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1 Controllable dynamical systems

Controllable dynamical systems may be considered both in discrete time, with parameter
n ∈ Z

+ = {0, 1, 2, . . . }, and in continuous time, with parameter t ∈ R
+ = [0,∞). They

may be deterministic or stochastic, that is to say random. They are the basic objects of
interest in this course. We now present the four main types.

1.1 Discrete-time, deterministic

Let S and A be sets. A discrete-time controllable dynamical system with state-space S and
action-space1 A is a map f : Z

+ × S × A → S. The interpretation is that, if at time n, in
state x, we choose action a, then we move to state f(n, x, a) at time n + 1. When f has
no dependence on its first argument, we call the system time-homogeneous. A control is a
map u : Z

+ → A. Given a starting time and state (k, x) and a control u, the controlled

sequence (xn)n>k is defined by xk = x and the equation2

xn+1 = f(n, xn, un), n > k.

In the time-homogeneous case3, we shall usually specify only a starting state x and take as
understood the starting time k = 0.

1.2 Discrete-time, stochastic

Assume for now that S is countable. Write Prob(S) for the set of probability measures on
S. We identify each p ∈ Prob(S) with the vector (py : y ∈ S) given by py = p({y}). A
discrete-time stochastic controllable dynamical system4 with state-space S and action-space

A is a map P : Z
+ × S × A → Prob(S). The interpretation is that, if at time n, in state

1In fact, since the actions available in each state are often different, it is convenient sometimes to
specify for each state x an action-space Ax, which may depend on x. Then the product S × A is replaced
everywhere by ∪x∈S{x} × Ax. This makes no difference to the theory, which we shall therefore explain in
the simpler case, only reviving the notation Ax in certain examples.

2This is sometimes called the plant equation.
3We can always reduce to the time-homogeneous case as follows: define S̃ = Z

+ ×S and, for (n, x) ∈ S̃,
set f̃((n, x), a) = (n + 1, f(n, x, a)). If (xn)n>k is the controlled sequence of f for starting time and state
x̃ = (k, x) and control u, and if we set, for n > 0, ũn = uk+n and x̃n = (k + n, xk+n), then (x̃n)n>0 is the

controlled sequence of f̃ for starting state x̃ and control ũ.
4The term Markov decision process is also used, although P is not a process. However, we shall see that

a choice of Markov control associates to P a Markov process.
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x, we choose action a, then we move to y at time n + 1 with probability P (n, x, a)y. We
write, for a function F on Z

+ × S,

PF (n, x, a) =

∫

S

F (n + 1, y)P (n, x, a)(dy) =
∑

y∈S

P (n, x, a)yF (n + 1, y).

Thus, also, PF (n, x, a) = E(F (n + 1, Y )), where Y is a random variable with distribution
P (n, x, a). Often, P will be time-homogeneous5 and will be considered as a function S×A →
Prob(S). Then we shall write, for a function F on S,

PF (x, a) =
∑

y∈S

P (x, a)yF (y).

A control is a map u : S∗ → A, where

S∗ = {(n, xk, xk+1, . . . , xn) : k, n ∈ Z
+, k 6 n, xk, xk+1, . . . , xn ∈ S}.

Given a control u and a starting time and state (k, x), we specify the distribution of a
random process (Xn)n>k by the requirement that for all n > k and all xk, . . . , xn ∈ S,

P(Xk = xk, Xk+1 = xk+1, . . . , Xn = xn)

= δxxk
P (k, xk, uk(xk))xk+1

× P (k + 1, xk+1, uk+1(xk, xk+1))xk+2
. . . P (n − 1, xn−1, un−1(xk, . . . , xn−1))xn

.

Thus, we determine the action that we take at each time n as a function u of n and of the
history of the process up to that time. When we want to indicate the choice of control u and
starting time and state (k, x), we shall write P

u
(k,x) in place of P, and similarly E

u
(k,x) in place

of E. We take k = 0 unless otherwise indicated and then write simply P
u
x. We call (Xn)n>k

the controlled process. A function u : Z
+×S → A is called a Markov control and is identified

with the control (n, xk, . . . , xn) 7→ un(xn). A function u : S → A is called a stationary

Markov control. In the time-homogeneous case, the controlled process determined by a
stationary Markov control u is a (time-homogeneous) Markov chain on S, with transition
matrix P u = (pu

xy : x, y ∈ S) given by pu
xy = P (x, u(x))y. More generally, for any Markov

control u, the controlled process (Xn)n>0 is a time-inhomogeneous Markov chain with time-
dependent transition matrix P u(n) = (pu

xy(n) : x, y ∈ S) given by pu
xy(n) = P (n, x, un(x))y.

Here is common way for a stochastic controllable dynamical system to arise: there is
given a sequence of independent, identically distributed, random variables (εn)n>1, with
values in a set E, say, and a function G : Z

+×S×A×E → S. We can then take P (n, x, a)
to be the distribution on S of the random variable G(n, x, a, ε). Thus, for a function F on
Z

+ × S, we have
PF (n, x, a) = E(F (n + 1, G(n, x, a, ε))). (1)

Given a control u, this gives a ready-made way to realise the controlled process (Xn)n>k,
using the recursion6

Xn+1 = G(n, Xn, Un, εn+1), Un = un(Xk, . . . , Xn).

5A reduction to the time-homogeneous case can be made by a procedure analogous to that described
in footnote 3. The details are left as an exercise.

6This is like the deterministic plant equation.
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We shall call the pair (G, (εn)n>1) a realised stochastic controllable dynamical system. Every
stochastic controllable dynamical system can be realised in this way; sometimes this is
natural, at other times not. The notion of a realised stochastic controllable dynamical
system provides a convenient way to generalize our discussion to the case where S is no
longer countable. We shall consider in detail the case where S = R

n, where the random
variables εn are Gaussian, and where G is an affine function of x and ε.

1.3 Continuous-time, deterministic

Take now as state-space S = R
d, for some d > 1. A time-dependent vector field on R

d

is a map b : R
+ × R

d → R
d. Given a starting point x0 ∈ R

d, we can attempt to define
a continuous path (xt)t>0 in R

d, called the flow of b, by solving the differential equation
ẋt = b(t, xt) for t > 0, with initial value x0. In examples, we shall often calculate solutions
explicitly. In Section 18 we shall show that continuity of b, or just piecewise continuity
in time, together with the Lipschitz condition (4), guarantees the existence of a unique
solution, even if we cannot calculate it explicitly. The Lipschitz condition is in turn implied
by the existence and boundedness of the gradient ∇b = ∂b/∂x, which is usually easy to
check.

A continuous-time controllable dynamical system with action-space A is given by a map
b : R

+ × R
d × A → R

d. We interpret this as meaning that, if at time t, in state x, we
choose action a, then we move at that moment with velocity b(t, x, a). A control is a map
u : R

+ → A. Given a control u, we obtain a vector field bu by setting bu(t, x) = b(t, x, ut).
Then, given a starting time and place (s, x), the controlled path (xt)t>s is defined by the
differential equation ẋt = bu(t, xt) for t > s, with initial value xs = x. More generally, it
is sometimes convenient to consider as a control a map u : R

+ × R
d → A. Then we set

bu(t, x) = b(t, x, u(t, x)) and solve the differential equation as before.

1.4 Continuous-time, stochastic

The most common continuous-time Markov processes fall into two types, jump processes
and diffusions, each of which has a controllable counterpart. For simplicity, we give details
only for the time-homogeneous case.

We shall consider jump processes only in the case where the state-space S is countable.
In this context, Markov processes are called Markov chains7. A Markov chain is specified
by a Q-matrix Q. Given a starting point x0 ∈ S, there is an associated continuous-time
Markov chain (Xt)t>0, starting from x0, with generator matrix Q.

A continuous-time jump-type stochastic controllable dynamical system with state-space

S and action-space A is given by a pair of maps q : S ×A → R
+ and π : S ×A → Prob(S).

We insist that π(x, a) have no mass at x. If action a is chosen, then we jump from x at
rate q(x, a) to a new state, chosen with distribution π(x, a). A stationary Markov control

is a map u : S → A, and serves to specify a Q-matrix Qu, and hence a Markov chain, by

qu
xx = −q(x, u(x)), qu

xy = q(x, u(x))π(x, u(x))y, y 6= x.

7These are one of the subjects of the Part II course Applied Probability.
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The problem is to optimize the Markov chain over the controls. Note that this type
of system has no deterministic analogue, as the only deterministic continuous-time time-
homogeneous Markov process of jump type is a constant.

A diffusion process is a generalization of the differential equation ẋt = b(xt). Fix m > 1
and specify, in addition to the vector field b, called in this context the drift, m further vector
fields σ1, . . . , σm on S. Take m independent Brownian motions B1, . . . , Bm and attempt to
solve the stochastic differential equation8

dXt =
∑

i

σi(Xt)dBi
t + b(Xt)dt.

The intuition behind this equation is that we move from x in an infinitesimal time δt by
a normal random variable with mean b(x)δt and with covariance matrix

∑

i σi(x)σi(x)T δt.
The solution (Xt)t>0, is a Markov process in S having continuous paths, which is known
as a diffusion process.

A continuous-time diffusive stochastic controllable dynamical system with state-space

S and action-space A is given by a family of maps σi : S × A → R
d, i = 1, . . . , m, and

b : S × A → R
d. We assume that these maps are all continuously differentiable on R

d. If
action a is chosen, then, intuitively, we move from x in an infinitesimal time δt by a normal
random variable with mean b(x, a)δt and with covariance matrix

∑

i σi(x, a)σi(x, a)T δt. On
specifying a stationary Markov control u : S → A, we obtain the coefficients for a stochastic
differential equation by σu

i (x) = σi(x, u(x)) and bu(x) = b(x, u(x)), and hence, subject
to some regularity conditions, we can define a diffusion process. Stochastic differential
equations, diffusions, and the controllable systems and controls just introduced all have
straightforward time-dependent generalizations.

8This discussion is intended only to sketch the outline of the theory, which is treated in the Part III
course Stochastic Calculus and Applications. Provided that σ1, . . . , σm and b are all differentiable, with
bounded derivative, the equation has a unique maximal local solution, just as in the deterministic case.
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2 The dynamic optimality equation

We introduce a cost function

c : Z
+ × S × A → R.

We assume throughout that one of the following three conditions holds: either c is non-
negative, or c is non-positive, or there is a convergent series of constants

∑

n cn < ∞ such
that |c(n, ., .)| 6 cn for all n. In the second case, we shall usually express everything in
terms of the reward function r = −c. Given a controllable dynamical system f and a
control u, we define the total cost function V u : Z

+ × S → R by

V u(k, x) =

∞
∑

n=k

c(n, xn, un),

where (xn)n>k is given by xk = x and xn+1 = f(n, xn, un) for all n > k. On the other hand,
given a stochastic controllable dynamical system P with control u, we define the expected

total cost function V u : Z
+ × S → R by

V u(k, x) = E
u
(k,x)

∞
∑

n=k

c(n, Xn, Un),

where Un = un(Xk, . . . , Xn). In order to avoid the use of measure theory, we assume in
the stochastic case, until Section 11, that the state-space S is countable. All the notions
and results we present extend in a straightforward way to the case of a general measurable
space (S,S). Our assumptions on c are sufficient to ensure that the sums and expectations
here are well-defined. The infimal cost function is defined by

V (k, x) = inf
u

V u(k, x),

where the infimum is taken over all controls9 10. A control u is optimal for (k, x) if
V u(k, x) = V (k, x). The main problem considered in this course is the calculation of
V and the identification of optimal controls u, when they exist, in this and some analogous

9Note that we have used a smaller class of controls in the deterministic case and a larger class in
the stochastic case. Suppose we fix a starting time and state (k, x) and use a control u from the larger
class in a deterministic controllable dynamical system, obtaining a controlled sequence (xn)n>k. Set
ũn = un(xk , . . . , xn) for n > k, and define ũn arbitrarily for n 6 k− 1. Then ũ belongs to the smaller class
of controls and has the same controlled sequence starting from (k, x). Hence there is no loss in restricting
the infimum to the smaller class, but we should be mindful that the infimum can no longer be approached
simultaneously for all (k, x) by a single sequence of controls. The larger class is necessary in the stochastic
case to specify an appropriate dependence of the control on the controlled process.

10In some applications we shall have costs of the more general form c(n, Xn, Un, Xn+1). However, we
can always reduce to the case under discussion using the formula

E
u
(k,x)(c(k, nk, Un, Xn+1)|Xk, . . . , Xn) = c̄(n, Xn, Un),

where
c̄(n, x, a) =

∑

y∈S

P (n, x, a)yc(n, x, a, y).
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contexts. In most practical cases, a simple search over all controls is infeasible, because
there are too many possibilities. Instead, the main approach is based on the following
result.

Proposition 2.1. The infimal cost function satisfies the dynamic optimality equation11

V (k, x) = inf
a
{c(k, x, a) + V (k + 1, f(k, x, a))} (deterministic case),

V (k, x) = inf
a

(c + PV )(k, x, a) (stochastic case),

for all k > 0 and x ∈ S.

Proof. A simpler variant of the following argument may be used to prove the deterministic
case. This is left as an exercise. Fix k ∈ Z

+ and x ∈ S. Note that V u(k, x) depends on u
only through a = uk(x) and through the control ũ, given for n > k+1 by ũn(xk+1, . . . , xn) =
un(x, xk+1, . . . , xn). By conditioning on Xk+1, we have

V u(k, x) = c(k, x, a) +
∑

y∈S

P (k, x, a)yV
ũ(k + 1, y).

Now, as we vary ũ over all controls, we can approach the infimal value of V ũ(k + 1, y) for
all y ∈ S simultaneously, so we obtain

inf
uk(x)=a

V u(k, x) = (c + PV )(k, x, a).

The optimality equation is now obtained on taking the infimum over a ∈ A.

The idea of the proof is thus to condition on the first step and use the fact that the
resulting constrained minimization is similar in form to the original. We used here the
Principle of Optimality. In its most abstract form, this is just the fact that one can take
an infimum over a set S given as a union ∪a∈ASa by

inf
x∈S

f(x) = inf
a∈A

inf
x∈Sa

f(x).

Another, more concrete, instance is the fact any path of minimal length between two points
must also minimize length between any two intermediate points on the path. Note that
the proposition says nothing about uniqueness of solutions to the optimality equation. We
shall look into this in a number of more specific contexts in the next few sections.

11Also called the dynamic programming or Bellman equation.

6



3 Finite-horizon dynamic optimization

We show how to optimize a controllable dynamical system over finitely many time steps.
Fix a time horizon n ∈ Z

+ and assume that

c(n, x, a) = C(x) and c(k, x, a) = 0, k > n + 1, x ∈ S, a ∈ A.

Thus the total cost function is given by

V u(k, x) =
n−1
∑

j=k

c(j, xj, uj) + C(xn), 0 6 k 6 n,

in the deterministic case, and in the stochastic case by

V u(k, x) = E
u
(k,x)

(

n−1
∑

j=k

c(j, Xj, Uj) + C(Xn)

)

, 0 6 k 6 n.

Note that V (k, x) = 0 for all k > n + 1. Hence, the optimality equation can be written in
the form

V (n, x) = C(x), x ∈ S,

V (k, x) = inf
a
{c(k, x, a) + V (k + 1, f(k, x, a))}, 0 6 k 6 n − 1, x ∈ S,

in the deterministic case, and in the stochastic case by12

V (n, x) = C(x), x ∈ S,

V (k, x) = inf
a

(c + PV )(k, x, a), 0 6 k 6 n − 1, x ∈ S.

Both these equations have a unique solution, which moreover may be computed by a
straightforward13 backwards recursion from time n. Once we have computed V , an opti-
mal control can be identified whenever we can find a minimizing action in the optimality
equations for 0 6 k 6 n − 1. The following easy result verifies this for the deterministic
case.

12It is often convenient to write the equation in terms of the time to go m = n − k. Assume that P

is time-homogeneous and set Vm(x) = V (k, x) and cm(x, a) = c(k, x, a), then the optimality equations
become V0(x) = C(x) and

Vm+1(x) = inf
a

(cm + PVm)(x, a), 0 6 m 6 n − 1, x ∈ S.

In particular, in the case where both P and c are time-homogeneous, if we define

V u
n (x) = E

u
x

n−1
∑

j=0

c(Xj , Uj), Vn(x) = inf
u

V u
n (x),

then the functions Vn are given by V0(x) = 0 and, for n > 0,

Vn+1(x) = inf
a

(c + PVn)(x, a), x ∈ S.

13Although straightforward in concept, the size of the state space may make this a demanding procedure
in practice. It is worth remembering, as a possible alternative, the following interchange argument, when
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Proposition 3.1. Suppose we can find a control u, with controlled sequence (x0, . . . , xn)
such that

V (k, xk) = c(k, xk, uk) + V (k + 1, f(k, xk, uk)), 0 6 k 6 n − 1.

Then u is optimal for (0, x0).

Proof. Fix a such a control u, and set

mk =

k−1
∑

j=0

c(j, xj, uj) + V (k, xk), 0 6 k 6 n.

Then, for 0 6 k 6 n − 1, since xk+1 = f(k, xk, uk), we have

mk+1 − mk = c(k, xk, uk) + V (k + 1, xk+1) − V (k, xk) = 0.

Hence

V (0, x0) = m0 = mn =
n−1
∑

j=0

c(j, xj, uj) + C(xn).

Example (Managing spending and saving). An investor holds a capital sum in a
building society, which pays a fixed rate of interest θ × 100% on the sum held at each time
k = 0, 1, . . . , n− 1. The investor can choose to reinvest a proportion a of the interest paid,
which then itself attracts interest. No amounts invested can be withdrawn. How should
the investor act to maximize total consumption by time n − 1?

Take as state the present income x ∈ R
+ and as action the proportion a ∈ [0, 1] which

is reinvested. The income next time is then

f(x, a) = x + θax

and the reward this time is r(x, a) = (1 − a)x. The optimality equation is given by

V (k, x) = max
06a61

{(1 − a)x + V (k + 1, (1 + θa)x)}, 0 6 k 6 n − 1,

seeking to optimize the order in which one performs a sequence of n tasks. Label the tasks {1, . . . , n} and
write c(σ) for the cost of performing the tasks in the order σ = (σ1, . . . , σn). We examine the effect on
c(σ) of interchanging the order of two of the tasks. Suppose we can find a function f on {1, . . . , n} such
that, for all σ and all 0 6 i 6 n − 1,

c(σ′) < c(σ) whenever f(σi) > f(σi+1),

where σ′ is obtained from σ by interchanging the order of tasks σi and σi+1. Then the condition f(σ1) 6

. . . 6 f(σn) is necessary for optimality of σ. This may be enough to reduce the number of possible optimal
orders to 1. In any case, if we have also, for all σ and all 0 6 i 6 n − 1,

c(σ′) = c(σ) whenever f(σi+1) = f(σi),

then our optimality condition is also sufficient.
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with V (n, x) = 0. Working back from time n, we see that V (k, x) = cn−kx for some
constants c0, . . . , cn, given by c0 = 0 and

cm+1 = max{cm + 1, (1 + θ)cm}, 0 6 m 6 n − 1.

Hence

cm =

{

m, m 6 m∗,

m∗(1 + θ)m−m∗

, m > m∗,

where m∗ = d1/θe. By Proposition 3.1, the optimal control is to reinvest everything before
time k∗ = n − m∗ and to consume everything from then on.

The optimality of a control in the stochastic case can verified using the following result.

Proposition 3.2. Suppose we can find a Markov control u such that

V (k, x) = (c + PV )(k, x, uk(x)), 0 6 k 6 n − 1, x ∈ S.

Then u is optimal for all (k, x).

Proof. Fix such a Markov control u and write (X0, . . . , Xn) for the associated Markov chain
starting from (0, x). Define

Mk =

k−1
∑

j=0

c(j, Xj, Uj) + V (k, Xk), 0 6 k 6 n.

Then, for 0 6 k 6 n − 1,

Mk+1 − Mk = c(k, Xk, Uk) + V (k + 1, Xk+1) − V (k, Xk),

so, for all y ∈ S,

E
u(Mk+1 − Mk|Xk = y) = (c + PV )(k, y, uk(y)) − V (k, y) = 0.

Hence

V (0, x) = E
u
x(M0) = E

u
x(Mn) = E

u
x

(

n−1
∑

j=0

c(j, Xj, Uj) + C(Xn)

)

.

The same argument works for all starting times k.

Example (Exercising a stock option). You hold an option to buy a share at a fixed
price p, which can be exercised at any time k = 0, 1, . . . , n − 1. The share price satisfies
Yk+1 = Yk +εk+1, where (εk)k>1 is a sequence of independent identically distributed random
variables14, with E(|ε|) < ∞. How should you act to maximise your expected return?

Take as state the share price x ∈ R, until we exercise the option, when we move to a
terminal state ∂. Take as action space the set {0, 1}, where a = 1 corresponds to exercising
the option. The problem specifies a realised stochastic controllable dynamical system. We

14Thus we allow, unrealistically, the possibility that the price could be negative. This model might
perhaps be used over a small time interval, with Y0 large.
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are working outside the countable framework here, but in the realised case, where PV is
given straightforwardly by 1. The rewards and dynamics before termination are given by

r(x, a) = a(x − p), G(x, a, ε) =

{

x + ε, if a = 0,

∂, if a = 1,
.

Hence the optimality equation is given by

V (k, x) = max{x − p, E(V (k + 1, x + ε))}, k = 0, 1, . . . , n − 1,

with V (n, x) = 0. Note that V (n− 1, x) = (x− p)+. By backwards induction, we can show
that V (k, .) is convex for all k, and increases as k decreases. Set pk = inf{x > 0 : V (k, x) =
x − p}. Then pk increases as k decreases and the optimal control is to exercise the option
as soon as Yk = pk.
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4 Dynamic optimization for non-negative rewards

We show how to optimize a time-homogeneous stochastic controllable dynamical system
with non-negative rewards over an infinite time-horizon15.

Let P be a time-homogeneous stochastic controllable dynamical system with state-space
S and action-space A. Suppose given a reward function

r : S × A → R
+.

Given a control u, define the expected total reward function

V u(x) = E
u
x

∞
∑

n=0

r(Xn, Un),

where, as usual, the notation signifies that (Xn)n>0 is the controlled process of u, starting
from x, and where Un = un(X0, . . . , Xn). Define also the optimal reward or value function

V (x) = sup
u

V u(x).

We are using notation inconsistent with Section 2 because we have defined V as the negative
of the corresponding object in Section 2. The optimality equation transforms straightfor-
wardly under this change of notation – one just replaces the infimum by a supremum.

Define for n > 0

V u
n (x) = E

u
x

n−1
∑

k=0

r(Xk, Uk), Vn(x) = sup
u

V u
n (x).

By monotone convergence16, since r > 0, V u
n (x) ↑ V u(x) as n → ∞, for all x and u. So

V (x) = sup
u

sup
n

V u
n (x) = sup

n
sup

u
V u

n (x) = sup
n

Vn(x).

The functions Vn are finite-horizon optimal reward functions, which, taking advantage of
time-homogeneity, can be computed iteratively using the optimality equation

Vn+1(x) = sup
a

(r + PVn)(x, a),

so we have a way to compute V . This procedure is called value iteration.

Proposition 4.1. The optimal reward function is the minimal non-negative solution of the

dynamic optimality equation

V (x) = sup
a

(r + PV )(x, a), x ∈ S.

Hence, any control u, for which V u also satisfies this equation, is optimal, for all starting

states x.

15This is also called positive programming.
16This fundamental result of measure theory states that, for any sequence of measurable functions

0 6 fn ↑ f , and any measure µ, we have convergence of the corresponding integrals µ(fn) ↑ µ(f). Here, it
justifies the interchange of summation and expectation, for the expectation is a form of integral, and we
just take fn as the partial sum

∑n−1
k=0 r(Xk , Uk).
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Proof. We know that V satisfies the optimality equation by Proposition 2.1. Suppose F
is another non-negative solution. Then F > 0 = V0. Suppose inductively for n > 0 that
F > Vn. Then

F (x) = sup
a

(r + PF )(x, a) > sup
a

(r + PVn)(x, a) = Vn+1(x)

so the induction proceeds. Hence F > supn Vn = V .

Example (Possible lack of an optimal policy). Consider the controllable dynamical
system f(x, a) = a(x+1{x>1}), with state-space Z

+ and action-space {0, 1}. Take as reward
function r(x, a) = (1 − a)(1 − 1/x). Thus, in state x > 1, we can choose to jump up by 1,
or to jump to 0, gaining a reward of 1 − 1/x. Once at 0, no further reward is gained.

The optimality equations are given by V (0) = 0 and

V (x) = max{1 − 1/x, V (x + 1)}, x > 1.

It is straightforward to show that, for any λ ∈ [1,∞), the function Vλ, given by

Vλ(x) = λ1{x>1},

is a solution of the optimality equations, and indeed that there are no other solutions.
Then, by the proposition, we can identify the optimal reward function as the smallest of
these functions, namely V1. However, there is no optimal control. If we wait until we get
to n, then we gain a reward 1 − 1/n. But if we wait for ever, we get nothing. Note that
waiting forever corresponds to the control u(x) = 0 for all x, which has the property that

V (x) = (r + PV )(x, u(x)), x ∈ S.

So we see, contrary to the finite-horizon case, that this is not enough to guarantee opti-
mality. We do have for this control that

V u(x) = (r + PV u)(x, u(x)), x ∈ S.

However, V u, which is the minimal non-negative solution of this equation, is identically
zero.

Example (Optimal gambling). A gambler has one pound and wishes to increase it to N
pounds. She can place bets on a sequence of favorable games, each independently having
probability p > 1/2 of success, but her stake must be a whole number of pounds and may
not exceed her current fortune. What strategy maximizes her chances of reaching her goal?

We take as state-space S = Z
+. It is natural here to allow a state-dependent action-

space17 Ax = {0, 1, . . . , x}. The optimality equations are given by

V (x) = max
a∈Ax

{pV (x + a) + (1 − p)V (x − a)}, 1 6 x 6 N − 1,

with V (0) = 0 and V (x) = 1 for all x > N . There is no systematic approach to solving
these equations, so we guess that the timid strategy of betting one pound each time will

17See footnote 1.
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be optimal. As motivation, we might compare the outcomes, firstly of betting two pounds
once, and secondly, of successively betting one pound until we are either two up or two
down. So, take u(x) = 1 for all x. Then, by a standard Markov chain argument,

V u(x) = pV u(x + 1) + (1 − p)V u(x − 1), 1 6 x 6 N − 1,

with V u(0) = 1 and V u(N) = 1. These equations have unique solution

V u(x) = (1 − λx)/(1 − λN ),

where λ = (1−p)/p ∈ (0, 1). It now follows from the fact that V u is concave that it satisfies
the optimality equations too, so u is optimal.

13



5 Dynamic optimization for discounted costs

We show how to optimize a time-homogeneous stochastic controllable dynamical system
with bounded costs, discounted18 at rate β ∈ (0, 1).

Let P be a time-homogeneous stochastic controllable dynamical system with state-space
S and action-space A. Suppose given a cost function

c : S × A → R,

and suppose that |c(x, a)| 6 C for all x, a, for some constant C < ∞. Given a control u,
define the expected discounted cost function

V u(x) = E
u
x

∞
∑

n=0

βnc(Xn, Un).

Define also the infimal discounted cost function

V (x) = inf
u

V u(x).

Our current set-up corresponds in the framework of Section 2, to the case of a time-
dependent cost function (n, x, a) 7→ βnc(x, a).

Define, for n > 0 and any control u,

V u
n (x) = E

u
x

n−1
∑

k=0

βkc(Xk, Uk), Vn(x) = inf
u

V u
n (x).

Note that

|V u
n (x) − V u(x)| 6 C

∞
∑

k=n

βk =
Cβn

1 − β
,

so, taking the infimum over u, we have

|Vn(x) − V (x)| 6
Cβn

1 − β
→ 0, as n → ∞.

18Such a discounting of future costs is normal in financial models, and reflects the fact that money can
be invested to earn interest. There is a second way in which a discounted problem may arise. Consider the
set-up of Section 4, modified by the introduction of a killing time T , with P(T > n + 1) = βn for all n > 0,
independent of the controlled process (Xn)n>0. The idea is that, at each time step, independently, there
is a probability β that some external event will terminate the process, and that no further rewards will be
received. Then consider the expected total reward function for control u given by

V u(x) = E
u
x

T−1
∑

n=0

r(Xn, Un) = E
u
x

∞
∑

n=0

r(Xn, Un)1{T>n+1}.

Now
E

u
x(r(Xn, Un)1{T>n+1}|Xn, Un) = βnr(Xn, Un),

so our problem reduces to the optimization of the expected discounted reward function

V u(x) = E
u
x

∞
∑

n=0

βnr(Xn, Un).

14



Taking advantage of time-homogeneity, the finite-horizon cost functions Vn may be deter-
mined iteratively for n > 0 by V0(x) = 0 and the optimality equations

Vn+1(x) = inf
a

(c + βPVn)(x, a), x ∈ S.

Hence, as in the case of non-negative rewards, we can compute V by value iteration.

Proposition 5.1. The infimal discounted cost function is the unique bounded solution of

the dynamic optimality equation

V (x) = inf
a

(c + βPV )(x, a), x ∈ S.

Moreover, any map u : S → A such that

V (x) = (c + βPV )(x, u(x)), x ∈ S,

defines an optimal control, for every starting state x.

Proof. We know that V satisfies the optimality equation by Proposition 2.1, and

|V (x)| 6 C
∞
∑

n=0

βn =
C

1 − β
< ∞,

so V is bounded. Let now F be any bounded solution of the optimality equation and let u
be any control. Consider the process

Mn =
n−1
∑

k=0

βkc(Xk, Uk) + βnF (Xn), n > 0.

Then
Mn+1 − Mn = βnc(Xn, Un) + βn+1F (Xn+1) − βnF (Xn),

so, for all y ∈ S and a ∈ A,

E
u
x(Mn+1 − Mn|Xn = y, Un = a) = βnc(y, a) + βn+1PF (y, a)− βnF (y) > 0

and so
F (x) = E

u
x(M0) 6 E

u
x(Mn) = V u

n (x) + βn
E

u
xF (Xn).

On letting n → ∞, using the boundedness of F , we obtain F 6 V u. Since u was arbitrary,
this implies that F 6 V .

In the special case where we can find a stationary Markov control u : S → A such that

F (x) = (c + βPF )(x, u(x)), x ∈ S,

then, for all y ∈ S,
E

u
x(Mn+1 − Mn|Xn = y) = 0.

Hence
F (x) = E

u
x(M0) = E

u
x(Mn) = V u

n (x) + βn
E

u
xF (Xn) (2)

15



and so, letting n → ∞, the final term vanishes and we find that F = V u. In particular, in
the case F = V , such a control u is optimal.

We do not know in general that there exists such a minimizing u but, given ε > 0, we
can always choose ũ such that

(c + βPF )(x, ũ(x)) 6 F (x) + ε, x ∈ S,

which we can write in the form

F (x) = (c̃ + βPF )(x, ũ(x)), x ∈ S,

for a new cost function c̃ > c − ε. The argument of the preceding paragraph, with c̃ in
place of c and ũ in place of u now shows that

F (x) = E
u
x

∞
∑

k=0

βkc̃(Xk, ũ(Xk)) > V ũ(x) − ε

1 − β
> V (x) − ε

1 − β
.

Since ε > 0 was arbitrary, we conclude that V = F .
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6 Dynamic optimization for non-negative costs

We show how to optimize a time-homogeneous stochastic controllable dynamical system
with non-negative costs over an infinite time-horizon19.

Let P be a time-homogeneous stochastic controllable dynamical system with state-space
S and action-space A. Suppose given a cost function

c : S × A → R
+.

Given a control u, define, as above, the expected total cost function V u and the infimal cost

function V by

V u(x) = E
u
x

∞
∑

n=0

c(Xn, Un), V (x) = inf
u

V u(x).

Recall from Section 4 that V u
n (x) ↑ V u(x) as n → ∞, where

V u
n (x) = E

u
x

n−1
∑

k=0

c(Xk, Uk).

Proposition 6.1. Assume that A is finite. Then the infimal cost function is the minimal

non-negative solution of the dynamic optimality equation

V (x) = min
a

(c + PV )(x, a), x ∈ S.

Moreover, any map u : S → A such that

V (x) = (c + PV )(x, u(x)), x ∈ S,

defines an optimal control, for every starting state x.

Proof. We know by Proposition 2.1 that V is a solution of the optimality equation. Suppose
that F is another non-negative solution. We use the finiteness of A to find a map ũ : S → A
such that

F (x) = (c + PF )(x, ũ(x)), x ∈ S.

The argument leading to equation (2) is valid when β = 1, so we have

F (x) = V ũ
n (x) + E

ũ
xF (Xn) > V ũ

n (x).

On letting n → ∞, we obtain F > V ũ > V . Finally, when F = V we can take ũ = u to
see that V > V u, and hence that u defines an optimal control.

The proposition allows us to see, in particular, that value iteration remains an effective
way to approximate the infimal cost function in the current case. For let us set

Vn(x) = inf
u

V u
n (x)

19This is also called negative programming – the problem can be recast in terms of non-positive rewards.
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and note that Vn(x) ↑ V∞(x) as n → ∞ for some function V∞. Now V u
n 6 V u for all n so,

taking an infimum over controls we obtain Vn 6 V and hence V∞ 6 V . On the other hand
we have the finite-horizon optimality equations

Vn+1(x) = min
a

(c + PVn)(x, a), x ∈ S,

and we can pass to the limit as n → ∞ to see that V∞ satisfies the optimality equation.
But V is the minimal non-negative solution of this equation, so V∞ > V , so V∞ = V .

A second iterative approach to optimality is the method of policy improvement. We
know that, for any given map u : S → A, we have

V u(x) = (c + PV u)(x, u(x)), x ∈ S.

If V u does not satisfy the optimality equation, then we can find a strictly better control by
choosing ũ : S → A such that

V u(x) > (c + PV u)(x, ũ(x)), x ∈ S,

with strict inequality at some state x0. Then, obviously, V u > V ũ
0 = 0. Suppose inductively

that V u > V ũ
n . Then

V u(x) > (c + PV u)(x, ũ(x)) > (c + PV ũ
n )(x, ũ(x)) = V ũ

n+1(x), x ∈ S,

so the induction proceeds and, letting n → ∞, we obtain V u > V ũ, with strict inequality
at x0.
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7 Optimal stopping

We show how optimal stopping problems for Markov chains can be treated as dynamic
optimization problems.

Let (Xn)n>0 be a Markov chain on S, with transition matrix P . Suppose given two
bounded functions

c : S → R, f : S → R,

respectively the continuation cost and the stopping cost. A random variable T , with values
in Z

+ ∪ {∞}, is a stopping time if, for all n ∈ Z
+, the event {T = n} depends only on

X0, . . . , Xn. Define the expected total cost function V T by

V T (x) = Ex

(

T−1
∑

k=0

c(Xk) + f(XT )1{T<∞}

)

, x ∈ S,

and define for n ∈ Z
+ and x ∈ S,

Vn(x) = inf
T6n

V T (x), V∗(x) = inf
T<∞

V T (x), V (x) = inf
T

V T (x),

where the infima are taken over all stopping times T , first with the restriction T 6 n, then
with T < ∞, and finally unrestricted. Where unbounded stopping times are involved, we
assume that c and f are non-negative, so the sums and expectations are well defined. It is
clear that Vn(x) > Vn+1(x) > V∗(x) > V (x) for all n and x, as the infima are taken over
progressively larger sets. The calculation of these functions and the determination, where
possible, of minimizing stopping times are known as optimal stopping problems20.

We translate these problems now into dynamic optimization problems, with state-space
S∪{∂} and action space {0, 1}. Action 0 will correspond to continuing, action 1 to stopping.
On stopping, we go to ∂ and stay there. Define, for x ∈ S,

P (x, 0)y = pxy, P (x, 1)∂ = δy∂,

and

c(x, a) =

{

c(x), a = 0,

f(x), a = 1.

Given a stopping time T , there exists for each n > 0 a set Bn ⊆ Sn+1 such that {T = n} =
{(X0, . . . , Xn) ∈ Bn}. Define a control u by

un(x0, . . . , xn) =

{

1, if (x0, . . . , xn) ∈ Bn,

0, otherwise.

Note that we obtain all controls for starting time 0 in this way and that the controlled
process is given by

X̃n =

{

Xn, n 6 T,

∂, n > T + 1.

20We limit our discussion to the time-homogeneous case. If there is a time dependence in the transi-
tion matrix or in the costs, a reduction to the time-homogeneous case can be achieved as in footnote 3,
specifically, by considering the process X̃n = (k + n, Xn+k).
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Hence, Vn is the infimal cost function for the n-horizon problem, with final cost f , so
satisfies V0(x) = f(x) and, for all n > 0,

Vn+1(x) = min{f(x), (c + PVn)(x)}, x ∈ S.

Moreover, V is the infimal cost function for the infinite-horizon problem, so, if c and f are
non-negative, then V is the minimal non-negative solution to

V (x) = min{f(x), (c + PV )(x)}, x ∈ S.

The V∗ problem corresponds to a type of restriction on controls which we have not seen
before. However the argument of Proposition 2.1 can be adapted to show that V∗ also
satisfies the optimality equation

V∗(x) = min{f(x), (c + PV∗)(x)}, x ∈ S.

Example. Consider a simple symmetric random walk on the integers with continuation
cost c(x) = 0 and stopping cost f(x) = 1 + e−x. Since f is convex, specifically since
f(x) 6

1
2
f(x + 1) + 1

2
f(x − 1) for all x, a simple inductive argument21 using the finite-

horizon optimality equations shows that Vn = f for all n. Since (Xn)n>0 is recurrent, the
stopping time Tn = inf{n > 0 : Xn = N} is finite for all N , for every starting point x.
So V∗(x) 6 V Tn(x) = 1 + e−N . Obviously, V∗(x) > 1, so V∗(x) = 1 for all x. Finally,
V = V ∞ = 0. We note that infn Vn(x) > V∗(x) > V (x) for all x.

Proposition 7.1 (One step look ahead rule). Suppose that (Xn)n>0 cannot escape from

the set

S0 = {x ∈ S : f(x) 6 (c + Pf)(x)}.
Then, for all n > 0, the following stopping time is optimal for the n-horizon problem

Tn = inf{k > 0 : Xk ∈ S0} ∧ n.

Proof. The case n = 0 is trivially true. Suppose inductively that the claim holds for n.
Then Vn = f on S0, so PVn = Pf on S0 as we cannot escape. So, for x ∈ S0,

Vn+1(x) = min{f(x), (c + PVn)(x)} = f(x)

and it is optimal to stop immediately. But, for x 6∈ S0, it is better to wait, if we can. Hence
the claim holds for n + 1 and the induction proceeds.

21An alternative analysis of this example may be based on the optional stopping theorem, which is a
fundamental result of martingale theory. This is introduced in the course Stochastic Financial Models
and in the Part III course Advanced Probability. The random walk is a martingale, so, since f is convex,
(f(Xn))n>0 is a submartingale. By optional stopping, Ex(f(XT )) > Ex(f(X0)) = f(x) for all bounded
stopping times T , so Vn(x) = f(x) for all x. The fact that the conclusion of the optional stopping theorem
does not extend to TN is a well known sort of counterexample in martingale theory.
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Example (Optimal parking). Suppose that you intend to park on the Backs, and wish
to minimize the expected distance you will have to walk to Garrett Hostel Lane, and that
a proportion p of the parking spaces are free. Assume that each parking space is free or
occupied independently, that a queue of cars behind you take up immediately any space
you pass by, and that no new spaces are vacated. Where should you park?

If you reach Garrett Hostel Lane without parking, then you should park in the next
available space. This lies at a random distance (in spaces) D, with P(D = n) = (1 − p)pn,
for n > 0, so the expected distance to walk is E(D) = q/p, where q = 1 − p. Here we have
made the simplifying assumptions that Queen’s Road is infinitely long and that there are
no gaps between the spaces.

Write Vn for the minimal expected distance starting from n spaces before Garrett Hostel
Lane. Then V0 = q/p and, for n > 1, Vn = qVn−1 + p min{n, Vn−1}. Set n∗ = inf{n >

0 : Vn < n}. For n 6 n∗, we have Vn = qVn−1 + pn, so Vn = n + (2qn − 1)q/p. Hence
n∗ = inf{n > 0 : 2qn < 1}. For n > n∗, we have Vn = Vn∗. The optimal time to stop is
thus the first free space no more than n∗ spaces before the Lane. We leave as an exercise
the to express this argument in terms of the general framework described above.
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8 Dynamic optimization for long-run average costs

We show how to optimize the long-run average cost for a time-homogeneous stochastic
controllable dynamical system with bounded instantaneous costs.

Let P be a time-homogeneous stochastic controllable dynamical system with state-space
S and action-space A. Suppose given a bounded cost function c : S × A → R. Define, as
usual, for a control u,

V u
n (x) = E

u
x

n−1
∑

k=0

c(Xk, Uk), x ∈ S,

where Uk = uk(X0, . . . , Xk). A control u is optimal, starting from x, if the limit

λ = lim
n→∞

V u
n (x)

n

exists and if, for all other controls ũ,

lim inf
n→∞

V ũ
n (x)

n
> λ.

The limit λ is then the minimal long-run average cost starting from x.

Proposition 8.1. Suppose there exists a constant λ and a bounded function θ on S such

that

λ + θ(x) 6 (c + Pθ)(x, a), x ∈ S, a ∈ A.

Then, for all controls u, and all x ∈ S,

lim inf
n→∞

V u
n (x)

n
> λ.

Proof. Fix u and set

Mn = θ(Xn) +
n−1
∑

k=0

c(Xk, Uk) − nλ.

Then
Mn+1 − Mn = θ(Xn+1) − θ(Xn) + c(Xn, Un) − λ,

so, for all y ∈ S and a ∈ A,

E
u
x(Mn+1 − Mn|Xn = y, Un = a) = Pθ(y, a) − θ(y) + c(y, a) − λ > 0.

Hence
θ(x) = E

u
x(M0) 6 E

u
x(Mn) = E

u
x(θ(Xn)) − nλ + V u

n (x)

and so
V u

n (x)

n
> λ +

θ(x)

n
− E

u
n(θ(Xn))

n

and we conclude by letting n → ∞.

By a similar argument, which is left as an exercise, one can also prove the following
result.
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Proposition 8.2. Suppose there exists a constant λ and a bounded function θ on S, and

a map u : S → A, such that

λ + θ(x) > (c + Pθ)(x, u(x)), x ∈ S.

Then, for all x ∈ S,

lim sup
n→∞

V u
n (x)

n
6 λ.

By combining the above two results, we see that, if λ and θ satisfy the dynamic opti-

mality equation

λ + θ(x) = inf
a

(c + Pθ)(x, a), x ∈ S,

and if the infimum is achieved at u(x) for each x ∈ S, then λ is the minimal long-run
average cost and u defines an optimal control, for all starting states x. Note that, since
P1 = 1, we can add any constant to θ and still have a solution. So, we are free to impose
the condition θ(x0) = 0 for any given x0 ∈ S when looking for solutions. The function θ
can then be thought of as the (un-normalized) extra cost of starting at x rather than x0.

Example (Consultant’s job selection). Each day a consultant is either free or is occu-
pied with some job, which may be of m different types 1, . . . , m. Whenever he is free, he
is given the opportunity to take on a job for the next day. A job of type x is offered with
probability πx and the types of jobs offered on different days are independent. On any day
when he works on a job of type x, he completes it with probability px, independently for
each day, and on its completion he is paid Rx. Which jobs should he accept?

We take as state-space the set {0, 1, . . . , m}, where 0 corresponds to the consultant
being free and 1, . . . , m correspond to his working on a job of that type. The optimality
equations for this problem are given by

λ + θ(0) =
m
∑

x=1

πx max{θ(0), θ(x)},

λ + θ(x) =(1 − px)θ(x) + px(Rx + θ(0)), x = 1, . . . , m.

Take θ(0) = 0, then θ(x) = Rx − (λ/px) for x = 1, . . . , m, so the optimal λ must solve
λ = G(λ), where

G(λ) =
m
∑

x=1

πx max{0, Rx − (λ/px)}.

Since G is non-increasing, there is a unique solution λ. The optimal control is then to
accept jobs of type x if and only if pxRx > λ.

The optimality equation can be written down simply by reflecting on the details of the
problem. A check on the validity of this process is provided by seeing how this particular
problem can be expressed in terms of the general theory. For this, we take for state 0 the
action-space A0 = {(ε1, . . . , εm) : εx ∈ {0, 1}}. Here the action (ε1, . . . , εm) signifies that
we accept a job of type x if and only if εx = 1. There is no choice to be made in states
1, . . . , m. We take, for x = 1, . . . , m,

P (0, ε)x = πxεx, P (0, ε)0 =
m
∑

x=1

πx(1 − εx), P (x)0 = px, P (x)x = 1 − px,
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and
r(0, ε) = 0, r(x) = pxRx.

The reward function here gives the expected reward in state x, as in the discussion in
footnote 10. We leave as an exercise to see that the general form of the optimality equations
specializes to the particular equations claimed. The complicated form of action-space
reflects the fact that, in this example, we in fact make our choice based on knowledge of
the type of job offered, whereas, in the general theory, the action is chosen without such
knowledge.

The following result provides a value iteration approach to long-run optimality. Recall
that the finite-horizon optimality equations are V0(x) = 0 and, for k > 0,

Vk+1(x) = inf
a

(c + PVk)(x, a), x ∈ S.

Set
λ−

k = inf
x
{Vk+1(x) − Vk(x)}, λ+

k = sup
x
{Vk+1(x) − Vk(x)}.

Proposition 8.3. For all k > 0 and all controls u, we have

lim inf
n→∞

V u
n (x)

n
> λ−

k .

Moreover, if there exists u : S → A such that

Vk+1(x) = (c + PVk)(x, u(x)), x ∈ S,

then

lim sup
n→∞

V u
n (x)

n
6 λ+

k .

Proof. Note that

λ−
k + Vk(x) 6 Vk+1(x) 6 (c + PVk)(x, a), x ∈ S, a ∈ A,

and
λ+

k + Vk(x) > Vk+1(x) = (c + PVk)(x, u(x)), x ∈ S,

and apply the preceding two propositions with θ = Vk.
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9 Full controllability of linear systems

We begin a detailed study of linear controllable dynamical systems by finding criteria for
existence of controls to get from any given state to any other.

Consider the linear controllable dynamical system, with state-space R
d and action-space

R
m, given by

f(x, a) = Ax + Ba, x ∈ R
d, a ∈ R

m.

Here A is a d × d matrix and B is a d × m matrix. We say that f is fully controllable in

n steps22 if, for all x0, x ∈ R
d, there is a control (u0, . . . , un−1) such that xn = x. Here,

(x0, . . . , xn) is the controlled sequence, given by xk+1 = f(xk, uk) for 0 6 k 6 n − 1. We
then seek to minimize the energy

∑n−1
k=0 |uk|2 over the set of such controls.

Proposition 9.1. The system f is fully controllable in n steps if and only if rank(Mn) = d,
where Mn is the d × nm matrix [An−1B, . . . , AB, B]. Set y = x − Anx0 and Gn = MnMT

n .

Then the minimal energy from x0 to x in n steps is yTG−1
n y and this is achieved uniquely

by the control

uT
k = yTG−1

n An−k−1B, 0 6 k 6 n − 1.

Proof. By induction on n > 0 we obtain

xn = Anx0 + An−1Bu0 + · · · + Bun−1 = Anx0 + Mnu, u =







u0
...

un−1






,

from which the first assertion is clear. Fix x0, x ∈ R
d and a control u such that Mnu = y.

Then, by Cauchy–Schwarz,

yTG−1
n y = yTG−1

n Mnu 6 (yTG−1
n MnMT

n G−1
n y)1/2|u|,

so
∑n−1

k=0 |uk|2 = |u|2 > yTG−1
n y, with equality if and only if uT = yTG−1

n Mn.

Note that rank(Mn) is non-decreasing in n and, by Cayley–Hamilton23, is constant for
n > d.

Consider now the continuous-time linear controllable dynamical system

b(x, u) = Ax + Bu, x ∈ R
d, u ∈ R

m.

Given a starting point x0, the controlled process for control (ut)t>0 is given by the solution
of ẋt = b(xt, ut) for t > 0. We say that b is fully controllable in time t if, for all x0, x ∈ R

d,
there exists a control (us)06s6t such that xt = x. We then seek to minimize the energy
∫ t

0
|us|2ds subject to xt = x. Note that

d

dt
(e−Atxt) = e−At(ẋt − Axt) = e−AtBut,

22This notion is also called controllability in accounts where controllable dynamical systems are called
something else.

23This standard result of linear algebra states that a matrix satisfies its own characteristic equation
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so

xt = eAtx0 +

∫ t

0

eA(t−s)Busds.

Consider for t > 0 the d × d matrix

G(t) =

∫ t

0

eAsBBT (eAs)T ds.

Lemma 9.2. For all t > 0, G(t) is invertible if and only if rank(Md) = d.

Proof. If rank(Md) 6 d − 1, then we can find v ∈ R
d \ {0} such that vT AnB = 0 for all

n 6 d− 1, and hence for all n > 0 by Cayley–Hamilton. Then vTeAsB = 0 for all s and so
vT G(t)v = 0 for all t > 0. On the other hand, if rank(Md) = d, then, given v ∈ R

d, there
is a smallest n > 0 such that vT AnB 6= 0. Then |vTeAsB| ∼ |vTAnB|sn/n! as s ↓ 0, so
vT G(t)v > 0 for all t > 0.

Proposition 9.3. The system b is fully controllable in time t if and only if G(t) is invertible.

The minimal energy for a control from x0 to x in time t is yTG(t)−1y, where y = x−eAtx0,

and is achieved uniquely by the control

uT
s = yTG(t)−1eA(t−s)B.

The proof is similar to the proof of the discrete-time result and is left as an exercise.
As the invertibility of G(t) does not depend on the value of t > 0, we speak from now of
simply of full controllability in the case of continuous time linear systems.

Example (Broom balancing). You attempt to balance a broom upside-down by sup-
porting the tip of the stick in your palm. Is this possible?

We can resolve the dynamics in components to reduce to a one-dimensional problem.
Write u for the horizontal distance of the tip from a fixed point of reference, and write
θ for angle made by the stick with the vertical. Suppose that all the mass resides in the
head of the broom, at a distance L from the tip. Newton’s Law gives, for the component
perpendicular to the stick of the acceleration of the head

g sin θ = ü cos θ + Lθ̈.

We investigate the linearized dynamics near the fixed point θ = 0 and u = 0. Replace θ by
εθ and u by εu. Then

gεθ = εü + Lεθ̈ + O(ε2),

so, in terms of x = u + Lθ the linearized system is ẍ = α(x − u), where α = g/L, that is,

d

dt

(

x
ẋ

)

= A

(

x
ẋ

)

+ Bu, A =

(

0 1
α 0

)

, B =

(

0
−α

)

.

Then rank[AB, B] = 2, so the linearized system is fully controllable. This provides evidence
that, when the broom is close to vertical, we can bring by a suitable choice of control from
any initial condition to rest while vertical.
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Example (Satellite in a planar orbit). The following equations of motion describe a
satellite moving in a planar orbit with radial thrust ur and tangential thrust uθ:

r̈ = rθ̇2 − c

r2
+ ur, θ̈ = −2ṙθ̇

r
+

uθ

r
.

For each ρ > 0, there is a solution with θ̇ = ω =
√

c/ρ3. We linearize around this solution,

setting r = ρ + εx, θ̇ = ω + εz, urεu and uθ = εv. After some routine calculations, and
introducing y = ẋ, we obtain the linear controllable dynamical system





ẋ
ẏ
ż



 = A





x
y
z



+ B

(

u
v

)

, A =





0 1 0
3ω2 0 2ωρ
0 −2ω/ρ 0



 , B =





0 0
1 0
0 1/ρ



 .

It is straightforward to check that rank[AB, B] = 3, so the linear system is fully controllable.
On the other hand, if the tangential thrust would fail, so v = 0, we would have to replace
B by its first column B1. We have

B1 =





0
1
0



 , AB1 =





1
0

−2ω/ρ



 , A2B1 =





0
−ω2

0



 ,

so rank[A2B1, AB1, B1] = 2 and the system is not fully controllable. In fact, it is the
angular momentum which cannot be controlled, as

d

dt
(r2θ̇2) = (2ωρ, 0, ρ2)T





ẋ
ẏ
ż



 , (2ωρ, 0, ρ2)T AnB = 0, n > 0.
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10 Linear systems with non-negative quadratic costs

The general theory of dynamic optimization for non-negative costs specializes in a compu-
tationally explicit way in the case of linear systems with quadratic costs.

Consider the linear controllable dynamical system

f(x, a) = Ax + Ba, x ∈ R
d, a ∈ R

m,

with non-negative quadratic cost function

c(x, a) = xT Rx + xT ST a + aT Sx + aT Qa,

where R is a d× d symmetric matrix, S is am m× d matrix and Q is an m×m symmetric
matrix. We assume throughout that Q is positive-definite. We begin with some calculations
regarding partial minimization of quadratic forms. Note that

inf
a

c(x, a) = c(x, Kx) = xT (R − ST Q−1S)x,

where K = −Q−1S. Thus the requirement that c be non-negative imposes the constraint
that R − ST Q−1S is non-negative definite. For a non-negative definite matrix Π, we can
write

c(x, a) + f(x, a)T Πf(x, a) = c̃(x, a) = xT R̃x + xT S̃T a + aT S̃x + aT Q̃a,

where R̃ = R + AT ΠA, S̃ = S + BT ΠA and Q̃ = Q + BT ΠB. Since BT ΠB is non-negative
definite, Q̃ is positive-definite. Hence

inf
a
{c(x, a) + f(x, a)T Πf(x, a)} = c̃(x, K(Π)x) = xT r(Π)x, (3)

where
K(Π) = −Q̃−1S̃, r(Π) = R̃ − S̃T Q̃−1S̃.

Since the left-hand side of equation (3) is non-negative, r(Π) must be non-negative definite.
Fix now a non-negative definite matrix Π0 and consider the n-horizon problem with final
cost c(x) = xT Π0x. Define, as usual, for n > 0,

V u
n (x) =

n−1
∑

k=0

c(xk, uk) + c(xn), Vn(x) = inf
u

V u
n (x),

where x0 = x and xk+1 = Axk + Buk, k > 0. Then (see footnote 12) V0 = c and

Vn+1(x) = inf
a
{c(x, a) + Vn(Ax + Ba)}, n > 0.

Hence we obtain the following result by using equation (3) and an induction on n > 0.

Proposition 10.1. Define (Πn)n>0 by the Riccati recursion

Πn+1 = r(Πn), n > 0.

Then,

Vn(x) = xT Πnx

and the optimal sequence (x0, . . . , xn) is given by

xk = Γn−k . . . Γn−1x0, k = 0, 1, . . . , n,

where Γn = A + BK(Πn) is the gain matrix.
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We turn now to the infinite-horizon case. Define, as usual,

V u(x) =
∞
∑

k=0

c(xk, uk), V (x) = inf
u

V u(x).

Note that, if f is fully controllable, we can choose u so that xk = 0 and uk = 0 for all
k > d, so V (x) < ∞ for all x ∈ R

d.
A matrix A is a (discrete-time) stability matrix if An → 0 as n → ∞. We call f

stabilizable if A + BK is a stability matrix for some K. We use the matrix norm |A| =
sup{|Ax| : |x| = 1}, for which |Ax| 6 |A||x| for all x ∈ R

d, |A| = |AT | and |AB| 6 |A||B|.
Then A is a stability matrix if and only if |A|n 6 Cαn for all n > 0, for some constants
C < ∞ and α ∈ [0, 1).

Example. Suppose

A =

(

2 0
0 1/2

)

, B =

(

1
0

)

.

Then f(x, a) = Ax + Ba is stabilized by K =
(

−2 0
)

, but f is not fully controllable.

Note that, if f is stabilized by K, and we set un = Kxn, then xn = Γnx0, where
Γ = A + BK. Choose C < ∞ and α < 1 such that |Γn| 6 Cαn for all n > 0. Then, for all
x ∈ R

d,

V (x) 6 V u(x) = xT

∞
∑

n=0

(Γn)T QKΓnx 6 C2|QK||x|2/(1 − α2) < ∞,

where

QK =

(

I
K

)T (
R ST

S Q

)(

I
K

)

.

Proposition 10.2. Assume that f is fully controllable or stabilizable. Then the infimal

cost function is given by

V (x) = xT Πx, x ∈ R
d,

where Π is the minimal non-negative definite solution to the equilibrium Riccati equation

Π = r(Π),

and, for K = K(Π), u(x) = Kx defines an optimal control. Moreover, if QK is positive-

definite, in particular, if c is positive-definite, then Γ = A + BK is a stability matrix, Π
is the only non-negative definite solution to Π = r(Π), and, for any non-negative definite

matrix Π0, if we define Πn+1 = r(Πn), for n > 0, then Πn → Π as n → ∞.

Proof. By Proposition 2.1,

V (x) = inf
a
{c(x, a) + V (Ax + Ba)}, x ∈ R

d.

Take Π0 = 0 in the preceding proposition to obtain for the infimal cost function of the
n-horizon problem with no final cost,

xT Πnx = Vn(x) ↑ V∞(x) 6 V (x), x ∈ R
d.
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Since f is fully controllable or stabilizable, V (x) < ∞ for all x ∈ R
d. Hence24 there is a

non-negative definite matrix Π such that V∞(x) = xT Πx for all x. Since r is continuous,
we can let n → ∞ in Πn+1 = r(Πn) to obtain Π = r(Π). Then

V∞(x) = min
a

{c(x, a) + V∞(Ax + Ba)}, x ∈ R
d,

with minimum at a = u(x) = K(Π)x. Then V∞ > V u > V by the argument of Proposition
6.1, so V (x) = xT Πx and u is optimal. For Γ = A + BK, we have

∞
∑

n=0

(Γn)T QKΓn = Π < ∞,

so, if QK is positive-definite, then Γ is a stability matrix.
Consider the n-horizon problem with final cost xT Π̃0x, where Π̃0 is any non-negative

definite matrix. The infimal cost function is Ṽn(x) = xT Π̃nx, where Π̃n+1 = r(Π̃n) for
n > 0. Then

Vn(x) 6 Ṽn(x) 6 V u
n (x) + xT (Γn)T Π̃0Γ

nx.

If r(Π̃0) = Π̃0, then we obtain Π 6 Π̃0, so Π is the minimal non-negative solution. In the
case where QK is positive-definite, for general Π̃0, as n → ∞, the final term tends to 0, so
we obtain

xT Πx 6 lim
n→∞

xT Π̃nx 6 xT Πx, x ∈ R
d,

so Π̃n → Π. In particular Π is the only solution to r(Π) = Π.

24Write e1, . . . , ed for the standard basis in R
d, then Vn(ei ± ej) converges to a finite limit for all i, j,

and so, by polarization, does (Πn)ij = eT
i Πnej . Denote the limit by Πij . Then Π = (Πij) is symmetric

and xT Πnx → xT Πx for all x ∈ R
d.
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11 Certainty-equivalent control

We show that the addition of noise to a linear system with quadratic costs does not change
the optimal control, as a function of state.

Consider the realised stochastic controllable dynamical system (G, (εn)n>1), where

G(x, a, ε) = Ax + Ba + ε, x ∈ R
d, a ∈ R

m,

and where (εn)n>1 are independent R
d-valued random variables, with mean E(ε) = 0 and

variance E(εεT ) = N . Thus the controlled process, for a given starting point X0 = x, is
given by

Xn+1 = AXn + BUn + εn+1

where Un = un(X0, . . . , Xn) is the control. We study the n-horizon problem with non-
negative quadratic instantaneous costs c(x, a) and final cost c(x), as in the preceding sec-
tion. Thus

c(x, a) = xT Rx + xT ST a + aT Sx + aT Qa, c(x) = xT Π0x.

Set

V u
n (x) = E

u
x

(

n−1
∑

k=0

c(Xk, Uk) + c(Xn)

)

, Vn(x) = inf
u

V u
n (x).

Suppose inductively that
Vn(x) = xT Πnx + γn.

This is true for n = 0 if we take γ0 = 0. By a straightforward generalization25 of Proposition
2.1, Vn+1 is given by the optimality equation

Vn+1(x) = inf
a
{c(x, a) + E(Vn(Ax + Ba + ε))}.

We have

E(Vn(Ax + Ba + ε)) = E((Ax + Ba + ε)T Πn(Ax + Ba + ε)) + γn

= (Ax + Ba)T Πn(Ax + Ba) + E(εT Πnε) + γn

and we showed in the preceding section that

inf
a
{c(x, a) + (Ax + Ba)T Πn(Ax + Ba)} = xT r(Πn)x,

with minimizing action a = K(Πn). Also

E(εT Πnε) =
∑

i,j

E(εi(Πn)ijεj) =
∑

i,j

E(Nij(Πn)ij) = trace(NΠn).

So Vn+1(x) = xT Πn+1x + γn+1, where Πn+1 = r(Πn) and γn+1 = γn + trace(NΠn). By
induction, we have proved the following result.

25We have moved out of the setting of a countable state space used in Section 2. For a function F on
S × A, instead of writing PF as a sum, we can use the formula PF (x, a) = E(F (G(x, a, ε))).
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Proposition 11.1. For the linear system

Xn+1 = AXn + BUn + εn+1,

with independent perturbations (εn)n>1, having mean 0 and variance N , and with non-

negative quadratic costs as above, the infimal cost function is given by

Vn(x) = xT Πnx + γn

and the n-horizon optimal control is Uk = K(Πn−1−k)Xk.

This is certainty-equivalent control as the optimal control is the same as for ε = 0.
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12 LQG systems and the Kalman filter

We introduce the LQG model and show how to reduce it to a stochastic controllable
dynamical system using the Kalman filter. The LQG system is the system of equations

Xn+1 = AXn + BUn + εn+1,

Yn+1 = CXn + ηn+1, n > 0.

Here A, B and C are given matrices and the random variables X0,
(

ε1

η1

)

,
(

ε2

η2

)

, . . . are inde-
pendent Gaussians, X0 having mean x and variance Σ0 and, for n > 1, εn and ηn having
mean 0 and

var(εn) = N, cov(εn, ηn) = L, var(ηn) = M.

The state Xn takes values in R
d, the observation Yn takes values in R

p and the control
values Un are in R

m. We complete the model by specifying a control, which is a function
u : (Rp)∗ → R

m, and setting Un = un(Y1, . . . , Yn). We emphasise that what is different now
is that we no longer observe the state, but have to estimate the state value on the basis of
the observations. Set

V u
n (x, Σ0) = E

u
(x,Σ0)

(

n−1
∑

k=0

c(Xk, Uk) + c(Xn)

)

, Vn(x, Σ0) = inf
u

V u
n (x, Σ0).

Lemma 12.1. Let X and Y be jointly Gaussian, with mean 0 and with

var(X) = U, cov(X, Y ) = W, var(Y ) = V,

with V invertible. Set X̂ = WV −1Y and Z = X − X̂. Then Z is independent of Y with

var(Z) = U − WV −1W T .

Proof. Note that Y and Z are jointly Gaussian, so zero covariance will imply independence.
We compute

cov(Z, Y ) = cov(X, Y ) − WV −1 var(Y ) = W − WV −1V = 0

and
var(Z) = cov(Z, X) = var(X) − WV −1 cov(Y, X) = U − WV −1W T .

We now obtain a recursive scheme, called the Kalman filter, which determines for n >

1 the mean and variance of the conditional distribution of Xn, given the observations
Y1, . . . , Yn. Suppose inductively that we can write Xn = X̂n + ∆n, where X̂n is a function

of Y1, . . . , Yn, and where ∆n is independent of Y1, . . . , Yn, with distribution N(0, Σn). This
is true for n = 0, with X̂0 = x. We have

Xn+1 = AX̂n + BUn + ξn+1, ξn+1 = εn+1 + A∆n,

Yn+1 = CX̂n + ζn+1, ζn+1 = ηn+1 + C∆n.
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Note that the innovations ξn+1 and ζn+1 are zero-mean Gaussians and are independent of
Y1, . . . , Yn, with

var(ξn+1) = Ñ = N + AΣnAT , var(ζn+1) = M̃ = M + CΣnCT ,

cov(ξn+1, ζn+1) = L̃ = L + AΣnCT .

Set
Hn+1 = H(Σn) = L̃M̃−1, Σn+1 = σ(Σn) = Ñ − L̃M̃−1L̃T .

By the lemma, ξn+1 = ε̂n+1 + ∆n+1, where

ε̂n+1 = Hn+1ζn+1 = Hn+1(Yn+1 − CX̂n)

and where ∆n+1 is independent of ζn+1, and hence of Y1, . . . , Yn+1, with distribution
N(0, Σn+1). Note that

var(ε̂n+1) = Hn+1 var(ζn+1)H
T
n+1 = L̃M̃−1L̃T = Ñ − Σn+1 = N + AΣnAT − Σn+1.

Now Xn+1 = X̂n+1 + ∆n+1, where

X̂n+1 = AX̂n + BUn + ε̂n+1,

which is a function of Y1, . . . , Yn+1, as required. This establishes the induction.
Note that

E(c(Xk, Uk)) = E(c(X̂k + ∆k, Uk))

= E(∆T
k R∆k) + E(c(X̂k, Uk)) = trace(RΣk) + E(c(X̂k, Uk))

and, similarly,
E(c(Xn)) = trace(Π0Σn) + E(c(X̂n)).

Hence

Vn(x, Σ0) = V̂n(x, Σ0) +
n−1
∑

k=0

trace(RΣk) + trace(Π0Σn),

where V̂n is the infimal cost function of the stochastic controllable dynamical system

X̂n+1 = AX̂n + BUn + ε̂n+1, Σn+1 = σ(Σn),

where (ε̂n)n>1 are independent, and ε̂n+1 has distribution N(0, N̂(Σn)), with

N̂(Σ) = N + AΣAT − σ(Σ).

This system can be treated by a small variation of the method in the preceding section.
In particular, certainty-equivalence holds: the optimal control for the n-horizon problem is
Uk = K(Πn−1−k)X̂k. The product form of this control is remarkable as, given A, B and n,
K(Πn−1−k) depends only on the cost functions, whilst the controllable dynamical system
for X̂k is independent of the costs. This is called the separation principle.
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Example. We investigate from first principles one of the simplest control problems with
noisy observation. We shall follow the same lines as in the general theory and use similar
notation. The system has scalar state and observations and is given by

Xn+1 = Xn + Un, Yn+1 = Xn+1 + ηn+1, n > 0,

where the random variable X0 and ηn, n > 1 are independent, with X0 ∼ N(x, v) and
ηn ∼ N(0, 1), for all n, and where Un = un(Y1, . . . , Yn). We fix a time-horizon n and aim
to choose u to minimize

V u
n (x, v) = E

u
(x,v)

(

n−1
∑

k=0

U2
k + DX2

n

)

.

Consider first the control problem for xk = E(Xk): we seek to minimize
∑n−1

k=0 u2
k +Dx2

n

subject to xk+1 = xk + uk and x0 = x. The minimum is Dx2/(1 + Dn), achieved when
uk = −Dxk/(1 + D(n − k)).

Next, we calculate the Kalman filter. We determine recursively for n > 0 a function
X̂n of Y1, . . . , Yn such that Xn = X̂n + ∆n, with ∆n independent of Y1, . . . , Yn. Write
vn = var(∆n). For n = 0 we can take X̂0 = x and v0 = v. At the nth step, we write

Xn+1 = X̂n + Un + ξn+1, ξn+1 = ∆n,

Yn+1 = X̂n + Un + ζn+1, ζn+1 = ∆n + ηn+1,

where the innovations ξn+1 and ζn+1 are independent of Y1, . . . , Yn. We aim to split

ξn+1 = Hn+1ζn+1 + ∆n+1,

where ∆n+1 is independent of ζn+1 and hence of Y1, . . . , Yn+1. On taking variances in this
equation, we obtain

vn = H2
n+1(vn + 1) + vn+1.

On the other hand, by taking the covariance with ζn+1, we have

vn = Hn+1(vn + 1).

These equations imply that Hn+1 = vn+1 and determine a recursion v−1
n+1 = 1 + v−1

n , so
v−1

n = n + v−1
0 , and so vn = v/(1 + vn).

Now X̂n+1 = X̂n + Un + ε̂n+1, where ε̂n+1 = Hn+1ζn+1, so

var(ε̂n+1) = sn+1 = H2
n+1(1 + vn) =

(

v

1 + (n + 1)v

)2(

1 +
v

1 + nv

)

.

By certainty-equivalence, the optimal control for the n-horizon problem is given by Uk =
−DX̂k/(1 + D(n − k)), so

X̂k+1 =
1 + D(n − k − 1)

1 + D(n − k)
X̂k + ε̂n+1.
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On taking variances, we obtain the recursion

var(X̂k+1) =

(

1 + D(n − k − 1)

1 + D(n − k)

)2

var(X̂k) + sn+1.

Finally, the minimal expected cost is

E
u
(x,v)

(

n−1
∑

k=0

U2
k + DX2

n

)

=

n−1
∑

k=0

D2

(1 + D(n − k))2
var(X̂k) + D var(X̂n) + D var(∆n).
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13 Observability

We introduce the notion of observability for deterministic linear systems.
Consider the system

xn+1 = Axn, yn+1 = Cxn, n > 0.

Here the state x takes values in R
d, the observation y takes values in R

p, and A and C
are matrices of appropriate dimensions. We say that the system is observable in n-steps if
y1, . . . , yn determine uniquely the initial state x0, for all x0 ∈ R

d. It is observable if it is
observable in n-steps for some n > 1. Note that







y1
...

yn






= Nnx0, Nn =











C
CA
...

CAn−1











,

so the system is observable in n-steps if and only if rank(Nn) = d. Hence, by the Cayley–
Hamilton theorem, the system is observable if and only if rank(Nd) = d.

The continuous-time system

ẋt = Axt, ẏt = Cxt, y0 = 0, t > 0

is observable in time t if (ys)06s6t determines uniquely the initial state x0, for all x0 ∈ R
d.

Since
(

d

dt

)n∣
∣

∣

∣

t=0

yt = CAn−1x0, n > 1,

it is clear that, for any t > 0, the condition rank(Nd) = d is sufficient for observability in
time t. On the other hand, if rank(Nd) 6 d − 1, then there exists x0 ∈ R

d \ {0} such that
CAnx0 = 0 for n = 0, 1, . . . , d − 1, and hence for all n by Cayley–Hamilton. Hence

yt =

∫ t

0

CesAx0ds = 0

for all t > 0 and we cannot distinguish x0 from 0. The condition rank(Nd) = d is thus
equivalent to observability (in any time t > 0).

Example (The sum of two populations). Suppose ẋt = λxt, żt = µzt and we observe
yt = xt + zt. Can we determine x0 and z0?. In this case

A =

(

λ 0
0 µ

)

, C =
(

1 0
)

, N2 =

(

1 1
λ µ

)

.

So we can determine x0 and z0, provided λ 6= µ. Even though we are provided with the
extra information x0 + z0, if λ = µ, we will have yt = (x0 + z0)e

λt, so we can never recover
x0 alone.
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Example (Radioactive decay). Suppose atoms of element 1 can decay in two ways, to
atoms of element 2 at rate α and to atoms of element 3 at rate β. Suppose that atoms of
element 2 also decay to atoms of element 3, at rate γ. We observe the number of atoms of
element 3. Can we determine the initial numbers of atoms of elements 1 and 2?

Here we have the system

ẋ1
t = −(α + β)x1

t , x2
t = αx1

t − γx2
t , ẋ3

t = βx1
t + γx2

t ,

so

A =





−α − β 0 0
α −γ 0
β γ 0



 , C =
(

0 0 1
)

, N3 =





C
CA
CA2



 =





0 0 1
β γ 0

αγ − β(α + β) −γ2 0



 .

Note that det N3 = γ(α + β)(γ − β), so the system is observable if γ > 0, α + β > 0 and
β 6= γ. It is easy to see that it is not so otherwise.
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14 The LQG model in equilibrium

We show that full controllability of the (A, B, .)-system, together with observability of the
(A, ., C)-system, is sufficient for the existence of an equilibrium control in the LQG model.
We also discuss the optimal such control.

In Section 9 we showed that the (A, B, .)-system is fully controllable if and only if
rank(Md) = d. Also, by Proposition 10.2, this condition implies that the (A, B, .)-system
is stabilizable, that is, there exists a matrix K such that |A + BK| < 1.

In the previous section we saw that the (A, ., C)-system is observable if and only if
rank(Nd) = d. Now

NT
d =

(

CT CT AT . . . CT (AT )d−1
)

,

so, by comparing with the form of Md, we deduce that observability implies the existence of
a matrix H such that |A−HC| = |AT −CT HT | < 1. We call this last condition asymptotic

observability.
In the remainder of this section, we consider the LQG model

Xn+1 = AXn + BUn + εn+1,

Yn+1 = CXn + ηn+1, n > 0,

as in Section 12, and we assume stability and asymptotic observability, that is, the existence
of K and H such that |A + BK| < 1 and |A − HC| < 1. We assume also that both the
instantaneous costs and the noise are non-degenerate, that is to say, the matrices

(

R S
ST Q

)

,

(

N LT

L M

)

are both positive-definite.

Theorem 14.1. Under the above assumptions, the equations Π = r(Π) and Σ = σ(Σ)
both have unique solutions in the set of non-negative-definite matrices. Set H = H(Σ) and

K = K(Π). Define recursively X̂0 = 0 and

Un = KX̂n, X̂n+1 = AX̂n + BUn + H(Yn+1 − CX̂n), n > 0.

Then the long-run average expected cost is given by

lim
n→∞

1

n
E

n−1
∑

k=0

c(Xk, Uk) = trace(RΣ) + trace(N̂Π),

where N̂ = N + AΣAT − Σ. Moreover our choice of H and K minimizes the long-run

average expected cost.

Outline proof. We showed existence and uniqueness of Π in Proposition 10.2. The existence
and uniqueness of Σ can be deduced by comparing the forms of the equations Π = r(Π)
and Σ = σ(Σ). From Section 12, the minimal long-run average expected cost from ∆ is
trace(RΣ). From Section 11, the minimal long-run average expected cost of the controllable
dynamical system for X̂ is trace(N̂Π), using control K.
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15 The Hamilton–Jacobi–Bellman equation

We begin a study of deterministic continuous-time controllable dynamical systems with a
heuristic derivation of the Hamilton–Jacobi–Bellman equation. Then we prove that any
suitably well-behaved solution of this equation must coincide with the infimal cost function
and that the minimizing action gives an optimal control.

Recall from Subsection 1.3 that a continuous-time controllable dynamical system is a
map

b : R
+ × R

d × A → R
d.

We now assume that the action-space A is a subset of R
p for some p, in examples A is

often simply an interval in R. We assume also that b is continuous, and is differentiable
in x with bounded derivative. A control is a map u : R

+ → A. Given a control u and a
starting time and state (s, x), we define26 the controlled path (xt)t>s as the solution of the
differential equation

ẋt = b(t, xt, ut), t > s, xs = x.

We shall consider two types of optimization problem. In the first type, we fix a stopping set

D ⊆ R
d and a time-horizon T < ∞ and specify continuous and bounded cost functions27

c : [0, T ) × R
d × A → R, C : {T} × D → R.

We say that a control u is feasible, starting from (s, x), if, for the associated controlled
path starting from (s, x), we have xT ∈ D. If there is no such control, then we say (s, x)
is infeasible. In the second type of problem, we also fix a stopping set D ⊆ R

d, which is
the boundary of some open set S ⊆ R

d, but the time of arrival in D is unconstrained. We
specify continuous and bounded cost functions

c : R
+ × S × A → R, C : R

+ × D → R.

We say that a control u is feasible, starting from (s, x), if τ < ∞, where

τ = inf{t > 0 : xt ∈ D}.

In order to give a unified treatment of the two cases, we shall, in the first case, set τ = T
and write S̃ = ([0, T )×R

d) and D̃ = {T}×D. In the the second case, we write S̃ = R
+×S

and D̃ = R
+ × D.

The total cost for a feasible control u, starting from (s, x) ∈ S̃, is defined by

V u(s, x) =

∫ τ

s

c(t, xt, ut)dt + C(τ, xτ ).

The infimal cost function V is defined by

V (s, x) = inf
u

V u(s, x),

26The basic theory of existence and uniqueness for solutions of differential equations is reviewed, and its
application in this setting is explained, in Section 18.

27As usual, any problem of maximizing rewards can be treated as a problem of minimizing negative
costs, so we do not discuss the theory for this sort of problem separately.
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where the infimum is taken over all continuous feasible controls starting from (s, x), and
V (s, x) = ∞ if there are no such controls.

Suppose we start from (t, x) ∈ S̃ and choose action a until a short time later t+ δ, then
switching to an optimal control. Comparing this control with the optimal control from
(t, x), we obtain, up to terms which are small compared to δ,

V (t, x) 6 c(t, x, a)δ + V (t + δ, x + b(t, x, a)δ)

On the other hand, by optimizing the right-hand side over a we might expect to get
arbitrarily close to V (t, x). We expand to first order

V (t + δ, x + b(t, x, a)δ) = V (t, x) + V̇ (t, x)δ + ∇V (t, x)b(t, x, a)δ + O(δ2).

On substituting this in the inequality, rearranging, dividing by δ and letting δ → 0, we
obtain

inf
a
{c(t, x, a) + V̇ (t, x) + ∇V (t, x)b(t, x, a)} = 0, (t, x) ∈ S̃.

This is called the Hamilton–Jacobi–Bellman equation. It is the optimality equation for
continuous-time systems. The final cost C provides a boundary condition V = C on D̃.

Proposition 15.1. Suppose that there exists a function F : S̃ ∪ D̃ → R, differentiable

with continuous derivative, and that, for a given starting point (s, x) ∈ S̃, there exists a

continuous feasible control u∗ such that

c(t, x, a) + Ḟ (t, x) + ∇F (t, x)b(t, x, a) > 0

for all (t, x) ∈ S̃ and a ∈ A, with equality when t ∈ [s, τ ∗) and (x, a) = (x∗
t , u

∗
t ). Suppose

also that F = C on D̃. Then F (s, x) = V (s, x) and u∗ defines an optimal control starting

from (s, x).

Proof. It will suffice to consider the case s = 0. Fix any continuous feasible control u :
R

+ → A and set

mt =

∫ t

0

c(s, xs, us)ds + F (t, xt), 0 6 t 6 τ.

Then m is continuous on [0, τ ] and differentiable on [0, τ), with

ṁt = c(t, xt, ut) + Ḟ (t, xt) + ∇F (t, xt)b(t, xt, ut) > 0,

and with equality if u = u∗. Therefore

F (0, x) = m0 6 mτ =

∫ τ

0

c(s, xs, us)ds + C(τ, xτ ) = V u(0, x),

with equality if u = u∗.

The proposition sets up a possible way to calculate the infimal cost function and to find
an optimal control. One tries to solve the Hamilton–Jacobi–Bellman equation

inf
a
{c(t, x, a) + V̇ (t, x) + ∇V (t, x)b(t, x, a)} = 0, (t, x) ∈ S̃,
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and to identify, for each (t, x) ∈ S̃ a minimizing action u(t, x). Then, given a starting point
(s, x) ∈ S̃, we attempt to solve the differential equation ẋt = bu(t, xt), where bu(t, x) =
b(t, x, u(t, x)) and check that τ < ∞ and xτ ∈ D. The control u∗

t = u(t, xt) then has
(xt)s6t6τ as its controlled process starting from (s, x), so u∗ has the minimizing property
required by the proposition. In this case, we say that the function u defines a feasible control

for starting point (s, x). It is often the case that the minimizing function u(t, x) depends
discontinuously but piecewise continuously on (t, x), and so do the associated controls. It is
not hard to extend the proposition to this case, though we will not give details. In practice,
the main hope to solve the HJB equation is to guess its shape as a function of x, to find
the minimizing action u(t, x) explicitly, and thereby to reduce the problem to a differential
equation in t. These steps are illustrated in the next two examples.

Example (Linear system with quadratic costs). Consider the linear system with
state-space R

d and action-space R
p given by b(x, a) = Ax + Ba, where A and B are

matrices of appropriate dimensions. Take as cost function the non-negative quadratic
function c(x, a) = xT Rx + aT Qa, which we shall assume to vanish only if x = 0 and a = 0.
Suppose the final cost is also quadratic and non-negative, thus C(x) = xT Π(T )x, for some
matrix Π(T ).

As in the discrete-time case, let us try in the HJB equation a solution of the form
V (t, x) = xT Π(t)x, for some non-negative definite matrices Π(t). We have

inf
a
{c(x, a) + V̇ (t, x) + ∇V (t, x)b(x, a)}

= inf
a
{xT (R + ΠA + AT Π + Π̇)x + xT ΠBa + aT BT Πx + aT Qa} = xT (R̃ − S̃T Q−1S̃)x

at a = −Q−1S̃x, where R̃ = R + ΠA + AT Π + Π̇ and S̃ = BtΠ. (See Section 10.) Hence V
is a solution if and only if (Π(t))06t6T satisfies the continuous-time Riccati equation

Π̇ + R + ΠA + AT Π − ΠBQ−1BT Π = 0.

Example (Managing investment income). The following may be considered as a model
for optimizing utility from investment income over a prescribed lifetime T . We seek to
maximize

∫ T

0

e−αs√usds

subject to ẋt = βxt −ut and xt > 0 for all 0 6 t 6 T . Thus α is the personal discount rate,
β is the rate of interest, and

√
u is the utility gained from income at rate u.

The optimality equation is

sup
a
{e−αt

√
a + V̇ (t, x) + (βx − a)V ′(t, x)} = 0, 0 6 t 6 T,

with boundary condition V (T, x) = 0. By scaling, the maximal reward function must have
the form

V (t, x) = e−αt
√

v(t)x

for some function v. By substitution in the optimality equation we obtain v̇−(2α−β)v+1 =
0 with maximizing action a = x/v(t). Hence

v(t) =
1 − e−(2α−β)(T−t)

2α − β
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and the optimal control is ut = xt/v(t).
A short-cut is available for this example using the Cauchy-Schwarz inequality. We have

the constraint

0 = e−βT xT = x0 −
∫ T

0

e−βsusds.

By Cauchy-Schwarz,

∫ T

0

e−αs√usds =

∫ T

0

(e−βsus)
1/2(e−(2α−β)s)1/2ds 6

√
x0

(
∫ T

0

e−(2α−β)sds

)1/2

,

which confirms our calculation of V (0, x0).
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16 Pontryagin’s maximum principle

This is a powerful method for the computation of optimal controls, which has the crucial
advantage that it does not require prior evaluation of the infimal cost function. We describe
the method and illustrate its use in three examples. We also give two derivations of the
principle, one in a special case under impractically strong conditions, and the other, at a
heuristic level only, as an analogue of the method of Lagrange multipliers for constrained
optimization.

We continue with the set-up of the preceding section but assume from now on that b, c
and C are differentiable in t and x with continuous derivatives, and that the stopping set
D is a hyperplane, thus D = {y} + Σ for some y ∈ R

d and some vector subspace Σ of R
d.

Define for λ ∈ R
d the Hamiltonian

H(t, x, u, λ) = λT b(t, x, u) − c(t, x, u).

Pontryagin’s maximum principle states that, if (xt, ut)t6τ is optimal, then there exist adjoint

paths (λt)t6τ in R
d and (µt)t6τ in R with the following properties: for all t 6 τ ,

(i) H(t, xt, u, λt) + µt has maximum value 0, achieved at u = ut,

(ii) λ̇T
t = −λT

t ∇b(t, xt, ut) + ∇c(t, xt, ut),

(iii) µ̇t = −λT
t ḃ(t, xt, ut) + ċ(t, xt, ut),

(iv) ẋt = b(t, xt, ut).

Moreover the following transversality conditions hold28:

(v) (λT
τ + ∇C(τ, xτ ))σ = 0 for all σ ∈ Σ,

and, in the time-unconstrained case,

(vi) µτ + Ċ(τ, xτ ) = 0.

Note that, in the time-unconstrained case, if b, c and C are time-independent, then µt = 0
for all t.

The Hamiltonian serves as a way of remembering the first four statements, which could
be expressed alternatively as

(i) 0 = ∂H/∂u, (ii) λ̇ = −∂H/∂x, (iii) µ̇ = −∂H/∂t, (iv) ẋ = ∂H/∂λ.

Beware that the reformulation of (i) is not always correct, for example in cases where the
set of actions is an interval and where the maximum is achieved at an endpoint.

Example (Bringing a particle to rest in minimal time). Suppose we can apply a
force to a particle, moving on a line, which imparts to it an acceleration a with |a| 6 1
in the chosen units. For a given initial position q0 and velocity p0, how can we bring the
particle to rest at the origin in the shortest time?

28Subject to the avoidance of certain pathological behaviour.
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Take state x = (q, p) and adjoint variable λ = (α, β). The problem is time-independent,
so there is no need to consider µ. We have q̇t = pt and ṗt = ut, with |ut| 6 1. We seek to
minimize τ = inf{t > 0 : qt = pt = 0} =

∫ τ

0
1dt. So take c = 1, C = 0 and D = {(0, 0)}.

The Hamiltonian is
H = αp + βu − 1

so u∗
t = sgn(βt) and αtpt + |βt| = 1. The adjoint equations are

α̇t = −∂H/∂q = 0, β̇t = −∂H/∂p = −αt.

So α is a constant and βt = βτ + αs, where s = τ − t is the time-to-go. Since pτ = 0, we
must have βτ = ±1. There remains the problem of determining the values of α and βτ as
a function of (q0, p0). We do this backwards.

Suppose βτ = 1 and α > 0, then βt > 0 for all t 6 τ , so ut = 1, pt = −s and
qt = s2/2 = p2

t /2. On the other hand, if βτ = 1 and α < 0, then the preceding calculation
applies only for s 6 s0 = 1/|α|; once s > s0, we have βt < 0, so ut = −1, and integrating
the equations of motion back from s0, we get pt = s−2s0 and qt = 2s0s−s2/2−s2

0. Similar
calculations apply for βτ = −1.

Thus we find there is a switching locus given by q = −sgn(p)p2/2. Each initial state
(q0, p0) above the locus lies on a unique parabola q = −p2/2 + c, with c > 0. The optimal
control is initially to take a = −1, thereby moving round the parabola to hit the switching
locus. On hitting the locus, the acceleration acceleration changes sign, bringing the particle
to rest at the origin by moving along the locus.

Example (Monopolist). Miss Prout holds the entire remaining stock of Cambridge el-
derberry wine for the vintage year 1959. If she releases it at rate u, then she realises a unit
price p(u) = 1 − u/2 for 0 6 u 6 2 and p(u) = 0 for u > 2. She holds amount x at time 0.
What is her maximal total discounted return

∫ ∞

0

e−αtutp(ut)dt

and how should she achieve it?
The current stock evolves by ẋt = −ut. Set τ = inf{t > 0 : xt = 0}. Note that the

rewards from any two controls which agree on [0, n] can differ by at most
∫∞

n
e−αtdt =

e−αn/α so it will suffice to find an optimal control among those for which τ < ∞. So let us
restrict now to such controls. We take A = [0,∞), c = −e−αtup(u), C = 0 and D = {0}.
The Hamiltonian is

H = −λu + e−αtup(u),

which is maximized to a positive value at u = 1 − λeαt, provided this is positive, and to 0
at 0 otherwise. The adjoint equation λ̇t = −∂H/∂x = 0 shows that λ is a constant, and
the transversality condition µτ = Ċ = 0 shows that H is maximized to 0 at τ , so uτ = 0,
and so λτ = e−ατ . Now

x =

∫ τ

0

utdt =

∫ τ

0

(1 − e−α(τ−t))dt = τ − (1 − e−ατ )/α.

45



This equation is satisfied by a unique τ ∈ (0,∞), though we cannot solve it explicitly, and
then the optimal control is ut = 1 − e−α(τ−t). Finally, the maximal reward is

V (x) =

∫ ∞

0

e−αtutp(ut)dt =
(1 − e−ατ )2

2α
.

Example (Insect optimization). A colony of insects consists of workers and queens,
numbering wt and qt at time t. If a proportion ut of the workers’ effort at time t is devoted
to producing more workers, then the numbers evolve according to the differential equations

ẇt = autwt − bwt, q̇t = (1 − ut)wt,

where a, b are positive constants, with a > b. How should the workers behave to maximize
the number of queens produced by the end of the season?

Write T for the length of the season and take as state the number of workers. Then
c = −(1 − u)w, C = 0 and D = R. The Hamiltonian is

H = λ(au − b)w + (1 − u)w =

{

(1 − λb)w, if u = 0,

(λa − λb)w, if u = 1.

So ut = 0 if λta < 1 and ut = 1 if λta > 1. The adjoint equations are

λ̇t = −∂H/∂w =

{

λtb − 1, if ut = 0,

−λt(a − b), if ut = 1.

Hence, for small time-to-go s = T − t, we have ut = 0, so λt = (1 − e−bs)/b. We switch to
ut = 1 when a(1 − e−bs)/b = 1, that is, at

s0 =
1

b
log

(

a

a − b

)

.

There is only one switch because λ̇t is always negative. Hence, regardless of the length
of the season, the workers should produce only more workers until there is s0 time to go,
when they should all switch to making queens.

A heuristic derivation of Pontryagin’s maximum principle can be made by analogy
with the method of Lagrange multipliers for constrained optimization problems. Recall
that to maximize f(x) subject to a d-dimensional constraint g(x) = b, one introduces the
Lagrangian

L(x, λ) = f(x) − λT (g(x) − b),

where λ ∈ R
d. For each λ, we seek x(λ) to maximize L(x, λ) and then seek λ so that

g(x(λ)) = b. Then x(λ) is the desired maximizer. Now, suppose we wish to maximize

−
∫ T

0

c(xt, ut)dt − C(xT )
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subject to ẋt = b(xt, ut). We might try to maximize for each path (λt)t6T

L(x, λ) =

∫ T

0

{−c(xt, ut) − λT
t (ẋt − b(xt, ut))}dt − C(xT )

= −λT
T xT + λT

0 x0 +

∫ T

0

{λ̇T
t xt + λT

t b(xt, ut) − c(xt, ut)}dt − C(xT ).

Then to maximize over x we might set

0 = ∂L/∂xt = λ̇T
t + λT

t ∇b(xt, ut) −∇c(xt, ut),

which is the adjoint equation, and, in permitted directions,

0 = ∂L/∂xT = −λT
T −∇C(xT ),

which is the transversality condition.
The following result establishes the validity of Pontryagin’s maximum principle, sub-

ject to the existence of a twice continuously differentiable solution to the Hamilton-Jacobi-
Bellman equation, with well-behaved minimizing actions. These hypotheses are unneces-
sarily strong and are too strong for many applications. A proof of the principle under
weaker hypotheses lies beyond the scope of this course. We assume that the action space
A is an open subset in R

p and that b and the cost functions c and C are continuously
differentiable.

Proposition 16.1. Suppose that there exists a function F : S̃∪D̃ → R, twice differentiable

with continuous derivatives, and a function u : S̃ → A such that

c(t, x, a) + Ḟ (t, x) + ∇F (t, x)b(t, x, a) > 0

for all a ∈ A, with equality when a = u(t, x), for all (t, x) ∈ S̃. Suppose also that F = C on

D̃. Fix a starting point (0, x) and assume that u defines a continuous feasible control and

controlled path (ut, xt)t6τ starting from (0, x). Set µt = −Ḟ (t, xt) and λT
t = −∇F (t, xt),

then

λ̇T
t = −λT

t ∇b(t, xt, ut) + ∇c(t, xt, ut),

µ̇t = −λT
t ḃ(t, xt, ut) + ċ(t, xt, ut),

and, for any σ ∈ Σ, we have

(λT
τ + ∇C)(τ, xτ ))σ = 0,

and, in the time-unconstrained case,

µτ + Ċ(τ, xτ ) = 0.

Proof. Define, for (t, x) ∈ S̃ and a ∈ A,

J(t, x, a) = c(t, x, a) + Ḟ (t, x) + ∇F (t, x)b(t, x, a).
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Then J(t, x, a) > 0 and J(t, x, u(t, x)) = 0 so, since A is open, we have

(∂J/∂a)(t, x, u(t, x)) = 0,

and hence

0 = (∂/∂x)J(t, x, u(t, x)) = ∇J(t, x, u(t, x)), 0 = (∂/∂t)J(t, x, u(t, x)) = J̇(t, x, u(t, x)).

Write a = u(t, x), then

0 = ∇J(t, x, a) = ∇c(t, x, a) + ∇F (t, x)∇b(t, x, a) + {∇Ḟ (t, x) + ∇2F (t, x)b(t, x, a)}

and

0 = J̇(t, x, a) = ċ(t, x, a) + ∇F (t, x)ḃ(t, x, a) + {∇Ḟ (t, x)b(t, x, a) + F̈ (t, x)}.

Hence

λ̇T
t = −∇Ḟ (t, xt) −∇2F (t, xt)b(t, xt, ut)

= ∇c(t, xt, ut) + ∇F (t, xt)∇b(t, xt, ut) = ∇c(t, xt, ut) − λT
t ∇b(t, xt, ut)

and

µ̇t = −F̈ (t, xt) −∇Ḟ (t, xt)b(t, xt, ut)

= ċ(t, x, ut) + ∇F (t, xt)ḃ(t, xt, ut) = ċ(t, x, ut) − λT
t ḃ(t, xt, ut).

On differentiating the equality F = C at (τ, xτ ) in the direction σ , we obtain

(λT
τ + ∇C)(τ, xτ ))σ = 0,

and, in the time-unconstrained case, we can differentiate at (τ, xτ ) in t to obtain

µτ + Ċ(τ, xτ ) = 0.
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17 Continuous-time stochastic systems

The discussion in this section will not be rigorous. A stochastic controllable dynamical
system of jump type is given by a function

q : R
+ × {(x, y) ∈ S × S : x 6= y} × A → R

+.

We assume that the state-space S is countable. We write qxy(t, a) = q(t, x, y, a). For x, y
distinct, qxy(t, a) gives the rate of jumping from x to y when at time t we choose action a.
It is convenient to write

qxx(t, a) = −
∑

y 6=x

qxy(t, a).

We consider Markov controls u : R
+ × S → A and set

qu
xy(t) = qxy(t, u(t, x)).

Then the controlled process (Xt)t>s for control u, starting from (s, xs) satisfies Xs = xs

and, for all t > s and x ∈ S, conditional on Xt = x, as δ ↓ 0,

Xt+δ =

{

x, with probability 1 + qu
xx(t)δ + o(δ),

y, with probability qu
xy(t)δ + o(δ), for all y 6= x.

We consider the same sorts of control problem as in Section 15, where now we take an
expectation in defining the cost functions

V u(s, x) = E
u
(s,x)

(
∫ τ

s

c(Xt, Ut)dt + C(Xτ )

)

, V (s, x) = inf
u

V u(s, x).

We now give a derivation of the optimality equation for V . Suppose we start at (t, x)
and choose action a until time t + δ, then switch to an optimal control. On comparing the
resulting expected total cost with that of an optimal control from the outset, we obtain

V (t, x) 6 c(x, a)δ + E(V (t + δ, Xt+δ)|Xt = x).

Now expand to first order in δ

E(V (t + δ, Xt+δ)|Xt = x) = V (t + δ, x)(1 + qxx(t, a)δ) +
∑

y 6=x

V (t + δ, y)qxy(t, a)δ + o(δ)

= V (t, x) + V̇ (t, x)δ +
∑

y∈S

qxy(t, a)V (t, y)δ + o(δ).

So
0 6 {c(x, a) + V̇ (t, x) + QV (t, x, a)}δ + o(δ),

with equality if a is chosen optimally, where

QV (t, x, a) =
∑

y∈S

qxy(t, a)V (t, y).
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Thus we obtain the optimality equation

inf
a
{c(x, a) + V̇ (t, x) + QV (t, x, a)} = 0

and we expect to find the optimal control as the minimizing action a.
Now we shall give an analogous discussion in the case of a diffusive stochastic control-

lable dynamical system. We specify two functions

σ, b : R
+ × R × A → R.

The function σ2 is the diffusivity and determines the size of the stochastic fluctuations or
noise in the dynamics. The function b is the drift and determines the average velocity.
Given a choice of Markov control u : R

+ × R → A, set σu(t, x) = σ(t, x, u(t, x)) and
bu(t, x) = b(t, x, u(t, x)). The corresponding dynamics can be described infinitesimally29 ,
conditional on Xt = x, by

Xt+δ = x + σu(t, x)∆ + bu(t, x)δ + o(δ),

as δ → 0, where E(∆) = 0 and E(∆2) = δ. We define cost functions V u and V exactly as
in the jump case.

Let us now derive the optimality equation for V . Suppose we start at (t, x) and choose
action a until time t + δ, then switch to an optimal control. On comparing the resulting
expected total cost with that of an optimal control from the outset, we obtain

V (t, x) 6 c(x, a)δ + E (V (t + δ, x + σu(t, x)∆ + bu(t, x)δ + o(δ))) .

We expand to fisrt order in δ

E (V (t + δ, x + σu(t, x)∆ + bu(t, x)δ + o(δ)))

= V (t, x) + V̇ (t, x)δ + V ′(t, x)(b(t, x, a)δ + σ(t, x, a)∆) +
1

2
V ′′(t, x)σ(t, x, a)2∆2 + o(δ).

So
0 6 {c(x, a) + V̇ (t, x) + LV (t, x, a)}δ + o(δ)

with equality if a is chosen optimally, where

LV (t, x, a) =
1

2
σ(t, x, a)2V ′′(t, x) + b(t, x, a)V ′(t, x).

Thus the optimality equation is

inf
a
{c(x, a) + V̇ (t, x) + LV (t, x, a)} = 0

and we expect to find the optimal control as the minimizing action a

29A rigorous formulation rests on the theory of stochastic integration. The infinitesimal formula given
is replaced by the stochastic integral equation

Xt = x +

∫ t

0

σu(s, Xs)dBs +

∫ t

0

bu(s, Xs)ds,

where (Bt)t>0 is a Brownian motion.
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Example (Escape to the boundary). Consider the diffusive controllable dynamical
system in [−1, 1], with constant diffusivity σ2 = 1 and with drift b(t, x, u) = u. Suppose
we wish to minimize

V u(x) =
1

2
E

u
x

(

τ +

∫ τ

0

U2
s ds

)

,

where τ = inf{t > 0 : |Xt| = 1}, x ∈ [−1, 1], and Us = u(Xs). The optimality equation is

inf
u

{

1 + u2

2
+ uV ′(x) +

1

2
σ2V ′′(x)

}

= 0.

The left hand side is minimized to

1

2
(σ2V ′′(x) − V ′(x)2 + 1)

by taking u = −V ′(x). We can solve the differential equation with boundary conditions
V (−1) = V (1) = 0 to obtain

V ′(x) = − tanh λx,

where λ = 1/σ2. It follows easily now that V (x) is increasing in λ, and takes the limiting
values V (x) = 0 as λ → 0 and V (x) = 1 − |x| as λ → ∞. This fits with the intuitively
reasonable idea that noise makes it easier to escape to the boundary.
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18 Existence and uniqueness of solutions for differen-

tial equations

The possibility defining a controlled path (xt)06t6T using a differential equation is assured
by the following result, at least in the case where b and u are continuous. The result does
not form an examinable part of the course.

Proposition 18.1. Let b : [0, T ] × R
d → R

d be continuous and suppose that, for some

K < ∞, for all 0 6 t 6 T ,

|b(t, x) − b(t, y)| 6 K|x − y|, x, y ∈ R
d. (4)

Then, for all x0 ∈ R
d, there is a unique differentiable function (xt)06t6T such that

ẋt = b(t, xt), 0 6 t 6 T.

Proof. Note that, by continuity, C = supt6T |b(t, x0)| < ∞. Set xt(0) = x0 for all t > 0
and define recursively for n > 0

xt(n + 1) = x0 +

∫ t

0

b(s, xs(n))ds, 0 6 t 6 T. (5)

Set fn(t) = sups6t |xs(n) − xs(n − 1)|. Then

f1(t) 6

∫ t

0

|b(s, x0)|ds 6 Ct, t 6 T,

and, for n > 1,

fn+1(t) = sup
s6t

∣

∣

∣

∣

∫ t

0

{b(s, xs(n)) − b(s, xs(n − 1))}ds

∣

∣

∣

∣

6 K

∫ t

0

fn(s)ds.

Then, by induction fn(t) 6 CKn−1tn/n!. Hence,
∑

n fn(T ) < ∞, so the functions x(n)
converge uniformly on [0, T ] to a continuous limit x. We can let n → ∞ in (5) to obtain

xt = x0 +

∫ t

0

b(s, xs)ds, 0 6 t 6 T.

Since the integrand here is continuous, we deduce that x is differentiable in t and satisfies
ẋt = b(t, xt) for all t. Finally, if (yt)t6T also has this property, we can define f(t) =
sups6t |xs − ys|. Then f is bounded, say by B < ∞, so, arguing as above,

f(t) 6 K

∫ t

0

f(s)ds 6 BKn−1tn/n!

for all n and t. Hence xt = yt for all t.

52



We remark that the assumption of continuity in t is unnecessarily strong, especially
if the differential equation is interpreted in its integrated form. In particular, in several
examples we shall wnat to consider the case where b has a discontinuity in t at some time.
The (uniform in t) Lipschitz condition 4 is implied by a uniform bound on the gradient of
b (in x). If it can be seen a priori that any solution stays in a given convex subset U of R

d,
then it is only necessary to establish such a bound on U .

We can apply the proposition to the control problem provided that we assume b is
continuous on [0, T ]× R

d × A and satisfies, for some K < ∞, for all 0 6 t 6 T and a ∈ A,

|b(t, x, a) − b(t, y, a)| 6 K|x − y|, x, y ∈ R
d.

Then, for any continuous control u : [0, T ] → A, the differential equation

ẋt = bu(t, xt), 0 6 t 6 T,

has a unique solution, where bu(t, x) = b(t, x, ut).
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