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Abstract. The connective constant µ(G) of a graph G is the
asymptotic growth rate of the number of self-avoiding walks on
G from a given starting vertex. We survey three aspects of the
dependence of the connective constant on the underlying graph G.
Firstly, when G is cubic, we study the effect on µ(G) of the Fisher
transformation (that is, the replacement of vertices by triangles).
Secondly, we discuss upper and lower bounds for µ(G) when G is
regular. Thirdly, we present strict inequalities for the connective
constants µ(G) of vertex-transitive graphs G, as G varies. As a
consequence of the last, the connective constant of a Cayley graph
of a finitely generated group decreases strictly when a new relator
is added, and increases strictly when a non-trivial group element
is declared to be a generator. Special prominence is given to open
problems.

1. introduction

A self-avoiding walk (abbreviated to SAW) on a graph G = (V,E)
is a path that visits no vertex more than once. An example of a SAW
on the square lattice is drawn in Figure 1.1. SAWs were first intro-
duced in the chemical theory of polymerization (see Flory [10]), and
their critical behaviour has attracted the abundant attention since of
mathematicians and physicists (see, for example, the book of Madras
and Slade [32] or the lecture notes [4]).

Let σn(v) be the number of n-step SAWs on G starting at the ver-
tex v. The following fundamental theorem of Hammersley asserts the
existence of an asymptotic growth rate for σn(v) as n → ∞. (See the
start of Section 2 for a definition of (quasi-)transitivity.)

Theorem 1.1. [22] Let G = (V,E) be an infinite, connected, quasi-
transitive graph with finite vertex-degrees. There exists µ = µ(G) ∈
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0

Figure 1.1. A SAW from the origin of the square lattice.

[1,∞), called the connective constant of G, such that

(1.1) lim
n→∞

σn(v)1/n = µ, v ∈ V.

We review here recent work from [16, 17, 19] on the dependence of
µ(G) on the choice of graph G.

For what graphs G is µ(G) known exactly? There are a number of
such graphs, which should be regarded as atypical in this regard. We
mention the ladder L, the hexagonal lattice H, and the bridge graph
B∆ with degree ∆ ≥ 2 of Figure 1.2, for which

(1.2) µ(L) = 1
2
(1 +

√
5), µ(H) =

√
2 +
√

2, µ(B∆) =
√

∆− 1.

See [2, p. 184] and [8] for the first two calculations.

Figure 1.2. Three regular graphs: the ladder graph
L, the hexagonal tiling H of the plane, and the bridge
graph B∆ (with ∆ = 4) obtained from Z by joining every
alternate pair of consecutive vertices by ∆ − 1 parallel
edges.

In contrast, the connective constant of the square grid Z2 is unknown,
and a substantial amount of work has been devoted to obtaining good
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bounds. The best rigorous bounds known currently to the authors are
those of [25, 35], namely (to 5 significant figures)

2.6256 ≤ µ(Z2) ≤ 2.6792,

and more precise numerical estimates are available, including the esti-
mate µ ≈ 2.63815 . . . of [24].

We make some remarks about the three graphs of Figure 1.2. There
is a correspondence between the Fibonacci sequence and counts of
SAWs on the ladder graph L, whereby one obtains that µ(L) equals
the golden ratio φ := 1

2
(1 +

√
5). We ask in Section 3 (of the cur-

rent article) whether µ(G) ≥ φ for all simple, cubic, vertex-transitive
graphs. Amongst a certain category of ∆-regular graphs permitted to
possess multiple edges, the bridge graph B∆ is extremal in the sense
that µ(B∆) is smallest. See the discussion of Section 3.

The proof that µ(H) =
√

2 +
√

2 by Duminil-Copin and Smirnov [8]

is a very significant recent result. The value
√

2 +
√

2 emerged in the
physics literature through work of Nienhuis [34] motivated originally by
renormalization group theory. Its proof in [8] is based on the construc-
tion of an observable with some properties of discrete holomorphicity,
complemented by a neat use of the bridge decomposition introduced
by Hammersley and Welsh [23].

It is a beautiful open problem to prove that a random n-step SAW
from the origin of Z2 converges, when suitably re-scaled, to the Schramm–
Loewner curve SLE8/3. This important conjecture has been discussed
and formalized by Lawler, Schramm, and Werner [28].

Question 1. Does a uniformly distributed n-step SAW on Z2 converge,
when suitably rescaled, to the random curve SLE8/3?

There is an important class of results usually referred to as the ‘pat-
tern theorem’. In Kesten’s original paper [27] devoted to Z2, a proper
internal pattern P is defined as a finite SAW with the property that,
for any k ≥ 1, there exists a SAW containing at least k translates of P .
The pattern theorem states that: for a given proper internal pattern
P , there exists a > 0 such that the number of n-step SAWs from the
origin 0, containing no more than an translates of P , is exponentially
smaller than the total σn := σn(0).

The pattern theorem may be used to prove for this bipartite graph
that

lim
n→∞

σn+2

σn
= µ2.

The following stronger statement has been open since Kesten’s paper
[27], see the discussion at [32, p. 244].
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Question 2. Is it the case for SAWs on Z2 that σn+1/σn → µ?

Previous work on SAWs tends to have been focussed on specific
graphs such as the cubic lattices Zd and certain two-dimensional lat-
tices. In contrast, the results of [16, 17, 19], surveyed here, are directed
at large classes of regular graphs, often but not exclusively transitive
graphs. The work reviewed here may be the first systematic study of
SAWs on general vertex-transitive and quasi-transitive graphs.

In Section 2, we describe the Fisher transformation and its effect on
counts of SAWs for cubic (or semi-cubic) graphs. Universal bounds
for the connective constant µ(G) of ∆-regular graphs G are presented
in Section 3. Strict inequalities for µ(G) are presented in Section 4.
The question addressed there is the following: if G is a strict subgraph
of G′, under what conditions on the pair (G,G′) is it the case that
µ(G) < µ(G′)? Two sufficient conditions of an algebraic nature are
presented, with applications (in Section 5) to Cayley graphs of finitely
generated groups.

A number of questions are included in this review. The inclusion of
a question does not of itself imply either difficulty or importance.

Note added at revision. Since this review was written in 2013, the
authors have continued their project with papers [18, 20], which are
directed at the question of ‘locality’ of connective constants: to what
degree is the value of the connective constant of a vertex-transitive
graph determined by knowledge of a large ball centred at a given ver-
tex?

2. The Fisher transformation and the golden mean

This section is devoted to a summary of the effect on µ(G) of the so-
called Fisher transformation. We begin with a discussion of transitivity.

The automorphism group of the graphG = (V,E) is denoted Aut(G),
and the identity automorphism is written ι. A subgroup Γ ⊆ Aut(G)
is said to act transitively on G if, for v, w ∈ V , there exists γ ∈ Γ
with γv = w. It is said to act quasi-transitively if there exists a finite
set W of vertices such that, for v ∈ V , there exist w ∈ W and γ ∈ Γ
with γv = w. The graph is called vertex-transitive (respectively, quasi-
transitive) if Aut(G) acts transitively (respectively, quasi-transitively)
on G.

An automorphism γ is said to fix a vertex v if γv = v. The subgroup
Γ is said to act freely on G (or on the vertex-set V ) if: whenever there
exist γ ∈ Γ and v ∈ V with γv = v, then γ = ι.

Let v be a vertex with degree 3. The Fisher transformation acts at
v by replacing it by a triangle, as illustrated in Figure 2.1. The Fisher
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BC
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BC

v

Figure 2.1. The Fisher triangulation of the star.

transformation has been valuable in the study of the relations between
Ising, dimer, and general vertex models (see [7, 9, 29, 30]), and also in
the calculation of the connective constant of the Archimedean lattice
(3, 122) (see, for example, [14, 21, 26]). The Fisher transformation
may be applied at every vertex of a cubic graph (that is, a graph with
every vertex of degree 3), of which the hexagonal and square/octagon
lattices are examples. We describe next the Fisher transformation in
the context of self-avoiding walks.

A graph G is called simple if it has no multiple edges. Assume
that G = (V,E) is quasi-transitive, connected, and simple. By Theo-
rem 1.1, G has a well-defined connective constant µ = µ(G) satisfying
(1.1). Suppose, in addition, that G is cubic, and write F (G) for the
graph obtained by applying the Fisher transformation at every vertex.
The automorphism group of G induces an automorphism subgroup of
F (G), so that F (G) is quasi-transitive and has a well-defined connec-
tive constant. It is noted in [17], and probably elsewhere also, that the
connective constants of G and F (G) have a simple relationship. This
conclusion, and its iteration, are given in the next theorem, in which
φ := 1

2
(1 +

√
5) denotes the golden mean.

Theorem 2.1. [17, Thm 3.1] Let G be an infinite, quasi-transitive,
connected, cubic graph, and consider the sequence (Gk : k = 0, 1, 2, . . . )
given by G0 = G and Gk+1 = F (Gk).

(a) The connective constants µk := µ(Gk) satisfy µ−1
k = g(µ−1

k+1)
where g(x) = x2 + x3.

(b) The sequence µk converges monotonely to φ, and

−
(

4
7

)k ≤ µ−1
k − φ−1 ≤

[
1
2
(7−

√
5)
]−k

, k ≥ 1.

The idea underlying part (a) is that, at each vertex v visited by a
SAW π on Gk, one may replace that vertex by either of the two paths
around the ‘Fisher triangle’ at v. Some book-keeping is necessary with
this argument, and this is best done via generating functions (2.1).

We turn now to the Fisher transformation in the context of a ‘semi-
cubic’ graph. A graph is called bipartite if its vertices can be coloured
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black or white in such a way that every edge links a black vertex and
a white vertex.

Theorem 2.2. [17, Thm 3.3] Let G be an infinite, connected, bipar-
tite graph with vertex-sets coloured black and white, and suppose the
coloured graph is quasi-transitive, and every black vertex has degree

3. Let G̃ be the graph obtained by applying the Fisher transformation

at each black vertex. The connective constants µ and µ̃ of G and G̃,
respectively, satisfy µ−2 = h(µ̃−1), where h(x) = x3 + x4.

Example 2.3. Theorem 2.2 implies an exact value of a connective
constant that does not appear to have been noted previously. Take G =

H, the hexagonal lattice with connective constant µ =
√

2 +
√

2 ≈
1.84776, see [8]. The ensuing lattice H̃ is illustrated in Figure 2.2, and
its connective constant µ̃ satisfies µ−2 = h(µ̃−1), which may be solved
to obtain µ̃ ≈ 1.75056.

Figure 2.2. The lattice H̃ derived from the hexagonal
lattice H by applying the Fisher transformation at alter-
nate vertices. Its connective constant µ̃ is the root of the
equation x−3 + x−4 = 1/(2 +

√
2).

The proofs of Theorems 2.1–2.2 are based on the generating function
Zv(x) of SAWs defined by

(2.1) Zv(x) =
∑

w∈Σ(v)

x|w|,

where Σ(v) is the set of all finite SAWs starting from a given vertex v,
and |w| is the length of w. Viewed as a power series, Zv(x) has radius
of convergence 1/µ.

The connective constant is altered by application of the Fisher trans-
formation as described in Theorem 2.1(a). Critical exponents, on the
other hand, have values that are not altered. The reader is referred
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to [4, 32] and the references therein for general accounts of critical
exponents for SAWs. The three exponents that have received most
attention in the study of SAWs are as follows.

We consider only the case of SAWs in finite-dimensional spaces, thus
excluding, for example, the hyperbolic space of [33]. Suppose for con-
creteness that there exists a periodic, locally finite embedding of G into
Rd with d ≥ 2, and no such embedding into Rd−1. The case of general
G has not been studied extensively, and most attention has been paid
to the hypercubic lattice Zd.

The exponent γ. It is believed (when d 6= 4) that the generic be-
haviour of σn(v) is given by:

(2.2) σn(v) ∼ Avn
γ−1µn, as n→∞, v ∈ V,

for constants Av > 0 and γ ∈ R. The value of the ‘critical exponent’ γ
is believed to depend on d only, and not further on the choice of graph
G. Furthermore, it is believed (and largely proved, see the account in
[32]) that γ = 1 when d ≥ 4. In the borderline case d = 4, (2.2) should
hold with γ = 1 and subject to the correction factor (log n)1/4.

The exponent η. Let v, w ∈ V , and

Zv,w(x) =
∞∑
n=0

σn(v, w)xk, x > 0,

where σn(v, w) is the number of n-step SAWs with endpoints v, w. It is
known under certain circumstances that the generating functions Zv,w
have radius of convergence µ−1 (see [32, Cor. 3.2.6]), and it is believed
that there exists an exponent η and constants A′v > 0 such that

Zv,w(µ−1) ∼ A′vdG(v, w)−(d−2+η), as dG(v, w)→∞,
where dG(v, w) is the graph-distance between v and w. Furthermore,
η satisfies η = 0 when d ≥ 4.

The exponent ν. Let Σn(v) be the set of n-step SAWs from v, and
write 〈·〉vn for expectation with respect to the uniform measure on Σn(v).
Let ‖π‖ be the graph-distance between the endpoints of a SAW π. It
is believed (when d 6= 4) that there exists an exponent ν and constants
A′′v > 0, such that

〈‖π‖2〉vn ∼ A′′vn
2ν , v ∈ V.

As above, this should hold for d = 4 subject to the inclusion of the
correction factor (log n)1/4. It is believed that ν = 1

2
when d ≥ 4.
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The three exponents γ, η, ν are believed to be related through the
so-called Fisher relation

γ = ν(2− η).

In [17, Sect. 3], reasonable definitions of the three exponents are
presented, none of which depend on the existence of embeddings into
Rd. Furthermore, it is proved that the values of the exponents are
unchanged under the Fisher transformation.

3. Bounds for connective constants

Let G be an infinite, connected, ∆-regular graph. How large or small
can µ(G) be? It is trivial that σn(v) ≤ ∆(∆ − 1)n−1, whence µ(G) ≤
∆ − 1. It is not difficult to prove the strict inequality µ(G) < ∆ − 1
when G is quasi-transitive and contains a cycle (see [16, Thm 4.2]).
Lower bounds are harder to obtain.

Theorem 3.1. [16, Thm 4.1] Let ∆ ≥ 2, and let G be an infinite,
connected, ∆-regular, vertex-transitive graph. Then µ(G) ≥

√
∆− 1 if

either

(a) G is simple, or
(b) G is non-simple and ∆ ≤ 4.

Note that, for the bridge graph B∆ with ∆ ≥ 2, we have the equality
µ(B∆) =

√
∆− 1. Theorem 3.1(a) answers a question of Itai Ben-

jamini.

Question 3. What is the best universal lower bound in case (a) above?
In particular, could it be the case that µ(G) ≥ φ for any infinite, con-
nected, cubic, vertex-transitive, simple graph G?

Question 4. Is it the case that µ(G) ≥
√

∆− 1 in the non-simple case
(b) with ∆ > 4?

Here is an outline of the proof of Theorem 3.1. A SAW is called
forward-extendable if it is the initial segment of some infinite SAW.
Let σF

n(v) be the number of forward-extendable SAWs starting at v.
Theorem 3.1 is proved by showing as follows that

(3.1) σF
2n(v) ≥ (∆− 1)n.

Let π be a (finite) SAW from v, with final endpoint w. For a vertex
x ∈ π satisfying x 6= w, and an edge e /∈ π incident to x, the pair
(x, e) is called π-extendable if there exists an infinite SAW starting at
v whose initial segment traverses π until x, and then traverses e.
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First, it is proved subject to a certain condition Π that, for any
2n-step forward-extendable SAW π, there are at least n(∆ − 2) π-
extendable pairs. Inequality (3.1) may be deduced from this statement.

The second part of the proof is to show that graphs satisfying either
(a) or (b) of the theorem satisfy condition Π. It is fairly simple to show
that (b) suffices, and it may well be reasonable to extend the conclusion
to values of ∆ greater than 4.

The growth rate µF of the number of forward-extendable SAWs has
been studied further by Grimmett, Holroyd, and Peres [15]. They
show that µF = µ for any infinite, connected, quasi-transitive graph,
with further results involving the numbers of backward-extendable and
doubly-extendable SAWs.

4. Strict inequalities for connective constants

4.1. Outline of results. Consider a probabilistic model on a graph
G, such as a percolation or random-cluster model (see [13]). There is a
parameter (perhaps ‘density’ p or ‘temperature’ T ) and a ‘critical point’
(usually written pc or Tc). The numerical value of the critical point
depends on the choice of graph G. It is often important to understand
whether a systematic change in the graph causes a strict change in
the value of the critical point. A general approach to this issue was
presented by Aizenman and Grimmett [1] and developed further in
[6, 11] and [12, Chap. 3]. The purpose of this section is to review work
of [19] directed at the corresponding question for self-avoiding walks.

LetG be a subgraph ofG′, and suppose each graph is quasi-transitive.
It is trivial that µ(G) ≤ µ(G′). Under what conditions does the strict
inequality µ(G) < µ(G′) hold? Two sufficient conditions for the strict
inequality are presented in [19], and are reviewed here. This is followed
in Section 5 with a summary of the consequences for Cayley graphs.

4.2. Quotient graphs. Let G = (V,E) be a vertex-transitive graph.
Let Γ be a subgroup of the automorphism group Aut(G) that acts
transitively, and let A be a normal subgroup of Γ (we shall discuss
the non-normal case later). There are several ways of constructing a
quotient graph G/A, the strongest of which (for our purposes) is given
next. The set of neighbours of a vertex v ∈ V is denoted by ∂v.

We denote by ~G = (V , ~E) the directed quotient graph G/A con-
structed as follows. Let ≈ be the equivalence relation on V given by
v1 ≈ v2 if and only if there exists α ∈ A with αv1 = v2. The vertex-
set V comprises the equivalence classes of (V,≈), that is, the orbits
v := Av as v ranges over V . For v, w ∈ V , we place |∂v ∩ w| directed
edges from v to w (if v = w, these edges are directed loops).
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Example 4.1. As a simple example of a quotient graph, consider the
square lattice G = Z2 and let m ≥ 1. Let Γ be the set of translations
of Z2, and let A be the normal subgroup of Γ generated by the map
that sends each (i, j) to (i + m, j). The quotient graph G/A is the
square lattice ‘wrapped around a cylinder’, with each edge replaced by
two oppositely directed edges.

A second example is presented using the language of Cayley graphs
in Example 5.2.

Since ~G is obtained from G by a process of identification of ver-
tices and edges, it is natural to ask whether µ(~G) < µ(G). Sufficient
conditions for this strict inequality are presented next.

Let L = L(G,A) be the length of the shortest SAW of G with
(distinct) endpoints in the same orbit. Thus, for example, L = 1 if
~G possesses a directed loop. A group is called trivial if it comprises
the identity only.

Theorem 4.2. [19, Thm 3.8] Let Γ act transitively on G, and let A be

a non-trivial, normal subgroup of Γ. The connective constant ~µ = µ(~G)
satisfies ~µ < µ(G) if: either

(a) L 6= 2, or
(b) L = 2 and either of the following holds:

(i) G contains some 2-step SAW v (= w0), w1, w2 (= v′) sat-
isfying v = v′ and |∂v ∩ w1| ≥ 2,

(ii) G contains some SAW v (= w0), w1, w2, . . . , wl (= v′) sat-
isfying v = v′, wi 6= wj for 0 ≤ i < j < l, and furthermore
v′ = αv for some α ∈ A which fixes no wi.

Question 5. In the situation of Theorem 4.2, can one calculate an
explicit ε = ε(G,A) > 0 such that µ(G)− µ(~G) > ε? A partial answer
is provided at [19, Thm 3.11].

We call A symmetric if

|∂v ∩ w| = |∂w ∩ v|, v, w ∈ V.
Consider the special case L = 2 of Theorem 4.2. Condition (i) of
Theorem 4.2(b) holds if A is symmetric, since |∂w∩ v| ≥ 2. Symmetry
of A is implied by unimodularity, but we prefer to avoid the topic of
unimodularity in this review, referring the reader instead to [19, Sect.
3.5] or [31, Sect. 8.2].

Example 4.3. Conditions (i)–(ii) of Theorem 4.2(b) are necessary in
the case L = 2, in the sense illustrated by the following example. Let
G be the infinite cubic tree with a distinguished end ω. Let Γ be the set
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of automorphisms that preserve ω, and let A be the normal subgroup
generated by the interchange of two children of a given vertex v (and the

associated relabelling of their descendants). The graph ~G is isomorphic
to that obtained from Z by replacing each edge by two directed edges
in one direction and one in the reverse direction. It is easily seen that
L = 2, but that neither (i) nor (ii) holds. Indeed, µ(~G) = µ(G) = 2.

The conclusion of Theorem 4.2 is generally invalid under the weaker
assumption that A acts quasi-transitively on G. Consider, for example,
the graph G of Figure 4.1, with A = {ι, ρ} where ρ is reflection in
the horizontal axis. Both G and its quotient graph have connective
constant 1.

Figure 4.1. The pattern is extended infinitely in both directions.

The proof of Theorem 4.2 follows partly the general approach of
Kesten in his pattern theorem, see [27] and [32, Sect. 7.2]. Any n-step

SAW ~π in the directed graph ~G lifts to a SAW π in the larger graph G.
The idea is to show that ‘most’ such ~π contain at least an sub-SAWs
for which the corresponding sub-walks of π may be replaced by SAWs
on G. Different subsets of these sub-SAWs of ~G give rise to different
SAWs on G. The number of such subsets grows exponentially in n, and
this introduces an exponential ‘entropic’ factor in the counts of SAWs.

Unlike Kesten’s proof and its subsequent elaborations by others, our
results apply in the general setting of vertex-transitive graphs, and they
utilize algebraic and combinatorial techniques.

We discuss next the assumption of normality of A in Theorem 4.2.
The (undirected) simple quotient graph G = (V ,E) may be defined
as follows even if A is not a normal subgroup of Γ. As before, the
vertex-set V is the set of orbits of V under A. Two distinct orbits Av,
Aw are declared adjacent in G if there exist v′ ∈ Av and w′ ∈ Aw with
〈v′, w′〉 ∈ E. We write G = GA to emphasize the role of A.

The relationship between the site percolation critical points of G and
GA is the topic of a conjecture of Benjamini and Schramm [5], which
appears to make the additional assumption that A acts freely on V .
The last assumption is stronger than the assumption of unimodularity.



12 GRIMMETT AND LI

We ask for an example in which the non-normal case is essentially
different from the normal case.

Question 6. Let Γ be a subgroup of Aut(G) acting transitively on
G. Can there exist a non-normal subgroup A of Γ such that: (i) the
quotient graph GA is vertex-transitive, and (ii) there exists no normal
subgroup N of some transitively acting Γ′ such that GA is isomorphic
to GN? Might it be relevant to assume that A acts freely on V ?

We return to connective constants with the following question.

Question 7. Is it the case that µ(GA) < µ(G) under the assumption
that A is a non-trivial (not necessarily normal) subgroup of Γ acting
freely on V , such that GA is vertex-transitive?

The proof of Theorem 4.2 may be adapted to give an affirmative
answer to Question 7 subject a certain extra condition on A, see [19,
Thm 3.12]. Namely, it suffices that there exists l ∈ N such that GA
possesses a cycle of length l but G has no cycle of this length.

4.3. Quasi-transitive augmentations. We consider next the sys-
tematic addition of new edges, and the effect thereof on the connective
constant. Let G = (V,E) be an infinite, connected, vertex-transitive,
simple graph. From G, we derive a second graph G′ = (V,E ′) by adding
further edges to E, possibly in parallel to existing edges. We assume
that E is a proper subset of E ′, and introduce next a certain technical
property. Let Γ be a subgroup of Aut(G) that acts transitively.

Definition 4.4. A subgroup A of Γ is said to have the finite coset
property (relative to Γ) with root ρ ∈ V if there exist ν0, ν1, . . . , νs ∈ Γ,
with ν0 = ι and s < ∞, such that V is partitioned as

⋃s
i=0 νiAρ. It is

said simply to have the finite coset property if it has this property with
some root.

This definition is somewhat technical. The principal situation in
which A has the finite coset property arises, as stated in Theorem 4.7,
when A is a normal subgroup of Γ that acts quasi-transitively on G.

Theorem 4.5. [19, Thm 3.2] Let Γ act transitively on G, and let A
be a subgroup of Γ with the finite coset property. If A ⊆ Aut(G′), then
µ(G) < µ(G′).

Example 4.6. Let Z2 be the square lattice, with A the group of its
translations. The triangular lattice T is obtained from Z2 by adding the
edge e = 〈0, (1, 1)〉 together with its images under A, where 0 denotes
the origin. Since A is a normal subgroup of itself with the finite coset
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property, it follows that µ(Z2) < µ(T). This example may be extended
to augmentions by other periodic families of new edges, as explained in
[19, Example 3.4].

Question 8. In the situation of Theorem 4.5, can one calculate ε > 0
such that µ(G′)− µ(G) > ε? (See the related Question 5.)

Two classes of subgroup A with the finite coset property are given
as follows.

Theorem 4.7. [19, Prop. 3.3] Let Γ act transitively on G, and ρ ∈ V .
The subgroup A of Γ has the finite coset property with root ρ if either
of the following holds.

1. A is a normal subgroup of Γ which acts quasi-transitively on G.
2. The index [Γ : A] is finite.

It would be insufficient to assume only quasi-transitivity in Theorem
4.5. Consider, for example, the pair G, G′ of Figure 4.2, each of which
has connective constant 1.

Figure 4.2. The pair G, G′. The graphs are extended
in both directions. Each graph is quasi-transitive with
connective constant 1, and the second is obtained from
the first by a quasi-transitive addition of edges.

By Theorem 4.7(a), µ(G) < µ(G′) if A is a normal subgroup of some
transitive Γ, and A acts quasi-transitively. Can we dispense with the
assumption of normality?

Question 9. Let Γ act transitively on G, and let A be a subgroup of Γ
that acts quasi-transitively on G. If A ⊆ Aut(G′), is it necessarily the
case that µ(G) < µ(G′)?

A positive answer would be implied by an affirmative answer to the
following question. For A ⊆ Γ ⊆ Aut(G), we say that Γ \A acts freely
on V if: whenever γ ∈ Γ and v ∈ V satisfy γv = v, then γ ∈ A.

Question 10. Let G be a vertex-transitive graph, and let A be a sub-
group of Aut(G) that acts quasi-transitively on G. Does there exist (or,
weaker, when does there exist) a subgroup Γ of Aut(G) acting transi-
tively on G such that A ⊆ Γ and Γ \ A acts freely on V ?
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See [19, Prop. 3.6] and the further discussion therein.

5. Connective constants of Cayley graphs

Theorems 4.2–4.5 have the following implications for Cayley graphs.
Let Γ be an infinite group with a finite generator-set S, where S satisfies
S = S−1 and ι /∈ S. Thus, Γ has a presentation as Γ = 〈S | R〉 where
R is a set of relators. The Cayley graph G = G(Γ, S) is defined as
follows. The vertex-set V of G is the set of elements of Γ. Distinct
elements g, h ∈ V are connected by an edge if and only if there exists
s ∈ S such that h = gs. It is easily seen that G is connected and
vertex-transitive, and it is standard that G is unimodular and hence
symmetric. Accounts of Cayley graphs may be found in [3] and [31,
Sect. 3.4].

Let s1s2 · · · sl = ι be a relation. This relation corresponds to the
closed walk (ι, s1, s1s2, . . . , s1s2 · · · sl = ι) of G passing through the
identity ι. Consider now the effect of adding a further relator. Let
t1, t2, . . . , tl ∈ S be such that ρ := t1t2 · · · tl satisfies ρ 6= ι, and write
Γρ = 〈S | R ∪ {ρ}〉. Then Γρ is isomorphic to the quotient group Γ/N
where N is the normal subgroup of Γ generated by ρ.

Theorem 5.1. [19, Corollaries 4.1, 4.3] Let G = G(Γ, S) be the Cayley
graph of the infinite, finitely generated group Γ = 〈S | R〉.

(a) Let Gρ = G(Γρ, S) be the Cayley graph obtained by adding to R
a further non-trivial relator ρ. Then µ(Gρ) < µ(G).

(b) Let w ∈ Γ satisfy w 6= ι, w /∈ S, and let Gw be the Cayley
graph of the group obtained by adding w (and w−1) to S. Then
µ(G) < µ(Gw).

Example 5.2. The square/octagon lattice, otherwise known as the
Archimedean lattice (4, 82), is the Cayley graph of the group with gen-
erator set S = {s1, s2, s3} and relators

{s2
1, s

2
2, s

2
3, s1s2s1s2, s1s3s2s3s1s3s2s3}.

(See [19, Fig. 3].) Adding the further relator s2s3s2s3, we obtain a
graph isomorphic to the ladder graph of Figure 1.2, whose connective
constant is the golden mean φ := 1

2
(
√

5 + 1).
By Corollary 5.1(a), the connective constant µ of the square/octagon

lattice is strictly greater than φ = 1.618 . . . . The best lower bound
currently known appears to be µ > 1.804 . . . , see [25].

Example 5.3. The square lattice Z2 is the Cayley graph of the abelian
group with S = {a, b} and R = {aba−1b−1}. We add a generator ab
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(and its inverse), thus adding a diagonal to each square of Z2. Theorem
5.1(b) implies the standard inequality µ(Z2) < µ(T) of Example 4.6.
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