
10 Linear systems with non-negative quadratic costs

The general theory of dynamic optimization for non-negative costs specializes in a compu-
tationally explicit way in the case of linear systems with quadratic costs.

Consider the linear controllable dynamical system

f(x, a) = Ax + Ba, x ∈ R
d, a ∈ R

m,

with non-negative quadratic cost function

c(x, a) = xT Rx + xT ST a + aT Sx + aT Qa,

where R is a d× d symmetric matrix, S is am m× d matrix and Q is an m×m symmetric
matrix. We assume throughout that Q is positive-definite. We begin with some calculations
regarding partial minimization of quadratic forms. Note that

inf
a

c(x, a) = c(x, Kx) = xT (R − ST Q−1S)x,

where K = −Q−1S. Thus the requirement that c be non-negative imposes the constraint
that R − ST Q−1S is non-negative definite. For a non-negative definite matrix Π, we can
write

c(x, a) + f(x, a)T Πf(x, a) = c̃(x, a) = xT R̃x + xT S̃T a + aT S̃x + aT Q̃a,

where R̃ = R + AT ΠA, S̃ = S + BT ΠA and Q̃ = Q + BT ΠB. Since BT ΠB is non-negative
definite, Q̃ is positive-definite. Hence

inf
a
{c(x, a) + f(x, a)T Πf(x, a)} = c̃(x, K(Π)x) = xT r(Π)x, (3)

where
K(Π) = −Q̃−1S̃, r(Π) = R̃ − S̃T Q̃−1S̃.

Since the left-hand side of equation (3) is non-negative, r(Π) must be non-negative definite.
Fix now a non-negative definite matrix Π0 and consider the n-horizon problem with final
cost c(x) = xT Π0x. Define, as usual, for n > 0,

V u
n (x) =

n−1
∑

k=0

c(xk, uk) + c(xn), Vn(x) = inf
u

V u
n (x),

where x0 = x and xk+1 = Axk + Buk, k > 0. Then (see footnote 12) V0 = c and

Vn+1(x) = inf
a
{c(x, a) + Vn(Ax + Ba)}, n > 0.

Hence we obtain the following result by using equation (3) and an induction on n > 0.

Proposition 10.1. Define (Πn)n>0 by the Riccati recursion

Πn+1 = r(Πn), n > 0.

Then,

Vn(x) = xT Πnx

and the optimal sequence (x0, . . . , xn) is given by

xk = Γn−k . . . Γn−1x0, k = 0, 1, . . . , n,

where Γn = A + BK(Πn) is the gain matrix.
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We turn now to the infinite-horizon case. Define, as usual,

V u(x) =
∞
∑

k=0

c(xk, uk), V (x) = inf
u

V u(x).

Note that, if f is fully controllable, we can choose u so that xk = 0 and uk = 0 for all
k > d, so V (x) < ∞ for all x ∈ R

d.
A matrix A is a (discrete-time) stability matrix if An → 0 as n → ∞. We call f

stabilizable if A + BK is a stability matrix for some K. We use the matrix norm |A| =
sup{|Ax| : |x| = 1}, for which |Ax| 6 |A||x| for all x ∈ R

d, |A| = |AT | and |AB| 6 |A||B|.
Then A is a stability matrix if and only if |A|n 6 Cαn for all n > 0, for some constants
C < ∞ and α ∈ [0, 1).

Example. Suppose

A =

(

2 0
0 1/2

)

, B =

(

1
0

)

.

Then f(x, a) = Ax + Ba is stabilized by K =
(

−2 0
)

, but f is not fully controllable.

Note that, if f is stabilized by K, and we set un = Kxn, then xn = Γnx0, where
Γ = A + BK. Choose C < ∞ and α < 1 such that |Γn| 6 Cαn for all n > 0. Then, for all
x ∈ R

d,

V (x) 6 V u(x) = xT

∞
∑

n=0

(Γn)T QKΓnx 6 C2|QK||x|2/(1 − α2) < ∞,

where

QK =

(

I
K

)T (
R ST

S Q

)(

I
K

)

.

Proposition 10.2. Assume that f is fully controllable or stabilizable. Then the infimal

cost function is given by

V (x) = xT Πx, x ∈ R
d,

where Π is the minimal non-negative definite solution to the equilibrium Riccati equation

Π = r(Π),

and, for K = K(Π), u(x) = Kx defines an optimal control. Moreover, if QK is positive-

definite, in particular, if c is positive-definite, then Γ = A + BK is a stability matrix, Π
is the only non-negative definite solution to Π = r(Π), and, for any non-negative definite

matrix Π0, if we define Πn+1 = r(Πn), for n > 0, then Πn → Π as n → ∞.

Proof. By Proposition 2.1,

V (x) = inf
a
{c(x, a) + V (Ax + Ba)}, x ∈ R

d.

Take Π0 = 0 in the preceding proposition to obtain for the infimal cost function of the
n-horizon problem with no final cost,

xT Πnx = Vn(x) ↑ V∞(x) 6 V (x), x ∈ R
d.
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Since f is fully controllable or stabilizable, V (x) < ∞ for all x ∈ R
d. Hence24 there is a

non-negative definite matrix Π such that V∞(x) = xT Πx for all x. Since r is continuous,
we can let n → ∞ in Πn+1 = r(Πn) to obtain Π = r(Π). Then

V∞(x) = min
a

{c(x, a) + V∞(Ax + Ba)}, x ∈ R
d,

with minimum at a = u(x) = K(Π)x. Then V∞ > V u > V by the argument of Proposition
6.1, so V (x) = xT Πx and u is optimal. For Γ = A + BK, we have

∞
∑

n=0

(Γn)T QKΓn = Π < ∞,

so, if QK is positive-definite, then Γ is a stability matrix.
Consider the n-horizon problem with final cost xT Π̃0x, where Π̃0 is any non-negative

definite matrix. The infimal cost function is Ṽn(x) = xT Π̃nx, where Π̃n+1 = r(Π̃n) for
n > 0. Then

Vn(x) 6 Ṽn(x) 6 V u
n (x) + xT (Γn)T Π̃0Γ

nx.

If r(Π̃0) = Π̃0, then we obtain Π 6 Π̃0, so Π is the minimal non-negative solution. In the
case where QK is positive-definite, for general Π̃0, as n → ∞, the final term tends to 0, so
we obtain

xT Πx 6 lim
n→∞

xT Π̃nx 6 xT Πx, x ∈ R
d,

so Π̃n → Π. In particular Π is the only solution to r(Π) = Π.

24Write e1, . . . , ed for the standard basis in R
d, then Vn(ei ± ej) converges to a finite limit for all i, j,

and so, by polarization, does (Πn)ij = eT
i Πnej . Denote the limit by Πij . Then Π = (Πij) is symmetric

and xT Πnx → xT Πx for all x ∈ R
d.
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