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1 Controllable dynamical systems

Controllable dynamical systems may be considered both in discrete time, with parameter
n ∈ Z

+ = {0, 1, 2, . . . }, and in continuous time, with parameter t ∈ R
+ = [0,∞). They

may be deterministic or stochastic, that is to say random. They are the basic objects of
interest in this course. We now present the four main types.

1.1 Discrete-time, deterministic

Let S and A be sets. A discrete-time controllable dynamical system with state-space S and
action-space1 A is a map f : Z

+ × S × A → S. The interpretation is that, if at time n, in
state x, we choose action a, then we move to state f(n, x, a) at time n + 1. When f has
no dependence on its first argument, we call the system time-homogeneous. A control is a
map u : Z

+ → A. Given a starting time and state (k, x) and a control u, the controlled

sequence (xn)n>k is defined by xk = x and the equation2

xn+1 = f(n, xn, un), n > k.

In the time-homogeneous case3, we shall usually specify only a starting state x and take as
understood the starting time k = 0.

1.2 Discrete-time, stochastic

Assume for now that S is countable. Write Prob(S) for the set of probability measures on
S. We identify each p ∈ Prob(S) with the vector (py : y ∈ S) given by py = p({y}). A
discrete-time stochastic controllable dynamical system4 with state-space S and action-space

A is a map P : Z
+ × S × A → Prob(S). The interpretation is that, if at time n, in state

1In fact, since the actions available in each state are often different, it is convenient sometimes to
specify for each state x an action-space Ax, which may depend on x. Then the product S × A is replaced
everywhere by ∪x∈S{x} × Ax. This makes no difference to the theory, which we shall therefore explain in
the simpler case, only reviving the notation Ax in certain examples.

2This is sometimes called the plant equation.
3We can always reduce to the time-homogeneous case as follows: define S̃ = Z

+ ×S and, for (n, x) ∈ S̃,
set f̃((n, x), a) = (n + 1, f(n, x, a)). If (xn)n>k is the controlled sequence of f for starting time and state
x̃ = (k, x) and control u, and if we set, for n > 0, ũn = uk+n and x̃n = (k + n, xk+n), then (x̃n)n>0 is the

controlled sequence of f̃ for starting state x̃ and control ũ.
4The term Markov decision process is also used, although P is not a process. However, we shall see that

a choice of Markov control associates to P a Markov process.
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x, we choose action a, then we move to y at time n + 1 with probability P (n, x, a)y. We
write, for a function F on Z

+ × S,

PF (n, x, a) =

∫

S

F (n + 1, y)P (n, x, a)(dy) =
∑

y∈S

P (n, x, a)yF (n + 1, y).

Thus, also, PF (n, x, a) = E(F (n + 1, Y )), where Y is a random variable with distribution
P (n, x, a). Often, P will be time-homogeneous5 and will be considered as a function S×A →
Prob(S). Then we shall write, for a function F on S,

PF (x, a) =
∑

y∈S

P (x, a)yF (y).

A control is a map u : S∗ → A, where

S∗ = {(n, xk, xk+1, . . . , xn) : k, n ∈ Z
+, k 6 n, xk, xk+1, . . . , xn ∈ S}.

Given a control u and a starting time and state (k, x), we specify the distribution of a
random process (Xn)n>k by the requirement that for all n > k and all xk, . . . , xn ∈ S,

P(Xk = xk, Xk+1 = xk+1, . . . , Xn = xn)

= δxxk
P (k, xk, uk(xk))xk+1

× P (k + 1, xk+1, uk+1(xk, xk+1))xk+2
. . . P (n − 1, xn−1, un−1(xk, . . . , xn−1))xn

.

Thus, we determine the action that we take at each time n as a function u of n and of the
history of the process up to that time. When we want to indicate the choice of control u and
starting time and state (k, x), we shall write P

u
(k,x) in place of P, and similarly E

u
(k,x) in place

of E. We take k = 0 unless otherwise indicated and then write simply P
u
x. We call (Xn)n>k

the controlled process. A function u : Z
+×S → A is called a Markov control and is identified

with the control (n, xk, . . . , xn) 7→ un(xn). A function u : S → A is called a stationary

Markov control. In the time-homogeneous case, the controlled process determined by a
stationary Markov control u is a (time-homogeneous) Markov chain on S, with transition
matrix P u = (pu

xy : x, y ∈ S) given by pu
xy = P (x, u(x))y. More generally, for any Markov

control u, the controlled process (Xn)n>0 is a time-inhomogeneous Markov chain with time-
dependent transition matrix P u(n) = (pu

xy(n) : x, y ∈ S) given by pu
xy(n) = P (n, x, un(x))y.

Here is common way for a stochastic controllable dynamical system to arise: there is
given a sequence of independent, identically distributed, random variables (εn)n>1, with
values in a set E, say, and a function G : Z

+×S×A×E → S. We can then take P (n, x, a)
to be the distribution on S of the random variable G(n, x, a, ε). Thus, for a function F on
Z

+ × S, we have
PF (n, x, a) = E(F (n + 1, G(n, x, a, ε))). (1)

Given a control u, this gives a ready-made way to realise the controlled process (Xn)n>k,
using the recursion6

Xn+1 = G(n, Xn, Un, εn+1), Un = un(Xk, . . . , Xn).

5A reduction to the time-homogeneous case can be made by a procedure analogous to that described
in footnote 3. The details are left as an exercise.

6This is like the deterministic plant equation.

2



We shall call the pair (G, (εn)n>1) a realised stochastic controllable dynamical system. Every
stochastic controllable dynamical system can be realised in this way; sometimes this is
natural, at other times not. The notion of a realised stochastic controllable dynamical
system provides a convenient way to generalize our discussion to the case where S is no
longer countable. We shall consider in detail the case where S = R

n, where the random
variables εn are Gaussian, and where G is an affine function of x and ε.

1.3 Continuous-time, deterministic

Take now as state-space S = R
d, for some d > 1. A time-dependent vector field on R

d

is a map b : R
+ × R

d → R
d. Given a starting point x0 ∈ R

d, we can attempt to define
a continuous path (xt)t>0 in R

d, called the flow of b, by solving the differential equation
ẋt = b(t, xt) for t > 0, with initial value x0. In examples, we shall often calculate solutions
explicitly. In Section 18 we shall show that continuity of b, or just piecewise continuity
in time, together with the Lipschitz condition (4), guarantees the existence of a unique
solution, even if we cannot calculate it explicitly. The Lipschitz condition is in turn implied
by the existence and boundedness of the gradient ∇b = ∂b/∂x, which is usually easy to
check.

A continuous-time controllable dynamical system with action-space A is given by a map
b : R

+ × R
d × A → R

d. We interpret this as meaning that, if at time t, in state x, we
choose action a, then we move at that moment with velocity b(t, x, a). A control is a map
u : R

+ → A. Given a control u, we obtain a vector field bu by setting bu(t, x) = b(t, x, ut).
Then, given a starting time and place (s, x), the controlled path (xt)t>s is defined by the
differential equation ẋt = bu(t, xt) for t > s, with initial value xs = x. More generally, it
is sometimes convenient to consider as a control a map u : R

+ × R
d → A. Then we set

bu(t, x) = b(t, x, u(t, x)) and solve the differential equation as before.

1.4 Continuous-time, stochastic

The most common continuous-time Markov processes fall into two types, jump processes
and diffusions, each of which has a controllable counterpart. For simplicity, we give details
only for the time-homogeneous case.

We shall consider jump processes only in the case where the state-space S is countable.
In this context, Markov processes are called Markov chains7. A Markov chain is specified
by a Q-matrix Q. Given a starting point x0 ∈ S, there is an associated continuous-time
Markov chain (Xt)t>0, starting from x0, with generator matrix Q.

A continuous-time jump-type stochastic controllable dynamical system with state-space

S and action-space A is given by a pair of maps q : S ×A → R
+ and π : S ×A → Prob(S).

We insist that π(x, a) have no mass at x. If action a is chosen, then we jump from x at
rate q(x, a) to a new state, chosen with distribution π(x, a). A stationary Markov control

is a map u : S → A, and serves to specify a Q-matrix Qu, and hence a Markov chain, by

qu
xx = −q(x, u(x)), qu

xy = q(x, u(x))π(x, u(x))y, y 6= x.

7These are one of the subjects of the Part II course Applied Probability.
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The problem is to optimize the Markov chain over the controls. Note that this type
of system has no deterministic analogue, as the only deterministic continuous-time time-
homogeneous Markov process of jump type is a constant.

A diffusion process is a generalization of the differential equation ẋt = b(xt). Fix m > 1
and specify, in addition to the vector field b, called in this context the drift, m further vector
fields σ1, . . . , σm on S. Take m independent Brownian motions B1, . . . , Bm and attempt to
solve the stochastic differential equation8

dXt =
∑

i

σi(Xt)dBi
t + b(Xt)dt.

The intuition behind this equation is that we move from x in an infinitesimal time δt by
a normal random variable with mean b(x)δt and with covariance matrix

∑

i σi(x)σi(x)T δt.
The solution (Xt)t>0, is a Markov process in S having continuous paths, which is known
as a diffusion process.

A continuous-time diffusive stochastic controllable dynamical system with state-space

S and action-space A is given by a family of maps σi : S × A → R
d, i = 1, . . . , m, and

b : S × A → R
d. We assume that these maps are all continuously differentiable on R

d. If
action a is chosen, then, intuitively, we move from x in an infinitesimal time δt by a normal
random variable with mean b(x, a)δt and with covariance matrix

∑

i σi(x, a)σi(x, a)T δt. On
specifying a stationary Markov control u : S → A, we obtain the coefficients for a stochastic
differential equation by σu

i (x) = σi(x, u(x)) and bu(x) = b(x, u(x)), and hence, subject
to some regularity conditions, we can define a diffusion process. Stochastic differential
equations, diffusions, and the controllable systems and controls just introduced all have
straightforward time-dependent generalizations.

8This discussion is intended only to sketch the outline of the theory, which is treated in the Part III
course Stochastic Calculus and Applications. Provided that σ1, . . . , σm and b are all differentiable, with
bounded derivative, the equation has a unique maximal local solution, just as in the deterministic case.
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