
17 Continuous-time stochastic systems

The discussion in this section will not be rigorous. A stochastic controllable dynamical
system of jump type is given by a function

q : R
+ × {(x, y) ∈ S × S : x 6= y} × A → R

+.

We assume that the state-space S is countable. We write qxy(t, a) = q(t, x, y, a). For x, y
distinct, qxy(t, a) gives the rate of jumping from x to y when at time t we choose action a.
It is convenient to write

qxx(t, a) = −
∑

y 6=x

qxy(t, a).

We consider Markov controls u : R
+ × S → A and set

qu
xy(t) = qxy(t, u(t, x)).

Then the controlled process (Xt)t>s for control u, starting from (s, xs) satisfies Xs = xs

and, for all t > s and x ∈ S, conditional on Xt = x, as δ ↓ 0,

Xt+δ =

{

x, with probability 1 + qu
xx(t)δ + o(δ),

y, with probability qu
xy(t)δ + o(δ), for all y 6= x.

We consider the same sorts of control problem as in Section 15, where now we take an
expectation in defining the cost functions

V u(s, x) = E
u
(s,x)

(
∫ τ

s

c(Xt, Ut)dt + C(Xτ )

)

, V (s, x) = inf
u

V u(s, x).

We now give a derivation of the optimality equation for V . Suppose we start at (t, x)
and choose action a until time t + δ, then switch to an optimal control. On comparing the
resulting expected total cost with that of an optimal control from the outset, we obtain

V (t, x) 6 c(x, a)δ + E(V (t + δ, Xt+δ)|Xt = x).

Now expand to first order in δ

E(V (t + δ, Xt+δ)|Xt = x) = V (t + δ, x)(1 + qxx(t, a)δ) +
∑

y 6=x

V (t + δ, y)qxy(t, a)δ + o(δ)

= V (t, x) + V̇ (t, x)δ +
∑

y∈S

qxy(t, a)V (t, y)δ + o(δ).

So
0 6 {c(x, a) + V̇ (t, x) + QV (t, x, a)}δ + o(δ),

with equality if a is chosen optimally, where

QV (t, x, a) =
∑

y∈S

qxy(t, a)V (t, y).
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Thus we obtain the optimality equation

inf
a
{c(x, a) + V̇ (t, x) + QV (t, x, a)} = 0

and we expect to find the optimal control as the minimizing action a.
Now we shall give an analogous discussion in the case of a diffusive stochastic control-

lable dynamical system. We specify two functions

σ, b : R
+ × R × A → R.

The function σ2 is the diffusivity and determines the size of the stochastic fluctuations or
noise in the dynamics. The function b is the drift and determines the average velocity.
Given a choice of Markov control u : R

+ × R → A, set σu(t, x) = σ(t, x, u(t, x)) and
bu(t, x) = b(t, x, u(t, x)). The corresponding dynamics can be described infinitesimally29 ,
conditional on Xt = x, by

Xt+δ = x + σu(t, x)∆ + bu(t, x)δ + o(δ),

as δ → 0, where E(∆) = 0 and E(∆2) = δ. We define cost functions V u and V exactly as
in the jump case.

Let us now derive the optimality equation for V . Suppose we start at (t, x) and choose
action a until time t + δ, then switch to an optimal control. On comparing the resulting
expected total cost with that of an optimal control from the outset, we obtain

V (t, x) 6 c(x, a)δ + E (V (t + δ, x + σu(t, x)∆ + bu(t, x)δ + o(δ))) .

We expand to fisrt order in δ

E (V (t + δ, x + σu(t, x)∆ + bu(t, x)δ + o(δ)))

= V (t, x) + V̇ (t, x)δ + V ′(t, x)(b(t, x, a)δ + σ(t, x, a)∆) +
1

2
V ′′(t, x)σ(t, x, a)2∆2 + o(δ).

So
0 6 {c(x, a) + V̇ (t, x) + LV (t, x, a)}δ + o(δ)

with equality if a is chosen optimally, where

LV (t, x, a) =
1

2
σ(t, x, a)2V ′′(t, x) + b(t, x, a)V ′(t, x).

Thus the optimality equation is

inf
a
{c(x, a) + V̇ (t, x) + LV (t, x, a)} = 0

and we expect to find the optimal control as the minimizing action a

29A rigorous formulation rests on the theory of stochastic integration. The infinitesimal formula given
is replaced by the stochastic integral equation

Xt = x +

∫ t

0

σu(s, Xs)dBs +

∫ t

0

bu(s, Xs)ds,

where (Bt)t>0 is a Brownian motion.
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Example (Escape to the boundary). Consider the diffusive controllable dynamical
system in [−1, 1], with constant diffusivity σ2 = 1 and with drift b(t, x, u) = u. Suppose
we wish to minimize

V u(x) =
1

2
E

u
x

(

τ +

∫ τ

0

U2
s ds

)

,

where τ = inf{t > 0 : |Xt| = 1}, x ∈ [−1, 1], and Us = u(Xs). The optimality equation is

inf
u

{

1 + u2

2
+ uV ′(x) +

1

2
σ2V ′′(x)

}

= 0.

The left hand side is minimized to

1

2
(σ2V ′′(x) − V ′(x)2 + 1)

by taking u = −V ′(x). We can solve the differential equation with boundary conditions
V (−1) = V (1) = 0 to obtain

V ′(x) = − tanh λx,

where λ = 1/σ2. It follows easily now that V (x) is increasing in λ, and takes the limiting
values V (x) = 0 as λ → 0 and V (x) = 1 − |x| as λ → ∞. This fits with the intuitively
reasonable idea that noise makes it easier to escape to the boundary.
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