
12 LQG systems and the Kalman filter

We introduce the LQG model and show how to reduce it to a stochastic controllable
dynamical system using the Kalman filter. The LQG system is the system of equations

Xn+1 = AXn + BUn + εn+1,

Yn+1 = CXn + ηn+1, n > 0.

Here A, B and C are given matrices and the random variables X0,
(

ε1

η1

)

,
(

ε2

η2

)

, . . . are inde-
pendent Gaussians, X0 having mean x and variance Σ0 and, for n > 1, εn and ηn having
mean 0 and

var(εn) = N, cov(εn, ηn) = L, var(ηn) = M.

The state Xn takes values in R
d, the observation Yn takes values in R

p and the control
values Un are in R

m. We complete the model by specifying a control, which is a function
u : (Rp)∗ → R

m, and setting Un = un(Y1, . . . , Yn). We emphasise that what is different now
is that we no longer observe the state, but have to estimate the state value on the basis of
the observations. Set

V u
n (x, Σ0) = E

u
(x,Σ0)

(

n−1
∑

k=0

c(Xk, Uk) + c(Xn)

)

, Vn(x, Σ0) = inf
u

V u
n (x, Σ0).

Lemma 12.1. Let X and Y be jointly Gaussian, with mean 0 and with

var(X) = U, cov(X, Y ) = W, var(Y ) = V,

with V invertible. Set X̂ = WV −1Y and Z = X − X̂. Then Z is independent of Y with

var(Z) = U − WV −1W T .

Proof. Note that Y and Z are jointly Gaussian, so zero covariance will imply independence.
We compute

cov(Z, Y ) = cov(X, Y ) − WV −1 var(Y ) = W − WV −1V = 0

and
var(Z) = cov(Z, X) = var(X) − WV −1 cov(Y, X) = U − WV −1W T .

We now obtain a recursive scheme, called the Kalman filter, which determines for n >

1 the mean and variance of the conditional distribution of Xn, given the observations
Y1, . . . , Yn. Suppose inductively that we can write Xn = X̂n + ∆n, where X̂n is a function

of Y1, . . . , Yn, and where ∆n is independent of Y1, . . . , Yn, with distribution N(0, Σn). This
is true for n = 0, with X̂0 = x. We have

Xn+1 = AX̂n + BUn + ξn+1, ξn+1 = εn+1 + A∆n,

Yn+1 = CX̂n + ζn+1, ζn+1 = ηn+1 + C∆n.
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Note that the innovations ξn+1 and ζn+1 are zero-mean Gaussians and are independent of
Y1, . . . , Yn, with

var(ξn+1) = Ñ = N + AΣnAT , var(ζn+1) = M̃ = M + CΣnCT ,

cov(ξn+1, ζn+1) = L̃ = L + AΣnCT .

Set
Hn+1 = H(Σn) = L̃M̃−1, Σn+1 = σ(Σn) = Ñ − L̃M̃−1L̃T .

By the lemma, ξn+1 = ε̂n+1 + ∆n+1, where

ε̂n+1 = Hn+1ζn+1 = Hn+1(Yn+1 − CX̂n)

and where ∆n+1 is independent of ζn+1, and hence of Y1, . . . , Yn+1, with distribution
N(0, Σn+1). Note that

var(ε̂n+1) = Hn+1 var(ζn+1)H
T
n+1 = L̃M̃−1L̃T = Ñ − Σn+1 = N + AΣnAT − Σn+1.

Now Xn+1 = X̂n+1 + ∆n+1, where

X̂n+1 = AX̂n + BUn + ε̂n+1,

which is a function of Y1, . . . , Yn+1, as required. This establishes the induction.
Note that

E(c(Xk, Uk)) = E(c(X̂k + ∆k, Uk))

= E(∆T
k R∆k) + E(c(X̂k, Uk)) = trace(RΣk) + E(c(X̂k, Uk))

and, similarly,
E(c(Xn)) = trace(Π0Σn) + E(c(X̂n)).

Hence

Vn(x, Σ0) = V̂n(x, Σ0) +
n−1
∑

k=0

trace(RΣk) + trace(Π0Σn),

where V̂n is the infimal cost function of the stochastic controllable dynamical system

X̂n+1 = AX̂n + BUn + ε̂n+1, Σn+1 = σ(Σn),

where (ε̂n)n>1 are independent, and ε̂n+1 has distribution N(0, N̂(Σn)), with

N̂(Σ) = N + AΣAT − σ(Σ).

This system can be treated by a small variation of the method in the preceding section.
In particular, certainty-equivalence holds: the optimal control for the n-horizon problem is
Uk = K(Πn−1−k)X̂k. The product form of this control is remarkable as, given A, B and n,
K(Πn−1−k) depends only on the cost functions, whilst the controllable dynamical system
for X̂k is independent of the costs. This is called the separation principle.
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Example. We investigate from first principles one of the simplest control problems with
noisy observation. We shall follow the same lines as in the general theory and use similar
notation. The system has scalar state and observations and is given by

Xn+1 = Xn + Un, Yn+1 = Xn+1 + ηn+1, n > 0,

where the random variable X0 and ηn, n > 1 are independent, with X0 ∼ N(x, v) and
ηn ∼ N(0, 1), for all n, and where Un = un(Y1, . . . , Yn). We fix a time-horizon n and aim
to choose u to minimize

V u
n (x, v) = E

u
(x,v)

(

n−1
∑

k=0

U2
k + DX2

n

)

.

Consider first the control problem for xk = E(Xk): we seek to minimize
∑n−1

k=0 u2
k +Dx2

n

subject to xk+1 = xk + uk and x0 = x. The minimum is Dx2/(1 + Dn), achieved when
uk = −Dxk/(1 + D(n − k)).

Next, we calculate the Kalman filter. We determine recursively for n > 0 a function
X̂n of Y1, . . . , Yn such that Xn = X̂n + ∆n, with ∆n independent of Y1, . . . , Yn. Write
vn = var(∆n). For n = 0 we can take X̂0 = x and v0 = v. At the nth step, we write

Xn+1 = X̂n + Un + ξn+1, ξn+1 = ∆n,

Yn+1 = X̂n + Un + ζn+1, ζn+1 = ∆n + ηn+1,

where the innovations ξn+1 and ζn+1 are independent of Y1, . . . , Yn. We aim to split

ξn+1 = Hn+1ζn+1 + ∆n+1,

where ∆n+1 is independent of ζn+1 and hence of Y1, . . . , Yn+1. On taking variances in this
equation, we obtain

vn = H2
n+1(vn + 1) + vn+1.

On the other hand, by taking the covariance with ζn+1, we have

vn = Hn+1(vn + 1).

These equations imply that Hn+1 = vn+1 and determine a recursion v−1
n+1 = 1 + v−1

n , so
v−1

n = n + v−1
0 , and so vn = v/(1 + vn).

Now X̂n+1 = X̂n + Un + ε̂n+1, where ε̂n+1 = Hn+1ζn+1, so

var(ε̂n+1) = sn+1 = H2
n+1(1 + vn) =

(

v

1 + (n + 1)v

)2(

1 +
v

1 + nv

)

.

By certainty-equivalence, the optimal control for the n-horizon problem is given by Uk =
−DX̂k/(1 + D(n − k)), so

X̂k+1 =
1 + D(n − k − 1)

1 + D(n − k)
X̂k + ε̂n+1.
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On taking variances, we obtain the recursion

var(X̂k+1) =

(

1 + D(n − k − 1)

1 + D(n − k)

)2

var(X̂k) + sn+1.

Finally, the minimal expected cost is

E
u
(x,v)

(

n−1
∑

k=0

U2
k + DX2

n

)

=

n−1
∑

k=0

D2

(1 + D(n − k))2
var(X̂k) + D var(X̂n) + D var(∆n).
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