
THE RANDOM-CLUSTER MODEL

Geoffrey GrimmettAbstrat. It is well known that percolation, Ising, and Potts models are special
cases of the random-cluster model of Fortuin and Kasteleyn. This paper is an account

of the basic properties of this model. Of primary interest is the study of the associated

phase transitions. A version of the random-cluster model was discovered by Peter
Whittle in his study of the mathematics of polymerization.

1. Introduction

The Ising model [30] is a standard mathematical model for ferromagnetism; it
exhibits a phase transition and an interesting range of critical phenomena. Whereas
the Ising model permits only two possible spins at each site, the Ashkin–Teller and
Potts models allow a general number of spin values ([5, 43]). In the late 1960s,
Piet Kasteleyn observed that certain observables of electrical networks, percolation
processes, and Ising models have features in common, namely versions of the series
and parallel laws. In an investigation pursued jointly with Kees Fortuin, he came
upon a one-parameter class of measures which includes in its ranks the percolation,
Ising, and Potts models, together with (in a certain limit) electrical networks. This
class is simple to describe and has rich structure; it is the class of random-cluster

models.

Unlike its more classical counterparts in statistical physics, the random-cluster
model is a process which lives on the edges of a graph rather than on its vertices.
It is a random graph whose structure provides information concerning the nature
of the phase transition in physical systems. Not only does the model incorporate
a unifying description of physical models, but also it provides a natural setting for
certain techniques of value ([3, 7, 9, 23, 36, 45]). The present paper has as purpose
to present a compact account of some of the basic properties of random-cluster
measures.

We start with a finite graph G = (V, E), and let p and q be real parameters
satisfying 0 ≤ p ≤ 1 and q > 0. The set of realizations of a random-cluster process
on G is the space ΩE = {0, 1}E of ‘edge-configurations’. A typical realization is a
vector ω = (ω(e) : e ∈ E) of 0’s and 1’s. Instead of working with such a vector ω, it
is often convenient to work with the set η(ω) = {e ∈ E : ω(e) = 1} of ‘open’ edges.
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On ΩE , we define the random-cluster measure φp,q by

(1.1) φp,q(ω) =
1

Zp,q

{

∏

e∈E

pω(e)(1 − p)1−ω(e)

}

qk(ω), ω ∈ ΩE ,

where

(1.2) Zp,q =
∑

ω∈ΩE

{

∏

e∈E

pω(e)(1 − p)1−ω(e)

}

qk(ω)

is the normalizing factor (or ‘partition function’) and k(ω) is the number of compo-
nents of the graph (V, η(ω)). In the special case when q = 1, the edge-variables ω(e)
are independent. For more general values of q, the measure φp,q is obtained from
product measure by the inclusion of a ‘Radon–Nikodym derivative’ that weights the
probability of any given configuration according to the number of its components.

The main physical importance of random-cluster measures lies in their relation-
ship with Potts models. We do not explore this here, choosing instead to concentrate
on random-cluster measures per se. For details of the physical motivation, see [3,
16, 26]. Random-cluster measures have been considered independently by Peter
Whittle [46] in his work on polymerization. Peter’s ‘first-shell model’ is intimately
related to the measure φp,q on the complete graph with n vertices, where p = λ/n
for some fixed positive λ. The consequent process, in the limit as n → ∞, exhibits
a phase transition which models the sol–gel transition of polymers. (See Section 6
and [12] for another treatment of this process.)

This paper is organized as follows. The next section contains statements of two
fundamental properties of random-cluster measures, namely the FKG inequality
and the comparison inequalities. In Section 3, we turn to the general notion of
random-cluster measures on the infinite hypercubic lattice Z

d; incorporated here
is an account of the thermodynamic limit and of the uniqueness of random-cluster
measures. Section 4 contains results about the phase transition in a general number
of dimensions, and Section 5 contains corresponding material in two dimensions.
Then there are sections about the mean-field theory, and about the history of
random-cluster processes; the latter account is based on information kindly fur-
nished to the present author by Piet Kasteleyn. Proofs are omitted throughout;
further details may be found in [3, 25, 26].

This is not the first general account of the area. Much of the basic methodology
was published first in the remarkable series of papers of Fortuin and Kasteleyn [18,
19, 20, 21, 22, 31]. Aizenman et al. [3] have provided a useful modern account of
some of this material.

2. Useful inequalities

One of the most valuable properties of random-cluster measures is the FKG inequal-
ity, which is satisfied (in general) if and only if q ≥ 1. This inequality has many
applications. There appears to have been no serious study of the case 0 < q < 1,
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presumably because the FKG inequality does not hold in this regime. Before stating
the FKG inequality, we require some further notation.

There is a partial order on ΩE given by ω ≤ w′ if and only if ω(e) ≤ ω′(e)
for all e ∈ E. A function f : ΩE → R is called increasing if f(ω) ≤ f(ω′)
whenever ω ≤ ω′; f is decreasing if −f is increasing. An event F (⊆ ΩE) is
called increasing (respectively decreasing) if its indicator function IF is increasing
(respectively decreasing). Finally, we write Ep,q for expectation with respect to
φp,q.

Theorem 2.1 (FKG inequality). Suppose that q ≥ 1. If f and g are increasing
functions on ΩE , then

(2.1) Ep,q(fg) ≥ Ep,q(f)Ep,q(g) .

Replacing f and g by −f and −g, we deduce that (2.1) holds for decreasing f
and g, also. Specializing to indicator functions, we obtain that

(2.2) φp,q(A ∩ B) ≥ φp,q(A)φp,q(B) for increasing events A, B,

whenever q ≥ 1. It is not difficult to see that the FKG inequality does not generally
hold when 0 < q < 1.

A second valuable property of random-cluster measures is the pair of ‘comparison
inequalities’, as follows. Given two mass functions µ1 and µ2 on ΩE , we say that
µ2 dominates µ1, and write µ1 ≤ µ2, if

∑

ω∈ΩE

f(ω)µ1(ω) ≤
∑

ω∈ΩE

f(ω)µ2(ω)

for all increasing functions f : ΩE → R. One may establish certain domination
inequalities involving the measures φp,q for different values of the parameters p and
q.

Theorem 2.2 (Comparison inequalities). It is the case that

φp′,q′ ≤ φp,q if q′ ≥ q, q′ ≥ 1, p′ ≤ p,(2.3)

φp′,q′ ≥ φp,q if q′ ≥ q, q′ ≥ 1,
p′

q′(1 − p′)
≥ p

q(1 − p)
.(2.4)

3. Infinite graphs and the thermodynamic limit

In studying random-cluster measures on lattices, we restrict ourselves to the case of
the hypercubic lattice in d dimensions, where d ≥ 2; similar observations are valid
in greater generality. Let d ≥ 2, and let Z

d be the set of all d-vectors of integers; if
x ∈ Z

d, we normally write x = (x1, x2, . . . , xd). For x, y ∈ Z
d, let

‖x − y‖ =
d

∑

i=1

|xi − yi| .
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We place an edge 〈x, y〉 between x and y if and only if ‖x− y‖ = 1; the set of such
edges is denoted by E

d, and we write L
d = (Zd, Ed) for the ensuing lattice. For any

subset S of Z
d, we write ∂S for its boundary, i.e.,

∂S = {s ∈ S : 〈s, t〉 ∈ E
d for some t 6∈ S} .

Let Ω = {0, 1}E
d

be the set of ‘edge-configurations’ of L
d, and let F be the σ-field

of subsets of Ω generated by the finite-dimensional cylinders. Following the general
definition of a Gibbs state introduced by Dobrushin [15] and Lanford and Ruelle
[38], we now define a random-cluster measure as follows. A probability measure φ
on (Ω,F) is called a random-cluster measure if it has the property that, conditional
on the states of edges lying outside any given finite set E (⊆ E

d), the distribution of
the states of edges within E satisfies (1.1) with the appropriate boundary condition
specifying which endpoints of edges in E are joined by edges outside E. In order
to achieve a more precise definition, we introduce further notation. Any subset
E of E

d generates a graph G(E) = (V (E), E) having edge-set E and vertex-set
V (E) the set of all endvertices of members of E. For ω ∈ Ω, we denote by ωE

the cylinder event {ν ∈ Ω : ν(e) = ω(e) for all e ∈ E}. Let ω ∈ Ω, and define the

equivalence relation
ω−→ on V (E) given by u

ω−→v if and only if u and v are in the
same component of the graph (Zd, η(ω) \E). A probability measure φ on (Ω,F) is
called a random-cluster measure (with parameters p and q) if, for all finite subsets
E of E

d, we have that

(3.1) φ(ωE | ωE) = φE,ω(ξ) φ-a.s.,

where φE,ω is the random-cluster measure given in (1.1) on the graph obtained

from G(E) by identifying any pair u, v of vertices satisfying u
ω−→v, and where

ξ = (ω(e) : e ∈ E), (and E is the complement of E). We write Rp,q for the class of
random-cluster measures on (Ω,F) with parameters p and q.

We turn now to the thermodynamic limit. Let Λ be a finite box of L
d, which is

to say that

Λ =

d
∏

i=1

[xi, yi]

for some x, y ∈ Z
d; we interpret [xi, yi] as the set {xi, xi + 1, . . . , yi}. The set

Λ generates a subgraph of L
d having vertex set Λ and edge set EΛ containing all

〈x, y〉 with x, y ∈ Λ. We are interested in the limit (as Λ ↑ Z
d) of the random-

cluster measure on the finite box Λ. Two such limits are relevant to the question
of phase transition, depending on the ‘boundary conditions’. Let Ω1

Λ be the subset

of Ω = {0, 1}E
d

containing all ω ∈ Ω for which ω(e) = 1 for e 6∈ EΛ; similarly define
Ω0

Λ as the subset of Ω containing all ω with ω(e) = 0 for e 6∈ EΛ. One speaks
of configurations in Ω1

Λ as having ‘wired’ boundary conditions, and configurations
in Ω0

Λ as having ‘free’ boundary conditions. We now define two random-cluster
measures. Let 0 ≤ p ≤ 1 and q > 0. For b = 0, 1, define

(3.2) φb
Λ,p,q(ω) =

1

Zb
Λ

{

∏

e∈EΛ

pω(e)(1 − p)1−ω(e)

}

qk(ω,Λ), ω ∈ Ωb
Λ ,
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where k(ω, Λ) is the number of components of ω which intersect Λ, and

(3.3) Zb
Λ =

∑

ω∈Ωb
Λ

{

∏

e∈EΛ

pω(e)(1 − p)1−ω(e)

}

qk(ω,Λ)

is the appropriate normalizing constant.

Theorem 3.1. Thermodynamic limit. Suppose q ≥ 1. The weak limits

(3.4) φb
p,q = lim

Λ↑Zd
φb

Λ,p,q, for b = 0, 1,

exist and satisfy φ0
p,q ≤ φ1

p,q . Furthermore φ0
p,q, φ

1
p,q ∈ Rp,q.

The limits in (3.4) are to be interpreted along any increasing sequence of finite
boxes, and the weak convergence is in the sense that φb

Λ,p,q(A) → φb
p,q(A) for all

finite-dimensional cylinders A. The assumption that q ≥ 1 is necessary for the
proof, which relies on the validity of the FKG inequality.

One may discuss other boundary conditions, ‘mixed’ conditions which are more
complicated than either wired or free; it is easy to see by the FKG inequality that
φ0

p,q and φ1
p,q are the most ‘extreme’ measures obtainable in the infinite-volume

limit. In particular we have (by applying the FKG inequality to (3.1) and passing
to the limit as E ↑ E

d) that

(3.5) φ0
p,q ≤ φ ≤ φ1

p,q for all φ ∈ Rp,q;

therefore there is a unique random-cluster measure if and only if φ0
p,q = φ1

p,q.

An indicator of phase transition in the Potts model is its ‘magnetization’. The
corresponding macroscopic quantity for the random-cluster process is the percola-

tion probability defined as

(3.6) θ(p, q) = lim
Λ↑Zd

θΛ(p, q),

where θΛ(p, q) = φ1
Λ(0 ↔ ∂Λ) is the φ1

Λ–probability of an open path from the origin
to a vertex of ∂Λ. The limit exists in (3.6) if q ≥ 1 (see [3, p. 22]). We have that
θ(p, q) = φ1(0 ↔ ∞), the φ1–probability that the origin is in an infinite cluster; in
the case q = 1, this coincides with the ‘percolation probability’ of the percolation
model (see [24]). Using the comparison inequality (2.3), θ(p, q) is a non-decreasing
function of p, and we may therefore define the critical value

(3.7) pc(q) = sup{p : θ(p, q) = 0}, for q ≥ 1.

In defining the critical point, one might have used the measure φ0 in place of φ1, and
the corresponding macroscopic quantity θ0(p, q) = φ0(0 ↔ ∞); it is a consequence
of the forthcoming Theorem 4.2 that the value of pc(q) would be unchanged by
doing this.
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4. General results in d dimensions

It would be unreasonable to expect exact calculations of quantities such as pc(q)
for general dimensions d, although some such results may be aspired to when d = 2
(see the next section). Instead one may seek to understand the nature of the
phase transition in more general terms. There is a bulk of information available
for certain special values of q, but the overall picture is exceedingly patchy. The
case q = 1 is, of course, special; in this case of percolation, edges are present or
absent independently of each other, and this aids the analysis substantially. It is
less evident why integer values of q (and particularly the case q = 2) present more
tractable problems than non-integral values, but this is indeed the case. The case
of the Ising model (q = 2) has been much studied (see, for example, [1, 17]), and so
has the Potts model. Also, the contour method of Pirogov and Sinai [41, 42] may
be applied elegantly to random-cluster models, yielding a wealth of results valid for
all sufficiently large real q ([36]).

The class Rp,q of random-cluster measures has a subclass Tp,q of translation-
invariant measures. Measures in this subclass conform to the principle of the
uniqueness of the infinite cluster, a property of some importance in their study.

Theorem 4.1. Let 0 ≤ p ≤ 1, q > 0, and let N = N(ω) be the number of infinite
clusters of the graph (Zd, η(ω)).

(a) We have that φ
(

N ∈ {0, 1}
)

= 1 for φ ∈ Tp,q.

(b) Suppose that q ≥ 1. The measures φ0
p,q and φ1

p,q are translation-invariant and
ergodic, and therefore, for b = 0, 1,

either φb
p,q(N = 0) = 1 or φb

p,q(N = 1) = 1.

Next we discuss results concerning the uniqueness of translation-invariant mea-
sures, and to this end we introduce the notion of free energy. Let 0 < p < 1,
and define the (finite-box) partition function Zb

Λ by (3.3), for boundary conditions
b = 0, 1. Rather than working with Zb

Λ, we work instead with

(4.1) Y b
Λ = (1 − p)−|EΛ|Zb

Λ =
∑

ω∈Ωb
Λ

qk(ω,Λ) exp
{

π|η(ω) ∩ EΛ|
}

where π = log{p/(1 − p)}. The free energy f(p, q) of the corresponding measure is
defined as the following limit, which is independent of the boundary condition:

f(p, q) = lim
Λ↑Zd

{

1

|EΛ|
log Y b

Λ

}

, b = 0, 1.

It is easily seen that f(p, q) is a convex function of π = log{p/(1 − p)} for π ∈ R,
and therefore f is differentiable with respect to p except on some countable set Π
of p-values. As a consequence of this, one obtains a partial conclusion concerning
the uniqueness of random-cluster measures.
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Theorem 4.2. Fix q ≥ 1 and let 0 < p < 1. The following three statements are
equivalent.

(a) The free energy f(p, q) is differentiable at p.

(b) The edge-density h(p) = φ1
p,q

(

ω(e) = 1
)

is continuous at p.

(c) There exists a unique random-cluster measure with parameters p and q.

Note that h(p) is monotonic non-decreasing. See [25] for proofs of the above
theorems.

There is incomplete information about the countable set Π of points of non-
differentiability of the free energy. It is thought to be the case that Π is the empty
set for sufficiently small q (≥ 1), and otherwise is a singleton set containing the
critical point pc(q) only. Proofs of this have been given in special cases ([29, 37,
36, 39]), particularly for d = 2 and q ≥ 4, and for d ≥ 2 and sufficiently large q. A
useful general conclusion is that of [3, p. 37], which states that

(4.2) φ0 = φ1, and hence |Rp,q| = 1, whenever θ(p, q) = 0.

During the 1980s was published a striking series of papers in which the Pirogov–
Sinai theory of contours [41, 42] was applied to Potts models. In the culminating
paper [36], it was shown that Pirogov–Sinai theory may be applied succinctly to
the random-cluster process in a general number d of dimensions (d ≥ 2). As a
consequence, one obtains many conclusions of value so long as q is sufficiently

large. That is to say, there exists q0(d) such that for following holds, for q ≥ q0(d).

(i) Discontinuity of the percolation probability : θ1(p, q) is discontinuous at p = pc(q).

(ii) Exponential decay and the mass gap: Let τp,q(x, y) be the φ1
p,q–probability of a

path joining the vertices x and y, and denote by en the vertex (n, 0, 0, . . . , 0). The
correlation length ξ(p, q), defined by

(4.3) ξ(p, q)−1 = lim
n→∞

{

− 1

n
log τp,q(0, en)

}

,

exists and satisfies 0 < ξ(p) < ∞ for 0 < p < pc(q). Furthermore there is a ‘mass
gap’ in the sense that limp↑pc(q) ξ(p, q)−1 is strictly positive.

It is expected that the phase transition is second-order for small q, and first-order
for large q. More specifically, it is thought that there exists a number Q(d) such
that

θ1(p, q) is

{

continuous at pc(q) if q < Q(d)

discontinuous at pc(q) if q > Q(d).

Furthermore, it is conjectured that

Q(d) =

{

4 if d = 2

2 if d ≥ 6.

Much is known about percolation and the Ising model (see [1, 4, 17, 24] for
example), and consequently about the random-cluster process when q = 1, 2. For
example, the correlation length ξ(p, q), defined in (4.3), is strictly positive and finite
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when p < pc(q) and q = 1, 2. (However, is it finite when q = 3
2 , say?) There are

surprising gaps of knowledge. For example, it is an open problem to prove that
θ(p, 1) is continuous at p = pc(1). This has been proved by special arguments when
d = 2 (see [24]) and for large d (see [28]), but there is no proof known which is valid
for general d (see [6, 27] for the latest results).

5. The case of two dimensions

Consider the random-cluster process on the two-dimensional lattice L
2 = (Z2, E2),

with parameters p and q satisfying q ≥ 1. There exists the following remarkable
conjecture.

Conjecture 5.1. The critical value pc(q) in two dimensions is given by

(5.1) pc(q) =

√
q

1 +
√

q
for q ≥ 1 .

This conjecture has been validated when q = 1 by Kesten [32] in his famous
proof that the critical probability of bond percolation on L

2 is 1
2
. For q = 2,

the value of pc(2) given in (5.1) agrees with the celebrated calculation by Onsager
[40] of the critical temperature of the Ising model on Z

2. The transfer-matrix
approach developed by Onsager and others leads to an exact formula for the free
energy f(p, 2). Such a formula is only part of the complete verification of the above
conjecture in this case; a fuller proof may be achieved using the results of [2, 13].

The formula for pc(q) has been established rigorously in [37, 36] for sufficiently
large (real) values of q. In [37], a theory of ‘contours’ developed by Pirogov and
Sinai (see [41, 42]) was used to prove the corresponding result for Potts models and
large integral q; this proof exploits the self-duality of L

2, and may be rewritten
more neatly in terms of random-cluster measures. See also [35]. The extension to
general dimensions d was proved in [36], as discussed in the previous section.

Further results for Potts models have been obtained by Hintermann, Kunz, and
Wu [29]. By studying the zeros of the free energy, they provided arguments for
identifying the value of pc(q) for integers q satisfying q ≥ 4, and in addition obtain-
ing the exponential decay of correlation functions in the high-temperature phase
(i.e., p < pc(q)). It seems possible that the arguments of [29] may be generalized
in a rigorous manner to real values of q satisfying q ≥ 4. The first step is to map
the random-cluster process on to an ice-type model; this has been done already by
Baxter (see [7, 8]).

It is the self-duality of L
2 that leads to the proposed exact formula (5.1) for pc(q);

similar formulae may be proposed for an inhomogeneous square lattice (where the
value of p may differ for horizontal and vertical edges) and for triangular and
hexagonal lattices (making use of the star-triangle transformation). Recall that the
dual Gd of a planar graph G is obtained by placing a vertex in each face of G, and
by joining two such vertices by an edge whenever the two corresponding faces of G
have a boundary edge in common. (If G is finite, its dual graph possesses a vertex
in the infinite face of G as well as vertices in its finite faces.) It is easy to see that
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the dual of L
2 is isomorphic to L

2. What is the effect of graphical duality on the
random-cluster measure?

Using graphical duality (see [14, 25, 45]), one finds that the random-cluster
measure φ0

p,q is dual in a certain way to the measure φ1
p′,q, where

(5.2)
p′

1 − p′
=

q(1 − p)

p
.

As a consequence, the complement of a random-cluster process on L
2 is itself a

random-cluster process, but with different parameters and boundary conditions.

The formula for pc(q) is now obtainable via a crude and non-rigorous argument.
We may accept the following picture. If p < pc(q), then all components of the
process are finite, and they are islands which float in an infinite open ocean of the
dual lattice. Similarly, if p > pc(q), then there is an infinite component of the
process which constrains the components of the dual process to be finite. If such a
picture is valid, then

(5.3) p < pc(q) if and only if p′ > pc(q),

where p′ is given by (5.2). It would follow that pc(q) is the fixed point of the
mapping given in (5.2), so that

pc(q)

1 − pc(q)
=

q(1 − pc(q))

pc(q)
,

implying that pc(q) =
√

q/(1 +
√

q) for q ≥ 1.

The above crude argument may be improved in places, but the conjecture re-
mains unproved. Using Theorem 4.2 and an argument of Zhang (see [24, p. 195]),
one may obtain that pc(q) ≥ √

q/(1 +
√

q), and it remains to prove the reversed
inequality. Inequalities of such type have been explored further by Welsh [45], using
‘sponge’ arguments. The method of graphical duality yields in conjunction with
(4.2) that |Rp,q| = 1 if p 6= √

q/(1 +
√

q) and q ≥ 1.

Since θ(p, q) is a decreasing limit (3.6) of continuous functions of p, it is an
upper semi-continuous (and hence right-continuous) function of p. It is a problem
of substantial importance to determine whether θ(p, q) is continuous at p = pc(q),
or whether there is a jump discontinuity; this amounts to deciding whether or not
θ(pc(q), q) = 0. This is known to be valid when q = 1 [24, 32], q = 2, and known to
be invalid for large q ([35, 37, 36]). It may be conjectured ([7, 47]) that this holds
if and only if q ≤ 4. In the language of statistical physics, one believes that the
phase transition is second-order if q ≤ 4, and is first-order if q > 4.

6. Mean-field theory

The mean-field Potts model may be formulated as a Potts model on the complete
graph Kn, being the graph with n labelled vertices every pair of which is joined
by an edge. The study of such a process dates back at least to 1954 ([34]), and
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has been continued since ([33, 47]). This model is exactly soluble, in the sense that
quantities of interest may be calculated exactly. It is therefore not surprising that
the corresponding random-cluster processes (for real q) have ‘exact solutions’ also
([12]). Before discussing this, it is appropriate to note that a close relative of such
a random-cluster process was described and studied by Peter Whittle [46]; some
further details of Peter’s ‘first-shell’ model for polymerization may be found in the
appendix.

Consider the random-cluster measure φn,λ,q on the complete graph Kn, having
parameters p = λ/n and q. In the case q = 1, this measure is product measure, and
therefore the ensuing graph is an Erdős–Rényi random graph ([11]). The overall
picture for general values of q is rather richer than for the case q = 1. It turns out
that the phase transition is of first-order if and only if q > 2, and the behaviour
of the system depends on how λ compares with a ‘critical value’ λc(q) taking the
value

(6.1) λc(q) =







q if 0 < q ≤ 2

2

(

q − 1

q − 2

)

log(q − 1) if q > 2.

From the detailed picture described in [12] we extract the following information.
The given properties occur with φn,λ,q–probability tending to 1 as n → ∞.

A. The case λ < λc(q). The largest component of the graph is of order log n.

B. The case λ > λc(q). There is a ‘giant component’ having order θ(λ, q)n where θ
is defined to be the largest root of the equation

(6.2) eλθ =
1 + (q − 1)θ

1 − θ
, λ ≥ λc(q) .

C. The case λ = λc(q), 0 < q ≤ 2. The largest component has order n2/3.

D. The case λ = λc(q), q > 2. The largest component is either of order log n or of
order θ(λ, q)n, where θ is given as in part B above.

The dichotomy between first- and second-order phase transition is seen by study-
ing the function θ(λ, q) defined in (6.2). When 0 < q ≤ 2, then θ(λ, q) descends
continuously to 0 as λ ↓ λc(q). On the other hand, this limit is strictly positive
when q > 2.

7. Historical observations

The basic theory of the random-cluster process was enunciated in the series of
papers of Kees Fortuin and Piet Kasteleyn around 1970, and in the 1971 doctoral
thesis ([18]) of Fortuin. Contemporaneously, and in collaboration with Ginibre,
these authors established the FKG inequality for functions and measures on finite
distributive lattices. The early work on random-cluster processes contains the main
elements of much of the theory surveyed in the present paper, particularly that
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described in Section 2. The impact of this approach was perhaps attenuated by the
combinatorial style of the first papers. Although the method led to certain famous
successes, public understanding of it has been greatly aided by the more recent
review and methodology of Aizenman et al. [3] and Edwards and Sokal [16].

An independent discovery of the random-cluster process was made by Peter
Whittle in the 1970s, while he was working on his ‘first-shell model’ for polymer-
ization. Such a model may be formulated as follows. Given n labelled vertices, we
place edges between them at random. Let s = (sij : i, j = 1, 2, . . . , n) be a vector
of non-negative integers; the vector s corresponds to a directed multigraph on the
vertex set, in which there are exactly sij directed edges from vertex i to vertex j.
Now define a probability measure on the set of all such s by

(7.1) P (s) ∝
{

∏

i,j

(h/2)sij

sij !

} {

∏

r

Hnr

r

}

νk ,

where h, Hr, ν are positive constants, nr is the number of vertices incident to
exactly r edges (with either orientation), and k is the total number of components
of the corresponding graph. In the special case when Hj = 1 (for all j), the
measure P differs from a random-cluster measure only in the fact that the first
brace is ‘Poisson’ rather than ‘Bernoulli’. It is easily seen that, when Hj ≡ 1, this
model is equivalent to a random-cluster model with p = 1 − e−h; since p = λ/n,
we should take h = λ/n. Therefore Peter Whittle’s polymer model (with Hj ≡ 1)
is essentially the random-cluster process on a complete graph (see [12]). Peter’s
work exploits a duality with a “compartmental model”, and as a consequence he
is able to study the nature of the phase transition for different values of ν; his
compartmental model is essentially the Potts model, and the ‘duality’ is basically
that discovered in a more general context by Fortuin and Kasteleyn.

It is interesting to reflect on the manner in which the random-cluster model was
discovered, and the following remarks are based on information kindly provided to
the present author by Piet Kasteleyn. When in the late 1960’s Kees Fortuin went to
Leiden for Ph.D. study, Kasteleyn had for some time been interested in a similarity
between a number of elementary facts concerning three different models defined on
finite graphs.

A. Electrical networks. Given two resistors of sizes r1 and r2, their combined
resistance r in series or parallel satisfies

(7.1) r = r1 + r2 (series), r−1 = r−1
1 + r−1

2 (parallel) .

B. Ising model. Two edges of a graph with respective interactions J1 and J2, placed
in either series or parallel, may be replaced by a single edge whose interaction J
satisfies

(7.2) f(J) =
f(J1) + f(J2)

1 + f(J1)f(J2)
(series), f(J) = f(J1)f(J2) (parallel),

where f(x) = e−2βx and β is the reciprocal of temperature.
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C. Percolation model. Two edges having edge-probabilities p1 and p2 may be re-
placed by a single edge whose edge-probability p satisfies

(7.3) p = p1p2 (series), (1 − p) = (1 − p1)(1 − p2) (parallel).

For the q-state Potts model, the rules in (7.2) become

(7.4) f(J) =







f(J1) + f(J2) + (q − 2)f(J1)f(J2)

1 + (q − 1)f(J1)f(J2)
(series)

f(J1)f(J2) (parallel).

Setting q = 1 in (7.4), and making a suitable change of variables p = 1 − f(J), we
recover the percolation rule (7.3). The electrical network rules may be obtained

from (7.4) also, by setting r = q
1

2 /(1 − f(J)) and passing to the formal limit as
q ↓ 0.

Turning to typical quantities of interest, such as current flow, two-point cor-
relations, and pair-connectivity, Fortuin and Kasteleyn found that each can be
expressed as the ratio of polynomials of the edge-variables (suitably transformed),
and that such polynomials satisfy a recursion relation based on the deletion and
contraction of edges. By iterating accordingly, they arrived at the partition function
(1.2) of the random-cluster model.

The random-cluster process generalizes Potts models in at least two ways. First,
it provides an interpolation of Potts models to non-integral values of q. Secondly,
there are questions to be asked about random-cluster models for which there are no
corresponding questions for Potts models. That is to say, whereas for any observable
f of a Potts model there exists a corresponding observable F of the corresponding
random-cluster model (see [16]), the converse is false: there exist functions F of the
random-cluster model with no corresponding f independent of p.

In addition to providing the above information, Professor Kasteleyn has high-
lighted two areas for future research. First, what can be said about the random-
cluster model when 0 < q < 1 (i.e., outside the FKG domain), and particularly
in the electrical network limit as q ↓ 0? It may even be rewarding to consider the
case q < 0, for which φ can no longer be a probability measure (see the work on
rank-generating functions contained in [10, 44]).

Secondly, corresponding to an ‘antiferromagnetic’ Potts model is a random-
cluster model with p < 0. Once again φ would be a signed rather than a probability
measure. In the limit as p → −∞, one is led to the theory of q-colourings of the
graph (when q is integral).
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