
16 Pontryagin’s maximum principle

This is a powerful method for the computation of optimal controls, which has the crucial
advantage that it does not require prior evaluation of the infimal cost function. We describe
the method and illustrate its use in three examples. We also give two derivations of the
principle, one in a special case under impractically strong conditions, and the other, at a
heuristic level only, as an analogue of the method of Lagrange multipliers for constrained
optimization.

We continue with the set-up of the preceding section but assume from now on that b, c
and C are differentiable in t and x with continuous derivatives, and that the stopping set
D is a hyperplane, thus D = {y} + Σ for some y ∈ R

d and some vector subspace Σ of R
d.

Define for λ ∈ R
d the Hamiltonian

H(t, x, u, λ) = λT b(t, x, u) − c(t, x, u).

Pontryagin’s maximum principle states that, if (xt, ut)t6τ is optimal, then there exist adjoint

paths (λt)t6τ in R
d and (µt)t6τ in R with the following properties: for all t 6 τ ,

(i) H(t, xt, u, λt) + µt has maximum value 0, achieved at u = ut,

(ii) λ̇T
t = −λT

t ∇b(t, xt, ut) + ∇c(t, xt, ut),

(iii) µ̇t = −λT
t ḃ(t, xt, ut) + ċ(t, xt, ut),

(iv) ẋt = b(t, xt, ut).

Moreover the following transversality conditions hold28:

(v) (λT
τ + ∇C(τ, xτ ))σ = 0 for all σ ∈ Σ,

and, in the time-unconstrained case,

(vi) µτ + Ċ(τ, xτ ) = 0.

Note that, in the time-unconstrained case, if b, c and C are time-independent, then µt = 0
for all t.

The Hamiltonian serves as a way of remembering the first four statements, which could
be expressed alternatively as

(i) 0 = ∂H/∂u, (ii) λ̇ = −∂H/∂x, (iii) µ̇ = −∂H/∂t, (iv) ẋ = ∂H/∂λ.

Beware that the reformulation of (i) is not always correct, for example in cases where the
set of actions is an interval and where the maximum is achieved at an endpoint.

Example (Bringing a particle to rest in minimal time). Suppose we can apply a
force to a particle, moving on a line, which imparts to it an acceleration a with |a| 6 1
in the chosen units. For a given initial position q0 and velocity p0, how can we bring the
particle to rest at the origin in the shortest time?

28Subject to the avoidance of certain pathological behaviour.
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Take state x = (q, p) and adjoint variable λ = (α, β). The problem is time-independent,
so there is no need to consider µ. We have q̇t = pt and ṗt = ut, with |ut| 6 1. We seek to
minimize τ = inf{t > 0 : qt = pt = 0} =

∫ τ

0
1dt. So take c = 1, C = 0 and D = {(0, 0)}.

The Hamiltonian is
H = αp + βu − 1

so u∗
t = sgn(βt) and αtpt + |βt| = 1. The adjoint equations are

α̇t = −∂H/∂q = 0, β̇t = −∂H/∂p = −αt.

So α is a constant and βt = βτ + αs, where s = τ − t is the time-to-go. Since pτ = 0, we
must have βτ = ±1. There remains the problem of determining the values of α and βτ as
a function of (q0, p0). We do this backwards.

Suppose βτ = 1 and α > 0, then βt > 0 for all t 6 τ , so ut = 1, pt = −s and
qt = s2/2 = p2

t /2. On the other hand, if βτ = 1 and α < 0, then the preceding calculation
applies only for s 6 s0 = 1/|α|; once s > s0, we have βt < 0, so ut = −1, and integrating
the equations of motion back from s0, we get pt = s−2s0 and qt = 2s0s−s2/2−s2

0. Similar
calculations apply for βτ = −1.

Thus we find there is a switching locus given by q = −sgn(p)p2/2. Each initial state
(q0, p0) above the locus lies on a unique parabola q = −p2/2 + c, with c > 0. The optimal
control is initially to take a = −1, thereby moving round the parabola to hit the switching
locus. On hitting the locus, the acceleration acceleration changes sign, bringing the particle
to rest at the origin by moving along the locus.

Example (Monopolist). Miss Prout holds the entire remaining stock of Cambridge el-
derberry wine for the vintage year 1959. If she releases it at rate u, then she realises a unit
price p(u) = 1 − u/2 for 0 6 u 6 2 and p(u) = 0 for u > 2. She holds amount x at time 0.
What is her maximal total discounted return

∫ ∞

0

e−αtutp(ut)dt

and how should she achieve it?
The current stock evolves by ẋt = −ut. Set τ = inf{t > 0 : xt = 0}. Note that the

rewards from any two controls which agree on [0, n] can differ by at most
∫∞

n
e−αtdt =

e−αn/α so it will suffice to find an optimal control among those for which τ < ∞. So let us
restrict now to such controls. We take A = [0,∞), c = −e−αtup(u), C = 0 and D = {0}.
The Hamiltonian is

H = −λu + e−αtup(u),

which is maximized to a positive value at u = 1 − λeαt, provided this is positive, and to 0
at 0 otherwise. The adjoint equation λ̇t = −∂H/∂x = 0 shows that λ is a constant, and
the transversality condition µτ = Ċ = 0 shows that H is maximized to 0 at τ , so uτ = 0,
and so λτ = e−ατ . Now

x =

∫ τ

0

utdt =

∫ τ

0

(1 − e−α(τ−t))dt = τ − (1 − e−ατ )/α.
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This equation is satisfied by a unique τ ∈ (0,∞), though we cannot solve it explicitly, and
then the optimal control is ut = 1 − e−α(τ−t). Finally, the maximal reward is

V (x) =

∫ ∞

0

e−αtutp(ut)dt =
(1 − e−ατ )2

2α
.

Example (Insect optimization). A colony of insects consists of workers and queens,
numbering wt and qt at time t. If a proportion ut of the workers’ effort at time t is devoted
to producing more workers, then the numbers evolve according to the differential equations

ẇt = autwt − bwt, q̇t = (1 − ut)wt,

where a, b are positive constants, with a > b. How should the workers behave to maximize
the number of queens produced by the end of the season?

Write T for the length of the season and take as state the number of workers. Then
c = −(1 − u)w, C = 0 and D = R. The Hamiltonian is

H = λ(au − b)w + (1 − u)w =

{

(1 − λb)w, if u = 0,

(λa − λb)w, if u = 1.

So ut = 0 if λta < 1 and ut = 1 if λta > 1. The adjoint equations are

λ̇t = −∂H/∂w =

{

λtb − 1, if ut = 0,

−λt(a − b), if ut = 1.

Hence, for small time-to-go s = T − t, we have ut = 0, so λt = (1 − e−bs)/b. We switch to
ut = 1 when a(1 − e−bs)/b = 1, that is, at

s0 =
1

b
log

(

a

a − b

)

.

There is only one switch because λ̇t is always negative. Hence, regardless of the length
of the season, the workers should produce only more workers until there is s0 time to go,
when they should all switch to making queens.

A heuristic derivation of Pontryagin’s maximum principle can be made by analogy
with the method of Lagrange multipliers for constrained optimization problems. Recall
that to maximize f(x) subject to a d-dimensional constraint g(x) = b, one introduces the
Lagrangian

L(x, λ) = f(x) − λT (g(x) − b),

where λ ∈ R
d. For each λ, we seek x(λ) to maximize L(x, λ) and then seek λ so that

g(x(λ)) = b. Then x(λ) is the desired maximizer. Now, suppose we wish to maximize

−
∫ T

0

c(xt, ut)dt − C(xT )
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subject to ẋt = b(xt, ut). We might try to maximize for each path (λt)t6T

L(x, λ) =

∫ T

0

{−c(xt, ut) − λT
t (ẋt − b(xt, ut))}dt − C(xT )

= −λT
T xT + λT

0 x0 +

∫ T

0

{λ̇T
t xt + λT

t b(xt, ut) − c(xt, ut)}dt − C(xT ).

Then to maximize over x we might set

0 = ∂L/∂xt = λ̇T
t + λT

t ∇b(xt, ut) −∇c(xt, ut),

which is the adjoint equation, and, in permitted directions,

0 = ∂L/∂xT = −λT
T −∇C(xT ),

which is the transversality condition.
The following result establishes the validity of Pontryagin’s maximum principle, sub-

ject to the existence of a twice continuously differentiable solution to the Hamilton-Jacobi-
Bellman equation, with well-behaved minimizing actions. These hypotheses are unneces-
sarily strong and are too strong for many applications. A proof of the principle under
weaker hypotheses lies beyond the scope of this course. We assume that the action space
A is an open subset in R

p and that b and the cost functions c and C are continuously
differentiable.

Proposition 16.1. Suppose that there exists a function F : S̃∪D̃ → R, twice differentiable

with continuous derivatives, and a function u : S̃ → A such that

c(t, x, a) + Ḟ (t, x) + ∇F (t, x)b(t, x, a) > 0

for all a ∈ A, with equality when a = u(t, x), for all (t, x) ∈ S̃. Suppose also that F = C on

D̃. Fix a starting point (0, x) and assume that u defines a continuous feasible control and

controlled path (ut, xt)t6τ starting from (0, x). Set µt = −Ḟ (t, xt) and λT
t = −∇F (t, xt),

then

λ̇T
t = −λT

t ∇b(t, xt, ut) + ∇c(t, xt, ut),

µ̇t = −λT
t ḃ(t, xt, ut) + ċ(t, xt, ut),

and, for any σ ∈ Σ, we have

(λT
τ + ∇C)(τ, xτ ))σ = 0,

and, in the time-unconstrained case,

µτ + Ċ(τ, xτ ) = 0.

Proof. Define, for (t, x) ∈ S̃ and a ∈ A,

J(t, x, a) = c(t, x, a) + Ḟ (t, x) + ∇F (t, x)b(t, x, a).
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Then J(t, x, a) > 0 and J(t, x, u(t, x)) = 0 so, since A is open, we have

(∂J/∂a)(t, x, u(t, x)) = 0,

and hence

0 = (∂/∂x)J(t, x, u(t, x)) = ∇J(t, x, u(t, x)), 0 = (∂/∂t)J(t, x, u(t, x)) = J̇(t, x, u(t, x)).

Write a = u(t, x), then

0 = ∇J(t, x, a) = ∇c(t, x, a) + ∇F (t, x)∇b(t, x, a) + {∇Ḟ (t, x) + ∇2F (t, x)b(t, x, a)}

and

0 = J̇(t, x, a) = ċ(t, x, a) + ∇F (t, x)ḃ(t, x, a) + {∇Ḟ (t, x)b(t, x, a) + F̈ (t, x)}.

Hence

λ̇T
t = −∇Ḟ (t, xt) −∇2F (t, xt)b(t, xt, ut)

= ∇c(t, xt, ut) + ∇F (t, xt)∇b(t, xt, ut) = ∇c(t, xt, ut) − λT
t ∇b(t, xt, ut)

and

µ̇t = −F̈ (t, xt) −∇Ḟ (t, xt)b(t, xt, ut)

= ċ(t, x, ut) + ∇F (t, xt)ḃ(t, xt, ut) = ċ(t, x, ut) − λT
t ḃ(t, xt, ut).

On differentiating the equality F = C at (τ, xτ ) in the direction σ , we obtain

(λT
τ + ∇C)(τ, xτ ))σ = 0,

and, in the time-unconstrained case, we can differentiate at (τ, xτ ) in t to obtain

µτ + Ċ(τ, xτ ) = 0.
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