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Abstract. Two related issues are explored for bond percolation
on Zd (with d ≥ 3) and its dual plaquette process. Firstly, for what
values of the parameter p does the complement of the infinite open
cluster possess an infinite component? The corresponding critical
point pfin satisfies pfin ≥ pc, and strict inequality is proved when
either d is sufficiently large, or d ≥ 7 and the model is sufficiently
spread out. It is not known whether d ≥ 3 suffices. Secondly, for
what p does there exist an infinite dual surface of plaquettes? The
associated critical point psurf satisfies psurf ≥ pfin.

1. Introduction

Bond percolation on the square lattice Z2 has a natural dual process,
which is itself a bond percolation model. This fact has contributed to a
detailed understanding of percolation in two dimensions, see for exam-
ple [11, 18, 31]. The picture is more complicated in d dimensions with
d ≥ 3, in part because the natural dual model is a process on plaque-
ttes rather than edges, and these plaquettes form (d − 1)-dimensional
surfaces. Perhaps the first systematic study of the plaquette process
appeared in [3], where so-called area- and surface-laws were proved.
Later papers dealing with plaquettes include [9, 13, 14], and also [21]
on first-order phase transition in the random-cluster model (see also
[12, Chap. 7]).

We study two related questions concerning bond percolation on Zd

and its dual process, of which the first is as follows. Suppose we remove
all vertices that lie in an infinite open cluster of a bond percolation
process with parameter p. The set X that remains is the union of the
vertex sets of all finite clusters, and it induces a subgraph of Zd. We
denote this graph by X also. For what values of p does X possess an
infinite connected component with positive probability? We may define
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a critical probability pfin such that almost surely X has an infinite
component for p < pfin, and not for p > pfin. Let pc be the percolation
critical probability. Clearly pfin ≥ pc, since X = Zd a.s. for p < pc.
In d = 2 dimensions, we have pfin = pc, since self-duality implies that
for p > pc the infinite open cluster contains cycles that enclose every
vertex. In d = 3 dimensions, it is natural to expect the strict inequality
pc < pfin, since slightly above pc the infinite open cluster should not be
sufficiently dense to prevent connections in its complement. We prove
the last inequality in high dimensions.

Theorem 1.1. For d ≥ 19, we have the strict inequality pc < pfin.

Our proof of Theorem 1.1 relies on the recent proof in [20] that the
one-arm critical exponent ρ takes its mean-field value 1

2
in high dimen-

sions. Indeed, we prove that pc < pfin provided ρ < 1 (see Theorem 4.1
for the precise statement); this is believed to be the case for all d ≥ 5
but not for d = 3, 4. We do not know whether or not pc < pfin for
3 ≤ d ≤ 18.

Theorem 4.1 is stronger than Theorem 1.1 in two further respects.
Firstly, X can be replaced with the complement of the infinite cluster
of percolation on the spread-out lattice (while connectedness in X still
refers to Zd). This enables Theorem 1.1 to be extended to sufficiently
spread-out lattices for all d ≥ 7. Secondly, X may be replaced with
the set of vertices that are not within distance F of the infinite cluster,
for any finite F .

When pc < p < pfin, there is simultaneous occurrence of two disjoint
infinite objects, namely an infinite open cluster and an infinite com-
ponent of the non-percolating region. This is reminiscent of the result
of Campanino and Russo [8] that site percolation on Z3 with p = 1

2
contains both an infinite open and an infinite closed cluster.

Using fairly standard techniques, we show that pfin < 1 for d ≥ 2,
and that an infinite component of X (when it exists) is (a.s.) unique.
When the lattice Zd is replaced with a regular tree, pfin may be explicitly
computed (as done essentially in [17]) and it satisfies pfin < pc.

The above results lead to a partial answer to (and were in part
motivated by) our second main question, which concerns the plaquette
process that is dual to bond percolation on Zd. A plaquette is a
(d − 1)-dimensional face of a unit cube centred at a vertex of Zd. An
edge e of Zd crosses a unique plaquette, called the dual of e. We
declare a plaquette open if and only if its dual edge is closed in the
bond percolation model. Thus the plaquettes form an i.i.d. percolation
process with parameter 1− p. Open plaquettes can form surfaces, and
one may ask whether these surfaces undergo a phase transition at pc, in
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the sense that ‘infinite surfaces’ exist for p < pc and not for p > pc. Such
a statement is of course contingent on a precise definition of ‘infinite
surface’. We prove that, according to one natural choice of definition,
the phase transition does not occur at pc when d is sufficiently large.

We call two plaquettes adjacent if their intersection is a (d − 2)-
dimensional cube. We say that a set of plaquettes is connected if it
induces a connected graph via this adjacency relation, and we say that
it has no boundary if every (d − 2)-cube lies in an even number of
plaquettes (in other words, if it is a (d− 1)-cycle in the homology over
Z/2Z. A surface is a connected set of plaquettes with no boundary.
We define the critical probability psurf such that there exists (a.s.) an
infinite surface of open plaquettes for p < psurf , and not for p > psurf .

Theorem 1.2. For d ≥ 2, we have pfin ≤ psurf .

Theorems 1.1 and 1.2 have the following immediate consequence.

Corollary 1.3. For d ≥ 19, we have the strict inequality pc < psurf .

Thus, infinite dual surfaces of plaquettes (as defined above) exist only
strictly above pc in high dimensions. When d = 2, an infinite surface is
a connected union of doubly infinite dual paths, and therefore psurf = pc

(= pfin) in this case. We do not know whether pc < psurf for 3 ≤ d ≤ 18.
One may also impose further topological or other constraints on sur-

faces. As a preliminary result in this direction, we show in Propo-
sition 6.2 that, for p > 0 sufficiently small, there exists a surface of
open plaquettes that is uniformly homeomorphic to a hyperplane. In
dimension 3, surfaces of zero genus (homeomorphic to planes, spheres
or discs) arise as the natural candidates for dual objects that block en-
tangled bond-clusters. However, there is additional complication here:
existence of (say) a sphere enclosing the origin in the complement of
the set of open bonds does not imply existence of a sphere enclosing
the origin composed of open plaquettes. For details see [13].

The above questions are presented more formally in Section 2 below.
Section 3 contains a key topological lemma concerned with the external
boundary of a finite subset of Zd. This is followed in Sections 4–5 by
treatment of the union of the finite clusters X, in the two cases of a
lattice and a regular tree respectively. Section 6 is devoted to infinite
surfaces, and their connection with X.

2. Notation

Let d ≥ 1, and let Zd be the set of d-vectors x = (x1, x2, . . . , xd) of
integers. A facet is a subset of Zd of the form F = x+(A1× · · ·×Ad)
where x ∈ Zd and each Ai is either {0} or {0, 1}. If {0, 1} appears k
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times, we call F a k-dimensional facet, or a k-facet. We shall focus on
1-facets and (d− 1)-facets, called respectively edges and plaquettes.
The set of edges is denoted Ed, and the associated lattice is the graph
Ld = (Zd, Ed). An edge {x, y} will also be written as the unordered
pair 〈x, y〉.

Two facets of different dimensions are said to be incident if one is
a subset of the other. Two plaquettes π1, π2 are adjacent, written
π1 ∼ π2, if some (d−2)-facet is incident to both. A set P of plaquettes
is called connected if the graph with vertex set P and adjacency
relation ∼ is connected. The boundary of a set P of plaquettes is the
set of all (d− 2)-facets that are incident to an odd number of elements
of P . A surface is a (finite or infinite) connected set of plaquettes with
empty boundary.

We make use of another notion of adjacency between plaquettes also,

namely π1
1∼ π2 if some 1-facet is incident to both.

We introduce the shifted (‘dual’) set Ẑd := Zd + h, where h :=

(1
2
, 1

2
, . . . , 1

2
) ∈ Rd. A facet of Ẑd is any subset of the form F +h where F

is a facet of Zd, and the concepts of incidence, adjacency, connectedness,
boundaries and surfaces are defined as for Zd. For any k-facet F of Zd,

there is a unique (d − k)-facet F ′ of Ẑd with the same centre of mass
as F , and we call F and F ′ duals of one another. (Equivalently: (i)

F ′ is the unique (d − k)-facet of Ẑd whose convex hull intersects the
convex hull of F ; or (ii) if F is expressed as x+(A1×· · ·×Ad), then F ′

is obtained by replacing each occurrence of {0, 1} with {1
2
}, and each

occurrence of {0} with {−1
2
, 1

2
}.) In particular, the dual of an edge

e ∈ Ed is a plaquette, which we denote π(e). Let Π denote the set of

all plaquettes of Ẑd.
We turn now to probability. Let Ω = {0, 1}Ed

be endowed with the
product σ-field. Let p ∈ [0, 1], and write Pp for product measure on Ω
with parameter p, and let Ep be the associated expectation operator.
For ω ∈ Ω, we call the edge e open (respectively, closed) if ω(e) = 1
(respectively, ω(e) = 0). The plaquette π(e) is declared open (respec-
tively, closed) if e is closed (respectively, open). Thus, each plaquette
is open with probability 1 − p. Percolation theory is concerned with
the structure of the connected components, or open clusters, of the
graph (Zd, η(ω)), where η(ω) = {e : ω(e) = 1} is the set of open edges
of the configuration ω. Let pc = pc(d) denote the critical probability
of bond percolation on Ld, that is, the infimum of p for which there is
strictly positive probability of an infinite open cluster. See [11] for a
general account of percolation.
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We describe next the two events studied in this paper. Let

(2.1) S := {Π contains an infinite open surface}.

Since S is a decreasing subset of Ω, and is invariant under lattice-shifts,
there exists psurf = psurf(d) ∈ [0, 1] such that

(2.2) Pp(S) =

{
1 if p < psurf ,

0 if p > psurf .

A path of Ld is an alternating sequence v0, e1, v1, e2, . . . of distinct
vertices vi and edges ei = 〈vi−1, vi〉. A path is called open if all its
edges are open. Let x, y ∈ Zd. We write x ↔ y, if there exists an open
path of Ld with endpoints x and y. We write x ↔∞ if there exists an
infinite open path with endpoint x. Let

X := {x ∈ Z3 : x = ∞},

so that X is the union of the vertex-sets of the finite open clusters of
the percolation process. We turn X into a graph by adding all edges
of Ed with both endpoints in X. Let

(2.3) T := {X has an infinite connected component}.

As in the case of S, there exists pfin = pfin(d) ∈ [0, 1] such that

(2.4) Pp(T ) =

{
1 if p < pfin,

0 if p > pfin.

3. Topological lemma

This section contains a fundamental lemma concerning the external
edge-boundary of a finite subset of Zd. The case when d = 2 appears
essentially in [18, App.]. The lemma is closely related to results for d
dimensions of [9, 13, 30] and perhaps elsewhere. The proof given here
makes use of [12, Thm 7.3].

Let A ⊆ Zd, and let the external boundary ∆A be the set of
vertices of Zd \ A that (i) are adjacent to some element of A, and (ii)
lie in some infinite path of Ld not intersecting A. The (external) edge-
boundary ∆eA is the set of edges e = 〈x, y〉 such that x ∈ A and
y ∈ ∆A. For A ⊆ Zd, we define

Π(A) := {π(e) : e ∈ ∆eA},

the set of plaquettes dual to edges in its edge-boundary. Let |A| < ∞.
A set Σ ⊆ Π of plaquettes is said to separate A from infinity if
every infinite path starting in A contains some edge e with π(e) ∈ Σ.
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Similarly, a set Σ of plaquettes of Zd is said to separate A from in-
finity if every infinite path starting in A contains some vertex incident
to some element of Σ.

Lemma 3.1. If A ⊂ Zd is finite and connected then Π(A) is a surface.

Proof. We show first that Π(A) is connected. Let W1, W2, . . . ,Wk be
the finite, connected components of Zd \ A, and let

A := A ∪

(
k⋃

i=1

Wk

)
.

We call the Wk the holes of A. It is seen as follows that A has no
holes. Suppose w lies in a hole of A. Then any infinite path γ from
w has a last vertex f(γ) lying in A. It must be that f(γ) ∈ A, since
f(γ) ∈ Wi would contradict the definition of the Wi. Therefore, w ∈ A,
a contradiction.

We prove two facts about the boundaries of A and A. Firstly,

(3.1) Π(A) = Π(A).

That Π(A) ⊆ Π(A) follows from the definition of Π(A). Conversely, if
π(e) ∈ Π(A) \Π(A), then e has one endvertex denoted a in A \A, and
another that is joined to infinity off A. Thus a lies in a hole of A, in
contradiction of the fact that a is joined to infinity off A.

Let Π(A) be the set of plaquettes whose dual edges have exactly one
endvertex in A. Evidently, Π(A) ⊆ Π(A), and we claim that

(3.2) Π(A) = Π(A).

If, on the contrary, π(e) ∈ Π(A) \Π(A), then e has an endvertex lying
in a hole of A. Since A has no holes, (3.2) follows.

By [12, Thm 7.3], there exists a subset Q ⊆ Π(A) that separates A
from ∞ and is connected. By (3.1)–(3.2), Q ⊆ Π(A). Also, Π(A) ⊆ Q,
since if there exists π ∈ Π(A)\Q, then Q does not separate A from ∞.
Therefore, Π(A) = Q, implying that Π(A) is connected.

Next we show that Π(A) has empty boundary. Write uj for a unit
vector in the direction of increasing jth coordinate. Let e ∈ ∆eA, and
assume without loss of generality that e has the form 〈a, a + u1〉 with
a ∈ A; the other cases are treated in the same way after rotation of
Zd. It suffices to take a = 0. The plaquette corresponding to the edge
e = 〈0, u1〉 is π(e) = {1

2
} × {−1

2
, 1

2
}d−1, and is incident to 2(d − 1)

(d− 2)-facets of Ẑd, of which we shall consider f := {1
2
}2×{−1

2
, 1

2
}d−2;

the other such (d− 2)-facets may be treated similarly.



PERCOLATION OF FINITE CLUSTERS AND INFINITE SURFACES 7

The facet f is incident to exactly four plaquettes in Π, namely the
π(ei) with e1 = e = 〈0, u1〉, e2 = 〈u1, u1 + u2〉, e3 = 〈u1 + u2, u2〉,
e4 = 〈u2, 0〉. As we proceed around the cycle e1, e2, e3, e4, we encounter
vertices that either lie in A or are connected to infinity off A. Each
time we pass from a vertex in one category to a vertex in the other,
we traverse a plaquette in Π(A). Hence we traverse an even number
of such plaquettes, and therefore f is incident to an even subset of
Π(A). �

4. Percolation of finite clusters

Let G be an infinite, locally finite graph, and consider bond perco-
lation on G with parameter p. Let X be the set of vertices lying in
no infinite cluster of the process. The subgraph of G induced by X is
also denoted X. We consider the question of whether X has an infinite
connected component. The case of Zd is treated in this section, and
the corresponding issue for a regular tree is considered briefly in the
next section.

Recall the definition (2.4) of the critical point pfin = pfin(d) for the
hypercubic lattice Ld. When p < pc, all clusters are (a.s.) finite, so
that X = Zd. Hence, pc ≤ pfin.

The main goal of this section is to prove Theorem 1.1, which follows
from Theorem 4.1 below, by the main result of [20]. Later in this
section we also prove that pfin < 1 (Theorem 4.2), and that X has at
most one infinite component (Theorem 4.3).

In order to state Theorem 4.1 we introduce next some further nota-
tion. Let ‖ · ‖ denote L∞ distance on Zd. Let S, F ∈ {0, 1, 2, . . . }; the
parameter S is the range of a spread-out model, and F is a ‘fattening’
parameter. Consider the spread-out percolation model on Zd in which
edges are placed between any pair x, y ∈ Zd with 0 < ‖x − y‖ ≤ S,
and each edge is declared independently open with probability p. The
corresponding probability measure is denoted PS

p , and pS
c denotes the

critical point.
Let I be the set of vertices that lie in infinite open clusters. Write

IF := {x ∈ Zd : ‖x− y‖ ≤ F for some y ∈ I},
and let XF = Zd \ IF . With XF considered as a subgraph of Ld, we let
T F be the event that XF has an infinite connected component, and

(4.1) pS
fin(F ) := sup{p : PS

p (T F ) > 0}.

Let rad(C) denote the radius of the open cluster C at the origin,

(4.2) rad(C) := sup{‖x‖ : 0 ↔ x}.
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Theorem 4.1. Let d ≥ 2 and S, F ≥ 0. There exists c > 0 such that
the following holds. Suppose that, for all large n, say n ≥ N(c),

(4.3) PS
pS
c
(rad(C) ≥ n) ≤ c

n
.

Then pF
c < pS

fin(F ).

Proof of Theorem 1.1. When d ≥ 19 and S = F = 0, (4.3) is proved in
[20]. �

The one-arm critical exponent ρ = ρ(d) is given by

(4.4) PS
pS
c
(rad(C) ≥ n) ≈ n−1/ρ,

(where various interpretations of the symbol ≈ are possible). See for
example [11, Sect. 9.1] for a discussion of critical exponents and univer-
sality. A relation of the form (4.4) is believed to hold in a wide variety
of settings including the spread-out models on Zd for all d ≥ 2. It is
known that ρ(d) = 1

2
for the nearest-neighbour model with d ≥ 19, and

for the sufficiently spread-out model in 7 and more dimensions [20].
On the other hand it is believed that ρ(2) = 48

5
(> 1), so that (4.3)

is expected to fail in two dimensions, as indeed does the conclusion of
Theorem 4.1. It is proved in [22] (see also [28]) that ρ exists for site
percolation on the triangular lattice and satisfies ρ(2) = 48

5
, and in [19,

§5] that ρ(2) ≥ 3, or more specifically

(4.5) Ppc(rad(C) ≥ n) ≥ cn−1/3,

for bond percolation on the square lattice. The argument leading to
(4.5) may be extended (using [18, Thm 5.1] and [11, eqn (6.56)]) to
obtain a lower bound of order n−(d−1)/2 on Ld with d ≥ 2 (for d = 2
the bound is worse than (4.5), but is valid also in the spread-out case).

The critical exponents ρ, η are expected to satisfy the scaling in-
equality 2 ≤ ρ(d − 2 + η), with equality when d ≤ 6 (see [11, Sect.
9.1] for a discussion of the scaling relations, and [29] for a proof of the
inequality under reasonable assumptions). Assuming the equality for
d ≤ 6, it follows that ρ < 1 if and only if

(4.6) η > 4− d.

Numerical studies of [4, 24] (see also [16, Table 4.1]) suggest that (4.6)
fails when d = 3 but holds when d = 5. The evidence when d = 4,
while less conclusive, suggests that (4.6) fails in this case also. It thus
seems possible that (4.3) fails when d = 3, 4 and holds when d = 5.

Theorem 4.1 will be proved using a block argument based on a bound
for a typical cluster-radius. A similar technique has been used recently
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in [1] to study a forest-fire problem in seven and more dimensions, also
subject to the assumption ρ < 1.

Proof of Theorem 4.1. Consider first the unfattened nearest-neighbour
model with S = F = 0; at the end of the proof, we indicate the
necessary changes for the general case. Assume that (4.3) holds for
c > 0 and n ≥ N(c). Rather then deleting the set of points in infinite
open paths, we shall delete a larger set that is specified in terms of
certain finite connections. A box argument will then be used to show
the existence of an infinite component in the remaining graph.

We specify first the set of points to be deleted. Let n ∈ N, and write
Bn = (−n, n]d∩Zd and ∂Bn = Bn \Bn−1. Let Rn be the set of vertices
in Bn joined by open paths to ∂B2n, and note that Rn is a superset
of the subset of Bn containing points lying in infinite open paths. By
(4.3),

(4.7) Epc |Rn| ≤ c(2n)dn−1 = c2dnd−1.

By Markov’s inequality,

(4.8) Ppc(|Rn| ≥ 1
2
|Bn|) ≤

2c

n
.

Let C1, C2, . . . , Cm be the components of Bn after deletion of Rn.
Each vertex in the external boundary ∆Ci of some Ci lies either out-
side Bn or in Rn. Each vertex of Rn is in at most 2d such external
boundaries. Therefore,

(4.9) 2d|Rn| ≥
m∑

i=1

|∆nCi|,

where ∆nC := ∆C ∩ Bn. By [6, Thm 8], there exists K > 0 such
that, for any connected subset C of Bn with |C| ≤ 4

5
|Bn|, we have

|∆nC| ≥ K|C|(d−1)/d.
Let Ln be the event that there exists i with |Ci| ≥ 4

5
|Bn|, and let

Mn = {|Rn| < 1
2
|Bn|}. On the event Lc

n ∩Mn, by (4.9),

2d|Rn| ≥ K
m∑

i=1

|Ci|(d−1)/d(4.10)

≥ K

(
m∑

i=1

|Ci|

)(d−1)/d

= K (|Bn| − |Rn|)(d−1)/d ≥ 1
2
K|Bn|(d−1)/d.
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We take expectations to obtain by (4.7) that

c2dnd−1 ≥ Epc

(
|Rn|; Lc

n ∩Mn

)
≥ 1

4
(K/d)(2n)d−1Ppc(L

c
n ∩Mn).

By (4.8),

(4.11) Ppc(Ln) ≥ 1− 8cd

K
− 2c

n
.

On the event Ln, we pick a Ci of largest size, and we colour its vertices
0-green.

Inequality (4.11) may be combined with a block argument to show
the existence of an infinite component in X, when c and n are chosen
suitably. For z ∈ Zd, define the block Bn(z) := Bn+nz. Two blocks are
designated adjacent if and only if they have non-empty intersection.
Let Rn(z) and Ln(z) be given as above but relative to the block Bn(z).
The block Bn(z) is called good if Ln(z) occurs. On Ln(z), we pick a
largest component in the complement of Rn(z), and colour its vertices
z-green. Let Γ be the set of all vertices that are z-green for some z.

It may be seen that the set of random block-colours is a 3d-dependent
family of random variables. By [23, Thm 0.0], there exists p̃c ∈ (0, 1)
such that any 3d-dependent site percolation model on Zd with all site-
marginals exceeding p̃c has (a.s.) an infinite cluster. Choose c > 0 and
n ≥ N(c) such that

1− 8cd

K
− 2c

n
> p̃c.

By (4.11) and the continuity in p of Pp(Ln), we may find p > pc such
that Pp(Ln) > p̃c. There exists, Pp-a.s., an infinite connected compo-
nent of good blocks.

Let z, z′ ∈ Zd be adjacent, and note that the intersection of Bn(z)
and Bn(z′) has cardinality 1

2
|Bn|. Suppose Bn(z) and Bn(z′) are both

good. Since each contains a component of green vertices of size at
least 4

5
|Bn|, at least 1

5
of the vertices in the intersection Bn(z)∩Bn(z′)

are both z-green and z′-green. Therefore, the green sets in Bn(z) and
Bn(z′) have non-empty intersection. It follows that there exists, Pp-
a.s., an infinite component in Γ. Since no vertex of Γ lies in an infinite
open cluster, the theorem is proved.

Essentially the same proof is valid for general S, F . The set Rn is
defined as the set of x ∈ Bn such that there exists y with ‖y− x‖ ≤ F
and y is joined by an open path to some vertex in Zd \ B2n+2F−1.
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Equations (4.7)–(4.8) are replaced by

ES
pS
c
|Rn| ≤ c(2n + 2F )dn−1,

PS
pS
c
(|Rn| ≥ 1

2
|Bn|) ≤

2c

n

(
1 +

F

n

)d

,

and the proof then proceeds as before. �

Theorem 4.2. Consider bond percolation on the lattice Ld with d ≥ 3.
We have that pfin < 1.

The proof below may be made quantitative, in that it provides a
calculable bound p′ < 1 with pfin ≤ p′. This bound is however too
imprecise to be interesting.

Proof of Theorem 4.2. The idea is as follows. When p is sufficiently
close to 1, not only is there an infinite open cluster, but this cluster
is ‘fat’ in the sense that it separates the origin from infinity. In order
to construct the required cut-surface, we shall first use Lemma 3.1 to
show that the origin is a.s. separated from infinity by a surface in Ld

with the property that every constituent edge is open.
Let 0 < α < pc, and consider bond percolation on Ld with parameter

α. Let A ⊂ Zd be finite and connected, and let C = CA be the set of all
vertices reached from A by open paths. Since the percolation process
is subcritical, C is (a.s.) finite and connected. By Lemma 3.1, Π(C) is
a surface that separates C (and hence A also) from infinity.

Interchanging the roles of Zd and Ẑd, the above conclusion may be
restated as follows. Suppose that each plaquette of Zd is independently
declared occupied with probability q. If q > 1 − pc, a.s. every finite

subset of Ẑd is separated from ∞ by a finite occupied surface of pla-

quettes of Zd. If an infinite path ν of Ẑd contains an edge dual to some
plaquette π, the shifted path ν + h contains a vertex incident to π.
Therefore, if q > 1− pc, every finite subset of Zd is separated from ∞
by a finite occupied surface of plaquettes of Zd.

Returning to bond percolation on Ed, call a plaquette of Zd good
if every incident edge of Ed is open. Write γ(π) = 1 (respectively,
γ(π) = 0) if π is good (respectively, not good). The set of plaquettes
of Zd may be considered as the vertex-set of a graph G with adjacency

relation
1∼ given in Section 2. The vector γ = (γ(π) : π ∈ Π + h)

is 1-dependent in that, for any subsets Π1, Π2 of Π + h separated by
graph-theoretic distance at least 2, the sub-vectors (γ(π) : π ∈ Π1) and
(γ(π) : π ∈ Π2) are independent. Let p′ ∈ (1− pc, 1). By [23, Thm 0.0]
(see also [11, Thm 7.65]), there exists p′′ < 1 such that: when p > p′′,
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the law of γ stochastically dominates product measure with parameter
p′.

Let x ∈ Zd. Let Ex be the event that x is separated from infinity
by some finite surface of good plaquettes of Zd, and that in addition
every vertex incident with this surface lies in the (a.s.) unique infinite
open cluster. By the above, for p > p′′,

1− Pp(E0) ≤ Pp′(Sc
n) + Pp(Bn = ∞) → 0 as n →∞,

where Sn is the event that there exists a finite open surface of plaquettes
of Zd separating Bn := (−n, n]d∩Zd from infinity. Therefore, Pp(E0) =
1. By translation-invariance,

Pp

(⋂
x

Ex

)
= 1.

On the last event, every infinite path from X intersects the infinite open
cluster. It follows that X has a.s. no infinite component for p′′ < p < 1.
Therefore, pfin ≤ p′′ as required. �

Theorem 4.3. Let p ∈ [0, 1]. The set X has either a.s. no infinite
component or a.s. a unique infinite component.

The proof of Theorem 4.3 will be an adaptation of the celebrated
argument of Burton and Keane [7], and will proceed via the next two
lemmas. The first describes the behaviour of the set X under modifi-
cations to the percolation configuration (however, it is easily seen that
X does not possesses the so-called ‘finite-energy property’). The sec-
ond conveniently encapsulates a sufficiently general consequence of the
‘encounter point’ argument of [7].

For a percolation configuration ω ∈ {0, 1}Ed
and an edge e ∈ Ed, we

write ωe (respectively, ωe) for the configuration that agrees with ω on
Ed \ {e} and has ωe(e) = 1 (respectively, ωe(e) = 0).

Lemma 4.4. For any configuration ω and any edge e we have

X(ωe) = X(ωe) ∪ F

for some (possibly empty) finite set F = F (ω, e) ⊂ Zd.

Proof. The edge e lies in some open cluster C of ωe. When the state of e
is changed from open to closed, either the set of infinite open clusters is
unchanged (in which case we take F = ∅), or C breaks into an infinite
and a finite cluster (in which case we take F to be the vertex-set of the
latter). �

The number of ends of a connected graph is the supremum over its
finite subgraphs of the number of infinite components that remain after
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removing the subgraph. The following is proved (in the greater gener-
ality of amenable transitive graphs) in [5, remark following Cor. 5.5];
see also [25, Ex. 7.28].

Lemma 4.5. Let H be a random subset of Ed that is invariant in law
under translations of Zd. Then, almost surely, no component of H has
more than 2 ends.

Proof of Theorem 4.3. Let N be the number of infinite components
of X. Since N is a translation-invariant function of a collection of
independent random variables, it is a.s. equal to some constant n.

We first show that n ∈ {0, 1,∞}. Suppose on the contrary that
1 < n < ∞. There exist x, y ∈ Zd that lie in distinct infinite com-
ponents of X with positive probability. Let U be the vertex set of a
finite path in Zd connecting x and y. On the event mentioned above,
modify the configuration ω by making every edge incident to U closed.
In the modified configuration ω′, all vertices of U lie in X(ω′). By
Lemma 4.4, X(ω′) ⊇ X(ω), so X(ω′) has an infinite component that
contains the original infinite components of x and y. By Lemma 4.4
again, X(ω′) \X(ω) is finite, so no new infinite components have been
created, and thus X(ω′) has strictly fewer that n infinite components.
Since the modification involved only a fixed finite set of edges, it follows
that X(ω) has fewer than n components with positive probability, a
contradiction.

We employ a similar argument to eliminate the possibility n = ∞. If
n = ∞, there exist x, y, z ∈ Zd that lie in distinct infinite components
of X with strictly positive probability. On this event, we can modify
ω by making a finite set of edges closed in such a way that x, y and
z now lie in a single infinite component of X. By Lemma 4.4, only
finitely many vertices are added to X in this process (and none are
removed), so the resulting component has at least 3 ends. Therefore
X has a component with at least 3 ends with positive probability, in
contradiction of Lemma 4.5. �

5. On regular trees

We consider briefly the question of pfin for percolation on a regular
tree. Rather than the (b+1)-regular tree, for convenience we work with
the rooted tree Tb all of whose vertices other than the root (denoted
0) have degree b + 1; the root has degree b. Let

ρb(p) := Pp(X possesses an infinite cluster).

Since X is decreasing in the natural coupling of the processes as p
varies, ρb is a non-increasing function. As before, ρb takes only the
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values 0 and 1, and the two ‘phases’ are separated by the critical value

pfin(Tb) = inf{p : ρb(p) = 0}.

The following theorem is based on an elementary calculation using the
theory of branching processes. The result is implicit in [17, Sect. 3.3],
and an extension is found at [15, Thm 2.2].

Theorem 5.1. Let b ≥ 2. Then

pfin(Tb) =
bb/(b−1) − b

bb/(b−1) − 1
, and ρb(pfin) = 0.

In particular, pfin(T2) = 2
3
, and

pfin(Tb) = (1 + o(1))
1

b
log b as b →∞.

We outline below a different proof from those of [15, 17]. The fol-
lowing additional consequence is explained after the proof:

(5.1) Ppfin−ε

(
the X-component of 0 is infinite

)
= cbε + O(ε2)

as ε ↓ 0, for some cb ∈ (0,∞) which may be computed explicitly.

Proof of Theorem 5.1. The bond percolation cluster C at the root
amounts to a branching process with family-sizes distributed as
bin(b, p) and (probability) generating function G(s) = (1 − p + ps)b.
We assume p > 1/b, since X = T a.s. otherwise. Conditional on ex-
tinction, the family-size generating function is H(s) = G(sη)/η where
the probability η = η(p) of extinction is the smallest non-negative root
of G(s) = s.

Consider a branching process with generating function H. The gen-
erating function T (s) of the total size satisfies

(5.2) T (s) = sH(T (s)),

so that T ′(1) = H(1) + H ′(1)T ′(1), and hence

T ′(1) =
1

1−H ′(1)
=

1

1−G′(η)
.

Let D be a finite connected subgraph of T , rooted at some vertex v
and with the property that every vertex other than v has generation
number strictly greater than that of v. A boundary edge of D is an
edge 〈x, y〉 of T such that x ∈ D, y /∈ D, and y is a child of x. If D is
infinite, it is considered to have no boundary edges.

Returning to the original bin(n, p) branching process, we consider
the embedded branching process of boundary edges of rooted finite
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clusters. The cluster C at the origin has 1+ |C|(b− 1) boundary-edges
if finite (and 0 if infinite), with generating function

(5.3) K(s) = 1− η + ηsT (sb−1).

A branching process with generating function K survives with strictly
positive probability if and only if K ′(1) > 1, which is to say that

η[1 + (b− 1)T ′(1)] > 1,

or equivalently

(5.4) G′(η) >
1− bη

1− η
.

Since G(s) = (1− p + ps)b,

(5.5) G′(η) = bp(1− p + pη)b−1 =
bpη

1− p + pη
,

and (5.4) becomes

(5.6) η >
1− p

b− p
.

Suppose that (5.6) were to hold with equality. Since η = G(η),(
1− p +

p(1− p)

b− p

)b

=
1− p

b− p
,

which may be solved to find that

p =
bb/(b−1) − b

bb/(b−1) − 1
.

It follows that (5.6) holds if and only if p is strictly smaller than the
above value.

In summary, the non-percolating part of the original tree percolates
if and only if

p <
bb/(b−1) − b

bb/(b−1) − 1
.

That ρ(pfin) = 0 follows from the fact that a critical branching process
with non-zero variance dies out almost surely. �

Let κ(p) be the probability that the root lies in an infinite component
of X. By an elementary analysis based on the above, one may compute
the critical exponent of κ as p ↑ pfin.

Let b ≥ 2 and p > 1/b. By differentiating (5.2),

T ′(1) =
1

1−G′(η)
, T ′′(1) =

2G′(η)(1−G′(η)) + ηG′′(η)

(1−G′(η))3
,
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where η is the extinction probability given earlier. The term G′(η) is
given in (5.5), and by a similar calculation

G′′(η) =
p2ηb(b− 1)

(1− p + pη)2
.

The point p = pfin is characterized by equality in (5.4) and (5.6), and
one may use Taylor’s theorem to expand T (s) = Tp(s) with p near
pfin(Tb) and s near 1. With K as in (5.3), the survival probability
κ(p) is the largest root in [0, 1] of the equation 1 − κ = K(1 − κ). In
conclusion, we obtain (5.1).

6. Infinite open surfaces

We return to the lattice Ld with d ≥ 3, and consider the existence
(or not) of an infinite open surface, that is, an infinite connected set of
open plaquettes with empty boundary. Recall the event S of (2.1), and
the critical probability psurf . We indicate first the elementary inequality
psurf > 0. Later in this section we prove the inequalities pc ≤ psurf and
pfin ≤ psurf .

Proposition 6.1. For d ≥ 2, we have psurf > 0.

A stronger result holds. We identify a plaquette with the (d − 1)-
dimensional cube in Rd that is the closed convex hull of its 2d−1 points,
and we identify a surface with the union of the cubes corresponding to
its plaquettes. The surface S is said to be uniformly homeomorphic
to a hyperplane if there exists a bijection from S to the hyperplane
{0} × Rd−1 that is uniformly continuous with uniformly continuous
inverse. Let µ = µd be the connective constant of Ld (see [14] for a
definition of µ).

Proposition 6.2. Let d ≥ 2. For p < µ−2, there exists (a.s.) an
infinite open surface that is uniformly homeomorphic to a hyperplane.

Although this implies Proposition 6.1, we include a short proof of
the first proposition also.

Proof of Proposition 6.1. We call a d-facet B of Ẑd good if each of its
2d incident plaquettes is open, and we write γ(B) = 1 if B is good, and

γ(B) = 0 otherwise. As in the proof of Theorem 4.2, the cubes of Ẑd

may be considered as the vertices of a graph, and there exists r < ∞
such that their states are r-dependent. By [23, Thm 0.0], there exists
p′ ∈ (0, 1) such that: for p ≤ p′, the vector γ stochastically dominates
product measure with parameter ~pc, the critical probability of oriented
site percolation on Ld.
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Therefore, for p < p′, there exists a.s. an infinite oriented path
v1, v2, . . . of Zd such that the cubes vi + {−1

2
, 1

2
}d are good. The

set V = {v1, v2 . . . } generates an infinite surface Π(V ) of open pla-
quettes. (Note that Π(V ) is homeomorphic to a hyperplane, but not
uniformly.) �

Proof of Proposition 6.2. This relies on the methods developed in [14],
and we include only a sketch of the proof.

For x = (x1, x2, . . . , xd) ∈ Rd, let s(x) =
∑

i xi. Define the hyper-
plane H = {x ∈ Zd : s(x) = 0} of Rd. For r ≥ 0, let Hr = {y ∈ Zd :
s(y) = r}, and H+ =

⋃
r≥0 Hr.

A path v0, v1, . . . , vk of Ld is called good if (i) vi ∈ H+ for all i, and
(ii) for every i with s(vi−1) < s(vi), the edge 〈vi−1, vi〉 is open. For
x ∈ H0, let Kx be the set of all y ∈ H+ such that there exists a good
path from x to y, and let K =

⋃
x∈H0

Kx.

Let p < µ−2 and α ∈ (µp, 1). By an adaptation of the proof of [14,
Lemma 4], there exists C = C(p, α) < ∞ such that, for x ∈ H0,

(6.1)
∑
y∈Hr

Pp(y ∈ Kx) ≤ Cαr, r ≥ 1.

As in [10, eqn (2)], for y ∈ H+,

Pp(y ∈ K) ≤
∑
x∈H0

Pp(y ∈ Kx)(6.2)

=
∑

z∈Hs(y)

Pp(z ∈ K0) ≤ Cαs(y),

by (6.1).
We now follow the proof of [14, Thm 1]. Let u, v ∈ H+ be such that

e = 〈u, v〉 is an edge of Zd with u ∈ K and v /∈ K. Then s(u) < s(v)
and e is necessarily closed, so that the plaquette π(e) is open. The set
S of all such plaquettes forms a surface. The required homeomorphism
φ : S → H is given by the projection onto H,

φ(z) = z − ze,

where z = (z1 + z2 + · · ·+ zd)/d and e = (1, 1, . . . , 1). �

We indicate next that psurf ≥ pc, and we defer the proof until later
in this section.

Theorem 6.3. For d ≥ 3, we have pc ≤ psurf .

If the complement of the infinite open cluster contains an infinite
component, one may deduce the existence of an infinite surface. This
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is the content of Theorem 1.2, which is a consequence of the following
more general proposition.

Proposition 6.4. Let A ⊂ Zd be infinite and connected, and suppose
that its complement Ac has an infinite component. There exists an
infinite surface of plaquettes that are dual to edges of Ld having one
vertex in A and the other in Ac.

Proof of Theorem 1.2. If pc = pfin, the claim is a trivial consequence
of Theorem 6.3. Assume that pfin > pc. Let pc < p < pfin, and apply
Proposition 6.4 to the vertex-set A of the infinite open cluster. �

There follows a preliminary lemma that will be useful in the remain-
ing proofs. The convergence of this lemma is in the product topology on
{0, 1}Π. That is, for a sequence Πn of subsets of Π, we write Πn → Π∞
if every π ∈ Π∞ lies in all but finitely many Πn while every π 6∈ Π∞
lies in only finitely many Πn.

Lemma 6.5. Let W1 ⊆ W2 ⊆ · · · be an increasing sequence of subsets
of Zd that are connected and finite and satisfy |Wn| → ∞ as n → ∞.
The limit Π∞ = Π(Wn) exists and has empty boundary and no finite
components.

If the set Π∞ of Lemma 6.5 is non-empty, then it possesses only
infinite components, and each such component has empty boundary.
Here is an example for which Π∞ is non-empty. Let Wn = {(0, w) ∈
Z×Zd−1 : ‖w‖d−1 ≤ n}. Then Π∞ comprises two infinite components.

Proof. Let Πn = Π(Wn). Since each Wn is finite and connected in Ld,
by Lemma 3.1, the Πn are connected and have empty boundaries.

We claim first that Π∞ := limn→∞Πn exists in the sense of the
product topology. More specifically, we claim that, for any plaquette
π ∈ Π, exactly one of the following holds:

1. π /∈ Πn for all n,
2. there exists k such that π ∈ Πn if and only if n ≥ k.
3. there exist k, m satisfying k < m such that π ∈ Πn if and only

if k ≤ n < m.

To prove this, we must show that, as the sequence Πn is revealed in
sequence, if π appears, it may be removed, but if so it never reappears.
For given π ∈ Π, let k = min{n : π ∈ Πn} and assume k < ∞. Thus
π = π(e) for some e = 〈v, w〉 with v ∈ Wk and w joined to infinity off
Wk. Either π ∈ Πn for all n ≥ k, or m = inf{n > k : π /∈ Πn} satisfies
m < ∞. In the latter case, w lies either in Wm or in a hole of Wm (that
is, a finite connected component of Zd \Wm). Therefore, for n ≥ m, w
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lies in either Wn or a hole of Wn. In either case π /∈ Πn, and the claim
is shown.

Let f be a (d− 2)-facet of Ẑd. The collection of subsets F ⊂ Π such
that f lies in an even number of members of F is a cylinder subset of
{0, 1}Π. Since every (d− 2)-facet lies in an even number of plaquettes
in every Πn, and Πn → Π∞, Π∞ has empty boundary. By the same
argument, Π∞ has no finite component (in the plaquette graph with
adjacency relation ∼). �

Proof of Theorem 6.3. We shall show that p ≤ psurf for all p < pc. Let
ω = (ω(e) : e ∈ Ed) ∈ Ω be such that

(6.3) every open cluster of ω is finite.

From ω, we construct an increasing sequence V1, V2, . . . of vertex-sets
of Zd as follows. Let V1 be the vertex-set of the open cluster C0 at
w(0) := 0. Suppose we have constructed V1, V2, . . . , Vn, and each is
finite. Let v = (v1, v2, . . . , vd) be a rightmost vertex of Vn, in that
v1 ≥ w1 for all w ∈ Vn. Let w(n+1) = v+u1 where u1 = (1, 0, 0, . . . , 0),
and let Cw(n+1) be the vertex-set of the open cluster of w(n + 1). Let
Vn+1 = Vn∪Cw(n+1). Note that Vn+1 is finite, and |Vn| → ∞ as n →∞.

We apply Lemma 6.5 to the increasing sequence (Vn) to obtain the
limit set Π∞ = Π∞(ω) of plaquettes. The proof is completed by show-
ing that, for p < pc,

(6.4) Pp(Π∞ 6= ∅) = 1.

Let p < pc, so that (6.3) holds almost surely. Let L be the singly-infinite
line [(−∞, 0] × {0}d−1] ∩ Zd. Since Πn is connected and separates Vn

from infinity, there exists an edge fn = 〈−r − 1,−r〉 ∈ L such that
π(fn) ∈ Πn, and we pick r = rn maximal with this property. Now,
fn 6= fn+1 only if Cw(n+1) ∩ L 6= ∅. However,

∞∑
n=0

Pp(Cw(n+1) ∩ L 6= ∅) ≤
∞∑

n=0

Pp(rad(C0) ≥ n) = Ep(rad(C0)),

where rad(C0) = sup{‖x‖ : 0 ↔ x} is the radius of C0 as in (4.2).
If p < pc, we have that Pp(rad(C0)) < ∞; see [2, 26, 27], and also

[11, Chap. 5]. By the Borel–Cantelli lemma, a.s. only finitely many of
the w(n) are connected by open paths to L. Therefore, there exists a.s.
an edge f ∈ L such that π(f) ∈ Π∞, whence Π∞ 6= ∅ a.s. �

We used the fact that Pp(rad(C0)) < ∞ when p < pc, at the end of
the above proof. Note that the argument cannot be valid when d = 2
and p = pc = 1

2
, since then Π∞ = ∅ a.s.
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We remark that an alternative proof of Theorem 6.3 proceeds by
applying Lemma 6.5 to the sequence (Wn), where Wn is the set of sites
of Zd connected by open paths to {v ∈ Zd : v1 = 0, ‖v‖ ≤ n}.

Proof of Proposition 6.4. Let Bn = (−n, n]d ∩ Zd. Fix x ∈ A, and let
An be the component of A∩Bn containing x; we set An = ∅ if x 6∈ Bn.
Let Πn = Π(An). By Lemma 6.5, the limit Π∞ := limn→∞Πn exists,
and (if non-empty) has empty boundary and only infinite components.
Moreover, it is independent of the choice of x since, for x, y ∈ A, there
exists a path of A joining x to y and, for all sufficiently large n, this
path lies in Bn.

We argue as follows to show that Π∞ 6= ∅. There exists an edge
f = 〈a, b〉 with a ∈ A and b joined to infinity off A, so that π(f) ∈ Πn

for all large n. �

Open Questions

(1) Does pc < psurf hold for Zd with 3 ≤ d ≤ 18?
(2) Does pc < pfin hold for Zd with 3 ≤ d ≤ 18?
(3) Does pfin < psurf hold for Zd with d ≥ 3?
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[30] Á. Timár, Boundary-connectivity via graph theory, Proc. Amer. Math. Soc.
141 (2013), no. 2, 475–480, available at: ams.org, arXiv:0711.1713.

[31] W. Werner, Lectures on two-dimensional critical percolation, Statistical Me-
chanics, IAS/Park City Math. Ser., vol. 16, Amer. Math. Soc., Providence, RI,
2009, available at: arXiv:0710.0856, pp. 297–360.

Statistical Laboratory, Centre for Mathematical Sciences, Univer-
sity of Cambridge, Wilberforce Road, Cambridge CB3 0WB, U.K.

E-mail address: g.r.grimmett@statslab.cam.ac.uk
URL: http://www.statslab.cam.ac.uk/~grg/

Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA
E-mail address: holroyd at microsoft.com
URL: http://research.microsoft.com/~holroyd/

Department of Mathematics, Weizmann Institute of Science, POB
26, Rehovot 76100, Israel

E-mail address: gady.kozma@weizmann.ac.il
URL: http://www.wisdom.weizmann.ac.il/~gadyk/

http://link.aps.org/doi/10.1103/PhysRevE.57.230
http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html
http://www.intlpress.com/_newsite/site/pub/pages/journals/items/mrl/content/vols/0008/0006/00019853/index.php
http://arxiv.org/abs/math/0109120
http://projecteuclid.org/euclid.cmp/1104160140
http://dx.doi.org/10.1090/S0002-9939-2012-11333-4 
http://arxiv.org/abs/0711.1713
http://arxiv.org/abs/0710.0856
mailto:grg@statslab.cam.ac.uk
http://www.statslab.cam.ac.uk/~grg/
mailto:holroyd@microsoft.com
http://research.microsoft.com/~holroyd/
mailto:gady.kozma@weizmann.ac.il
http://www.wisdom.weizmann.ac.il/~gadyk/

	1. Introduction
	2. Notation
	3. Topological lemma
	4. Percolation of finite clusters
	5. On regular trees
	6. Infinite open surfaces
	Open Questions
	Acknowledgements
	References

