
15 The Hamilton–Jacobi–Bellman equation

We begin a study of deterministic continuous-time controllable dynamical systems with a
heuristic derivation of the Hamilton–Jacobi–Bellman equation. Then we prove that any
suitably well-behaved solution of this equation must coincide with the infimal cost function
and that the minimizing action gives an optimal control.

Recall from Subsection 1.3 that a continuous-time controllable dynamical system is a
map

b : R
+ × R

d × A → R
d.

We now assume that the action-space A is a subset of R
p for some p, in examples A is

often simply an interval in R. We assume also that b is continuous, and is differentiable
in x with bounded derivative. A control is a map u : R

+ → A. Given a control u and a
starting time and state (s, x), we define26 the controlled path (xt)t>s as the solution of the
differential equation

ẋt = b(t, xt, ut), t > s, xs = x.

We shall consider two types of optimization problem. In the first type, we fix a stopping set

D ⊆ R
d and a time-horizon T < ∞ and specify continuous and bounded cost functions27

c : [0, T ) × R
d × A → R, C : {T} × D → R.

We say that a control u is feasible, starting from (s, x), if, for the associated controlled
path starting from (s, x), we have xT ∈ D. If there is no such control, then we say (s, x)
is infeasible. In the second type of problem, we also fix a stopping set D ⊆ R

d, which is
the boundary of some open set S ⊆ R

d, but the time of arrival in D is unconstrained. We
specify continuous and bounded cost functions

c : R
+ × S × A → R, C : R

+ × D → R.

We say that a control u is feasible, starting from (s, x), if τ < ∞, where

τ = inf{t > 0 : xt ∈ D}.

In order to give a unified treatment of the two cases, we shall, in the first case, set τ = T
and write S̃ = ([0, T )×R

d) and D̃ = {T}×D. In the the second case, we write S̃ = R
+×S

and D̃ = R
+ × D.

The total cost for a feasible control u, starting from (s, x) ∈ S̃, is defined by

V u(s, x) =

∫ τ

s

c(t, xt, ut)dt + C(τ, xτ ).

The infimal cost function V is defined by

V (s, x) = inf
u

V u(s, x),

26The basic theory of existence and uniqueness for solutions of differential equations is reviewed, and its
application in this setting is explained, in Section 18.

27As usual, any problem of maximizing rewards can be treated as a problem of minimizing negative
costs, so we do not discuss the theory for this sort of problem separately.
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where the infimum is taken over all continuous feasible controls starting from (s, x), and
V (s, x) = ∞ if there are no such controls.

Suppose we start from (t, x) ∈ S̃ and choose action a until a short time later t+ δ, then
switching to an optimal control. Comparing this control with the optimal control from
(t, x), we obtain, up to terms which are small compared to δ,

V (t, x) 6 c(t, x, a)δ + V (t + δ, x + b(t, x, a)δ)

On the other hand, by optimizing the right-hand side over a we might expect to get
arbitrarily close to V (t, x). We expand to first order

V (t + δ, x + b(t, x, a)δ) = V (t, x) + V̇ (t, x)δ + ∇V (t, x)b(t, x, a)δ + O(δ2).

On substituting this in the inequality, rearranging, dividing by δ and letting δ → 0, we
obtain

inf
a
{c(t, x, a) + V̇ (t, x) + ∇V (t, x)b(t, x, a)} = 0, (t, x) ∈ S̃.

This is called the Hamilton–Jacobi–Bellman equation. It is the optimality equation for
continuous-time systems. The final cost C provides a boundary condition V = C on D̃.

Proposition 15.1. Suppose that there exists a function F : S̃ ∪ D̃ → R, differentiable

with continuous derivative, and that, for a given starting point (s, x) ∈ S̃, there exists a

continuous feasible control u∗ such that

c(t, x, a) + Ḟ (t, x) + ∇F (t, x)b(t, x, a) > 0

for all (t, x) ∈ S̃ and a ∈ A, with equality when t ∈ [s, τ ∗) and (x, a) = (x∗
t , u

∗
t ). Suppose

also that F = C on D̃. Then F (s, x) = V (s, x) and u∗ defines an optimal control starting

from (s, x).

Proof. It will suffice to consider the case s = 0. Fix any continuous feasible control u :
R

+ → A and set

mt =

∫ t

0

c(s, xs, us)ds + F (t, xt), 0 6 t 6 τ.

Then m is continuous on [0, τ ] and differentiable on [0, τ), with

ṁt = c(t, xt, ut) + Ḟ (t, xt) + ∇F (t, xt)b(t, xt, ut) > 0,

and with equality if u = u∗. Therefore

F (0, x) = m0 6 mτ =

∫ τ

0

c(s, xs, us)ds + C(τ, xτ ) = V u(0, x),

with equality if u = u∗.

The proposition sets up a possible way to calculate the infimal cost function and to find
an optimal control. One tries to solve the Hamilton–Jacobi–Bellman equation

inf
a
{c(t, x, a) + V̇ (t, x) + ∇V (t, x)b(t, x, a)} = 0, (t, x) ∈ S̃,
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and to identify, for each (t, x) ∈ S̃ a minimizing action u(t, x). Then, given a starting point
(s, x) ∈ S̃, we attempt to solve the differential equation ẋt = bu(t, xt), where bu(t, x) =
b(t, x, u(t, x)) and check that τ < ∞ and xτ ∈ D. The control u∗

t = u(t, xt) then has
(xt)s6t6τ as its controlled process starting from (s, x), so u∗ has the minimizing property
required by the proposition. In this case, we say that the function u defines a feasible control

for starting point (s, x). It is often the case that the minimizing function u(t, x) depends
discontinuously but piecewise continuously on (t, x), and so do the associated controls. It is
not hard to extend the proposition to this case, though we will not give details. In practice,
the main hope to solve the HJB equation is to guess its shape as a function of x, to find
the minimizing action u(t, x) explicitly, and thereby to reduce the problem to a differential
equation in t. These steps are illustrated in the next two examples.

Example (Linear system with quadratic costs). Consider the linear system with
state-space R

d and action-space R
p given by b(x, a) = Ax + Ba, where A and B are

matrices of appropriate dimensions. Take as cost function the non-negative quadratic
function c(x, a) = xT Rx + aT Qa, which we shall assume to vanish only if x = 0 and a = 0.
Suppose the final cost is also quadratic and non-negative, thus C(x) = xT Π(T )x, for some
matrix Π(T ).

As in the discrete-time case, let us try in the HJB equation a solution of the form
V (t, x) = xT Π(t)x, for some non-negative definite matrices Π(t). We have

inf
a
{c(x, a) + V̇ (t, x) + ∇V (t, x)b(x, a)}

= inf
a
{xT (R + ΠA + AT Π + Π̇)x + xT ΠBa + aT BT Πx + aT Qa} = xT (R̃ − S̃T Q−1S̃)x

at a = −Q−1S̃x, where R̃ = R + ΠA + AT Π + Π̇ and S̃ = BtΠ. (See Section 10.) Hence V
is a solution if and only if (Π(t))06t6T satisfies the continuous-time Riccati equation

Π̇ + R + ΠA + AT Π − ΠBQ−1BT Π = 0.

Example (Managing investment income). The following may be considered as a model
for optimizing utility from investment income over a prescribed lifetime T . We seek to
maximize

∫ T

0

e−αs√usds

subject to ẋt = βxt −ut and xt > 0 for all 0 6 t 6 T . Thus α is the personal discount rate,
β is the rate of interest, and

√
u is the utility gained from income at rate u.

The optimality equation is

sup
a
{e−αt

√
a + V̇ (t, x) + (βx − a)V ′(t, x)} = 0, 0 6 t 6 T,

with boundary condition V (T, x) = 0. By scaling, the maximal reward function must have
the form

V (t, x) = e−αt
√

v(t)x

for some function v. By substitution in the optimality equation we obtain v̇−(2α−β)v+1 =
0 with maximizing action a = x/v(t). Hence

v(t) =
1 − e−(2α−β)(T−t)

2α − β
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and the optimal control is ut = xt/v(t).
A short-cut is available for this example using the Cauchy-Schwarz inequality. We have

the constraint

0 = e−βT xT = x0 −
∫ T

0

e−βsusds.

By Cauchy-Schwarz,

∫ T

0

e−αs√usds =

∫ T

0

(e−βsus)
1/2(e−(2α−β)s)1/2ds 6

√
x0

(
∫ T

0

e−(2α−β)sds

)1/2

,

which confirms our calculation of V (0, x0).
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