17 Continuous-time stochastic systems

The discussion in this section will not be rigorous. A stochastic controllable dynamical system of jump type is given by a function

$$q: \mathbb{R}^+ \times \{(x, y) \in S \times S : x \neq y\} \times A \to \mathbb{R}^+.$$

We assume that the state-space S is countable. We write $q_{xy}(t,a) = q(t,x,y,a)$. For x, y distinct, $q_{xy}(t,a)$ gives the rate of jumping from x to y when at time t we choose action a. It is convenient to write

$$q_{xx}(t,a) = -\sum_{y \neq x} q_{xy}(t,a)$$

We consider Markov controls $u: \mathbb{R}^+ \times S \to A$ and set

,

$$q_{xy}^u(t) = q_{xy}(t, u(t, x)).$$

Then the controlled process $(X_t)_{t \ge s}$ for control u, starting from (s, x_s) satisfies $X_s = x_s$ and, for all $t \ge s$ and $x \in S$, conditional on $X_t = x$, as $\delta \downarrow 0$,

$$X_{t+\delta} = \begin{cases} x, & \text{with probability } 1 + q_{xx}^u(t)\delta + o(\delta), \\ y, & \text{with probability } q_{xy}^u(t)\delta + o(\delta), \text{ for all } y \neq x. \end{cases}$$

We consider the same sorts of control problem as in Section 15, where now we take an expectation in defining the cost functions

$$V^{u}(s,x) = \mathbb{E}^{u}_{(s,x)} \left(\int_{s}^{\tau} c(X_{t}, U_{t}) dt + C(X_{\tau}) \right), \quad V(s,x) = \inf_{u} V^{u}(s,x).$$

We now give a derivation of the optimality equation for V. Suppose we start at (t, x) and choose action a until time $t + \delta$, then switch to an optimal control. On comparing the resulting expected total cost with that of an optimal control from the outset, we obtain

$$V(t,x) \leq c(x,a)\delta + \mathbb{E}(V(t+\delta, X_{t+\delta})|X_t = x)$$

Now expand to first order in δ

$$\mathbb{E}(V(t+\delta, X_{t+\delta})|X_t = x) = V(t+\delta, x)(1+q_{xx}(t,a)\delta) + \sum_{y \neq x} V(t+\delta, y)q_{xy}(t,a)\delta + o(\delta)$$
$$= V(t,x) + \dot{V}(t,x)\delta + \sum_{y \in S} q_{xy}(t,a)V(t,y)\delta + o(\delta).$$

 So

$$0 \leqslant \{c(x,a) + \dot{V}(t,x) + QV(t,x,a)\}\delta + o(\delta),$$

with equality if a is chosen optimally, where

$$QV(t, x, a) = \sum_{y \in S} q_{xy}(t, a) V(t, y).$$

Thus we obtain the optimality equation

$$\inf_{a} \{ c(x,a) + \dot{V}(t,x) + QV(t,x,a) \} = 0$$

and we expect to find the optimal control as the minimizing action a.

Now we shall give an analogous discussion in the case of a diffusive stochastic controllable dynamical system. We specify two functions

$$\sigma, b: \mathbb{R}^+ \times \mathbb{R} \times A \to \mathbb{R}.$$

The function σ^2 is the *diffusivity* and determines the size of the stochastic fluctuations or noise in the dynamics. The function b is the *drift* and determines the average velocity. Given a choice of Markov control $u : \mathbb{R}^+ \times \mathbb{R} \to A$, set $\sigma^u(t, x) = \sigma(t, x, u(t, x))$ and $b^u(t, x) = b(t, x, u(t, x))$. The corresponding dynamics can be described infinitesimally²⁹, conditional on $X_t = x$, by

$$X_{t+\delta} = x + \sigma^u(t, x)\Delta + b^u(t, x)\delta + o(\delta),$$

as $\delta \to 0$, where $\mathbb{E}(\Delta) = 0$ and $\mathbb{E}(\Delta^2) = \delta$. We define cost functions V^u and V exactly as in the jump case.

Let us now derive the optimality equation for V. Suppose we start at (t, x) and choose action a until time $t + \delta$, then switch to an optimal control. On comparing the resulting expected total cost with that of an optimal control from the outset, we obtain

$$V(t,x) \leq c(x,a)\delta + \mathbb{E}\left(V(t+\delta,x+\sigma^{u}(t,x)\Delta + b^{u}(t,x)\delta + o(\delta))\right)$$

We expand to fisrt order in δ

$$\mathbb{E}\left(V(t+\delta,x+\sigma^{u}(t,x)\Delta+b^{u}(t,x)\delta+o(\delta))\right)$$

= $V(t,x) + \dot{V}(t,x)\delta + V'(t,x)(b(t,x,a)\delta+\sigma(t,x,a)\Delta) + \frac{1}{2}V''(t,x)\sigma(t,x,a)^{2}\Delta^{2} + o(\delta).$

So

$$0 \leqslant \{c(x,a) + \dot{V}(t,x) + LV(t,x,a)\}\delta + o(\delta)$$

with equality if a is chosen optimally, where

$$LV(t, x, a) = \frac{1}{2}\sigma(t, x, a)^2 V''(t, x) + b(t, x, a)V'(t, x).$$

Thus the optimality equation is

$$\inf_{a} \{ c(x,a) + \dot{V}(t,x) + LV(t,x,a) \} = 0$$

and we expect to find the optimal control as the minimizing action a

$$X_t = x + \int_0^t \sigma^u(s, X_s) dB_s + \int_0^t b^u(s, X_s) ds,$$

where $(B_t)_{t \ge 0}$ is a Brownian motion.

 $^{^{29}\}mathrm{A}$ rigorous formulation rests on the theory of stochastic integration. The infinitesimal formula given is replaced by the stochastic integral equation

Example (Escape to the boundary). Consider the diffusive controllable dynamical system in [-1, 1], with constant diffusivity $\sigma^2 = 1$ and with drift b(t, x, u) = u. Suppose we wish to minimize

$$V^{u}(x) = \frac{1}{2} \mathbb{E}_{x}^{u} \left(\tau + \int_{0}^{\tau} U_{s}^{2} ds \right),$$

where $\tau = \inf\{t \ge 0 : |X_t| = 1\}, x \in [-1, 1], \text{ and } U_s = u(X_s)$. The optimality equation is

$$\inf_{u} \left\{ \frac{1+u^2}{2} + uV'(x) + \frac{1}{2}\sigma^2 V''(x) \right\} = 0.$$

The left hand side is minimized to

$$\frac{1}{2}(\sigma^2 V''(x) - V'(x)^2 + 1)$$

by taking u = -V'(x). We can solve the differential equation with boundary conditions V(-1) = V(1) = 0 to obtain

$$V'(x) = -\tanh \lambda x,$$

where $\lambda = 1/\sigma^2$. It follows easily now that V(x) is increasing in λ , and takes the limiting values V(x) = 0 as $\lambda \to 0$ and V(x) = 1 - |x| as $\lambda \to \infty$. This fits with the intuitively reasonable idea that noise makes it easier to escape to the boundary.