xk = y) = (c + PV )(k, y, uk(y)) − V (k, y) = 0.

Hence

V (0, x) = E
u
x(M0) = E

u
x(Mn) = E

u
x

(

n−1
∑

j=0

c(j, Xj, Uj) + C(Xn)

)

.

The same argument works for all starting times k.

Example (Exercising a stock option). You hold an option to buy a share at a fixed
price p, which can be exercised at any time k = 0, 1, . . . , n − 1. The share price satisfies
Yk+1 = Yk +εk+1, where (εk)k>1 is a sequence of independent identically distributed random
variables14, with E(|ε|) < ∞. How should you act to maximise your expected return?

Take as state the share price x ∈ R, until we exercise the option, when we move to a
terminal state ∂. Take as action space the set {0, 1}, where a = 1 corresponds to exercising
the option. The problem specifies a realised stochastic controllable dynamical system. We

14Thus we allow, unrealistically, the possibility that the price could be negative. This model might
perhaps be used over a small time interval, with Y0 large.
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are working outside the countable framework here, but in the realised case, where PV is
given straightforwardly by 1. The rewards and dynamics before termination are given by

r(x, a) = a(x − p), G(x, a, ε) =

{

x + ε, if a = 0,

∂, if a = 1,
.

Hence the optimality equation is given by

V (k, x) = max{x − p, E(V (k + 1, x + ε))}, k = 0, 1, . . . , n − 1,

with V (n, x) = 0. Note that V (n− 1, x) = (x− p)+. By backwards induction, we can show
that V (k, .) is convex for all k, and increases as k decreases. Set pk = inf{x > 0 : V (k, x) =
x − p}. Then pk increases as k decreases and the optimal control is to exercise the option
as soon as Yk = pk.
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