10 Linear systems with non-negative quadratic costs

The general theory of dynamic optimization for non-negative costs specializes in a compu-
tationally explicit way in the case of linear systems with quadratic costs.
Consider the linear controllable dynamical system

f(z,a) = Ar+ Ba, z€R? acR™,
with non-negative quadratic cost function
c(z,a) = 2" Rz + 2" STa + a" Sz + a” Qa,

where R is a d X d symmetric matrix, S is am m X d matrix and () is an m X m symmetric
matrix. We assume throughout that @) is positive-definite. We begin with some calculations
regarding partial minimization of quadratic forms. Note that

inf ¢(z,a) = c(zr, Kr) = 27 (R — STQ'9)z,
where K = —Q~1S. Thus the requirement that ¢ be non-negative imposes the constraint
that R — STQ~1S is non-negative definite. For a non-negative definite matrix II, we can
write ) 3 3 3
c(x,a) + f(x,a) " Tf(z,a) = &(x,a) = 2" R + 27 STa + o’ Sz + a’ Qa,
where R =R+ ATTIA, S = S+ BTTIA and Q = Q + BTIIB. Since BTIIB is non-negative
definite, @) is positive-definite. Hence

inf{c(z,a) + f(z,a)"Tf(z,a)} = &z, K(Iz) = 27r(), (3)
where o S
KI)=-Q° 'S, r(l)=R-STQ'S.

Since the left-hand side of equation (3) is non-negative, (II) must be non-negative definite.

Fix now a non-negative definite matrix Il and consider the n-horizon problem with final
cost ¢(z) = 2T Tlyz. Define, as usual, for n > 0,

Vi(z) = (g, u) + c(zy), Valzr) = igf Vi (z),

where xg = z and x4 = Az, + Bug, k > 0. Then (see footnote 12) V = ¢ and
Voii(z) = ir;f{c(x, a) + Vo(Az + Ba)}, n=>=0.
Hence we obtain the following result by using equation (3) and an induction on n > 0.
Proposition 10.1. Define (I1,,),>0 by the Riccati recursion
I, =r(Il,), n=>=0.

Then,
Vo(z) = 2",z

and the optimal sequence (xg, ..., x,) is given by
.Tk:Fn_k...Fn_lxo, k:(),l,...,n,

where I';, = A+ BK(I1,,) is the gain matrix.
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We turn now to the infinite-horizon case. Define, as usual,

o0

Vi(x) = Z c(x,ug), V(r)= ilgf V4 (x).

k=0

Note that, if f is fully controllable, we can choose u so that x; = 0 and u; = 0 for all
k> d, so V(x) < oo for all x € R%.

A matrix A is a (discrete-time) stability matriz if A — 0 as n — oo. We call f
stabilizable if A + BK is a stability matrix for some K. We use the matrix norm |A| =
sup{|Az| : |z| = 1}, for which |Az| < |A||z| for all z € R?, |A] = |AT| and |AB| < |4||B].
Then A is a stability matrix if and only if |A|" < Ca” for all n > 0, for some constants

C <ooand a€[0,1).
2 0 1
4=(00) 7= 0)

Then f(z,a) = Az + Ba is stabilized by K = (=2 0), but f is not fully controllable.

Example. Suppose

Note that, if f is stabilized by K, and we set u, = Kx,, then x, = I"zy, where
['= A+ BK. Choose C < oo and a < 1 such that || < Ca” for all n > 0. Then, for all
x € RY,

Vig) < Vi) = 7 S (T QuT"e < CQulaf2 /(1 — o) < ox,
n=0

o= (i) (3 9) (&)

Proposition 10.2. Assume that f is fully controllable or stabilizable. Then the infimal
cost function is given by

where

V(z) = 2"z, 2R
where 11 is the minimal non-negative definite solution to the equilibrium Riccati equation
IT = r(II),

and, for K = K(II), u(x) = Kx defines an optimal control. Moreover, if Qk is positive-
definite, in particular, if ¢ is positive-definite, then I' = A + BK s a stability matriz, 11
is the only non-negative definite solution to Il = r(Il), and, for any non-negative definite
matriz gy, if we define 11,1 = r(I1,,), for n > 0, then I1,, — II as n — oc.

Proof. By Proposition 2.1,
V(x) = inf{c(x,a) + V(Az + Ba)}, =€ R

Take Iy = 0 in the preceding proposition to obtain for the infimal cost function of the
n-horizon problem with no final cost,

2 Tz =V, (2) T Vao(z) < V(z), x€R%
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Since f is fully controllable or stabilizable, V(x) < oo for all x € R Hence?* there is a
non-negative definite matrix IT such that V., (z) = 2?1z for all z. Since r is continuous,
we can let n — oo in 11,41 = r(II,) to obtain IT = r(II). Then

Voo(7) = min{c(z,a) + Voo (Az + Ba)}, z € RY,

with minimum at @ = u(x) = K(II)x. Then Vo > V* > V by the argument of Proposition
6.1, so V(x) = 2TTlx and u is optimal. For I' = A + BK, we have

o0

D (IM'QKI™ =TI < oo,

n=0

so, if Qx is positive-definite, then I' is a stability matrix.

Consider the n-horizon problem with final cost 27 TIyz, where Il is any non-negative
definite matrix. The infimal cost function is f/n(a:) = 2TT,x, where f[n“ = r(ﬂn) for
n > 0. Then

V() < Vi(z) < V) + 27 (™) M.

If r(ﬁo) = Iy, then we obtain IT < Iy, so II is the minimal non-negative solution. In the
case where Dk is positive-definite, for general Ily, as n — oo, the final term tends to 0, so

we obtain )
o Tr < lim 2",z < 2"z, 2z € RY,

n—oo
so IT,, — II. In particular II is the only solution to r(IT) = II. O
24Write ey, ...,eq for the standard basis in R, then V;,(e; + ej) converges to a finite limit for all 4, j,

and so, by polarization, does (IL,);; = e?Hnej. Denote the limit by II;;. Then IT = (II,;) is symmetric
and #1102 — LTz for all z € R4,
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