Advanced Probability 4

7.10 Let μ denote Wiener measure on $W = \{x \in C([0,1], \mathbb{R}) : x_0 = 0\}$. For $a \in \mathbb{R}$, define a new probability measure μ_a on W by

$$d\mu_a/d\mu(x) = \exp(ax_1 - a^2/2).$$

Show that under μ_a the coordinate process remains Gaussian, and identify its distribution. Deduce that $\mu(A) > 0$ for every non-empty open set $A \subseteq W$.

7.11 Let $X = (X_t)_{0 \le t \le 1}$ be a Brownian motion, starting from 0. Denote by μ the law of B on $W = C([0,1],\mathbb{R})$. For each $y \in \mathbb{R}$, set

$$Z_t^y = yt + (X_t - tX_1)$$

and denote by μ^y the law of $Z^y = (Z^y_t)_{0 \le t \le 1}$ on W. Show that, for any bounded measurable function $F: W \to \mathbb{R}$ and for $f(y) = \mu^y(F)$ we have, almost surely,

$$\mathbb{E}(F(X)|X_1) = f(X_1).$$

7.12 Let D be a bounded open set in \mathbb{R}^n and let $h: \bar{D} \to \mathbb{R}$ be a bounded continuous function, harmonic in D. Show that, for all $x \in D$,

$$\inf_{y \in \partial D} h(y) \le h(x) \le \sup_{y \in \partial D} h(y).$$

7.13 (i) Let $(X_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R}^2 , starting from (x,y). Compute the distribution of X_T , where

$$T = \inf\{t \ge 0 : X_t \notin H\}$$

and where H is the upper half plane $\{(x,y): y > 0\}$.

(ii) Show that, for any bounded continuous function $u: \bar{H} \to \mathbb{R}$, harmonic in H, with u(x,0) = f(x) for all $x \in \mathbb{R}$, we have

$$u(x,y) = \int_{\mathbb{R}} f(s) \frac{1}{\pi} \frac{y}{(x-s)^2 + y^2} ds.$$

- (iii) Let D be any open set in \mathbb{R}^2 for which there exists a continuous homeomorphism $g: \bar{H} \to \bar{D}$, which is conformal in H. Show that, if u is harmonic in D, then $u \circ g$ is harmonic in H.
- (iv) Find an explicit integral representation for bounded continuous functions $u: \bar{D} \to \mathbb{R}$, harmonic in D, in terms of their values on the boundary of D.
 - (v) Determine the exit distribution of Brownian motion from D.

8.1 Let (E, \mathcal{E}, K) be a finite measure space and let $g \in L^1(K)$. Let $\tilde{M} = M - \mu$ be a compensated Poisson random measure on $(0, \infty) \times E$, where the compensator μ is determined by $\mu((0, t] \times A) = tK(A)$ for $A \in \mathcal{E}$. Set

$$\tilde{M}_t(g) = \begin{cases} \int_{(0,t] \times E} g(y) \tilde{M}(ds, dy), & \text{if } M((0,t] \times E) < \infty \text{ for all } t \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

Show that $(\tilde{M}_t(g))_{t\geq 0}$ is a cadlag martingale with stationary independent increments. Show further that, for all $t\geq 0$,

$$\mathbb{E}(\tilde{M}_t^2(g)) = t \int_E g(y)^2 K(dy)$$

and

$$\mathbb{E}(e^{iu\tilde{M}_t(g)}) = \exp\left\{t\int_E (e^{iug(y)} - 1 - iug(y))K(dy)\right\}.$$

9.1 Let $(X_t)_{t\geq 0}$ be a Lévy process with characteristic exponent ψ . Show that, for all $u\in\mathbb{R}$, the following process is a martingale

$$M_t^u = \exp\{iuX_t - t\psi(u)\}.$$

9.2 Say that a Lévy process $(X_t)_{t\geq 0}$ satisfies the scaling relation with exponent $\alpha\in(0,\infty)$ if

$$(cX_{c^{-\alpha}t})_{t>0} \sim (X_t)_{t>0}, \quad c \in (0, \infty).$$

For example, Brownian motion satisfies the scaling relation with exponent 2. Find, for each $\alpha \in (0,2)$, a Lévy process having a scaling relation with exponent α .

9.3 Let $(X_t)_{t\geq 0}$ be the Lévy process corresponding to the Lévy triple (a, b, K). Show that, if K consists of finitely many atoms, then $(X_t)_{t\geq 0}$ can be written as a linear combination of a Brownian motion, a uniform drift and finitely many Poisson processes.