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a b s t r a c t

The connective constant µ(G) of a graph G is the exponential growth rate of the number
of self-avoiding walks starting at a given vertex. We investigate the validity of the
inequality µ ≥ φ for infinite, transitive, simple, cubic graphs, where φ :=

1
2 (1 +

√
5)

is the golden mean. The inequality is proved for several families of graphs including
(i) Cayley graphs of infinite groups with three generators and strictly positive first Betti
number, (ii) infinite, transitive, topologically locally finite (TLF) planar, cubic graphs, and
(iii) cubic Cayley graphs with two ends. Bounds for µ are presented for transitive cubic
graphs with girth either 3 or 4, and for certain quasi-transitive cubic graphs.

Published by Elsevier B.V.

1. Introduction

Let G be an infinite, transitive, simple, rooted graph, and let σn be the number of n-step self-avoiding walks (SAWs)
starting from the root. It was proved by Hammersley [25] in 1957 that the limit µ = µ(G) := limn→∞ σ

1/n
n exists, and he

called it the ‘connective constant’ of G. A great deal of attention has been devoted to counting SAWs since that introductory
mathematics paper, and survey accounts of many of the main features of the theory may be found at [1,24,32].

A graph is called cubic if every vertex has degree 3, and transitive if it is vertex-transitive (further definitions will be
given in Section 2). Let Gd be the set of infinite, transitive, simple graphs with degree d, and let µ(G) denote the connective
constant of G ∈ Gd. The letter φ is used throughout this paper to denote the golden mean φ :=

1
2 (1+

√
5), with numerical

value 1.618 · · ·. The basic question to be investigated here is as follows.

Question 1.1 ([20]). Is it the case that µ(G) ≥ φ for G ∈ G3?

This question has arisen within the study by the current authors of the properties of connective constants of transitive
graphs, see [24] and the references therein. The question is answered affirmatively here for certain subsets of G3, but we
have no complete answer to Question 1.1. Note that, for d ≥ 4,

µ(G) ≥
√
d − 1 > φ, G ∈ Gd, (1.1)

by [20, Thm 1.1].
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Here is some motivation for the inequality µ(G) ≥ φ for G ∈ G3. It is well known and easily proved that the ladder L
(see Fig. 5.1) has connective constant φ. Moreover, the number of n-step SAWs can be expressed in terms of the Fibonacci
sequence (an explicit such formula is given in [44]). It follows that µ(G) ≥ φ whenever there exists an injection from a
sufficiently large set of rooted n-step SAWs on L to the corresponding set on G. As domain for such injections, we take
the set Wn of n-step ‘eastward’ SAWs on the singly infinite ladder L+ of Fig. 5.1 (see Section 5). One of the principal
techniques of this article is to construct such injections for certain families of cubic graphs G. We state some of our main
results next, and refer the reader to the appropriate sections for the precise terminology in use.

Theorem 1.2. Let G3 be the set of connected, infinite, transitive, cubic graphs.

A. The connective constant µ = µ(G) satisfies µ ≥ φ whenever one or more of the following holds:

(a) G ∈ G3 has a transitive graph height function, (Theorem 3.1(b)),
(b) G is the Cayley graph of the Grigorchuk group with three generators, (Theorem 8.1),
(c) G ∈ G3 is topologically locally finite, (Theorem 9.1),
(d) G ∈ G3 is the Cayley graph of a finitely presented group with two ends, (Theorem 10.1).

Further to the last item, if Γ is a finitely presented group with infinitely many ends, it possesses a minimal generator set
with Cayley graph G satisfying µ(G) ≥ φ, (Theorem 10.2).

B. G ∈ G3 satisfies

µ

{
∈ (1.529, 1.770) if G has girth 3,
∈ (1.513, 1.900) if G has girth 4,

(Theorems 7.1 and 7.2.)

There are many infinite, transitive, cubic graphs, and we are unaware of a complete taxonomy. Various examples and
constructions are described in Section 4 (including the illustrious case of the hexagonal lattice, see [9]), and the inequality
µ ≥ φ is discussed in each case. In our search for cubic graphs, no counterexample has been knowingly revealed. Our
arguments can frequently be refined to obtain stronger lower bounds for connective constants than φ, but we do not
explore that here.

A substantial family of cubic graphs arises through the application of the so-called ‘Fisher transformation’ to a d-regular
graph (see Section 7). We make explicit mention of the Fisher transformation here since it provides a useful technique in
the study of connective constants.

The family of Cayley graphs provides a set of transitive graphs of special interest and structure. The Cayley graph of
the Grigorchuk group is studied by a tailored argument in Section 8. In Section 10, we treat 2-ended Cayley graphs and
certain ∞-ended Cayley graphs.

We make a final note concerning the numbers φ and
√
2, in their roles in Question 1.1, and in (1.1) with d = 3.

Bucher and Talambutsa [4,5] have derived lower bounds and equalities for exponential growth rates of non-trivial free
and amalgamated products. In particular, they show there is a gap between

√
2 and φ for the growth rates of free products.

They are able to study the infimum growth rate of free groups over all generator sets. It is elementary that the infimum
growth rate is a lower bound for the connective constants of the corresponding Cayley graphs (studied in [11]).

This paper is structured as follows. General criteria that imply µ ≥ φ are presented in Section 3 and proved in Section 5.
In Section 4 is given a list of cubic graphs known to satisfy µ ≥ φ (for some such graphs, the inequality follows from
earlier results as noted, and for others by the results of the current article). So-called transitive graph height functions
are discussed in Section 6, including sufficient conditions for their existence. Upper and lower bounds for connective
constants for cubic graphs with girth 3 or 4 are stated and proved in Section 7. The Grigorchuk group is considered in
Section 8. In Section 9, it is proved that µ ≥ φ for all transitive, topologically locally finite (TLF) planar, cubic graphs. The
final Section 10 is devoted to 2- and ∞-ended Cayley graphs. (Theorem 8.1 and much of the proof of Theorem 10.1 are
due to Anton Malyshev (personal communication).)

2. Preliminaries

The graphs G = (V , E) of this paper will be assumed to be connected, infinite, and simple (parallel edges will make a
brief appearance in and around Proposition 7.4). We write u ∼ v if ⟨u, v⟩ ∈ E, and say that u and v are neighbours. The
set of neighbours of v ∈ V is denoted ∂v. The degree deg(v) of vertex v is the number of edges incident to v, and G is
called cubic if deg(v) = 3 for v ∈ V .

The automorphism group of G is written Aut(G). A subgroup Γ ≤ Aut(G) is said to act transitively if, for v,w ∈ V ,
there exists γ ∈ Γ with γ v = w. It acts quasi-transitively if there is a finite subset W ⊆ V such that, for v ∈ V , there
exist w ∈ W and γ ∈ Γ with γ v = w. The graph is called (vertex-)transitive (respectively, quasi-transitive) if Aut(G) acts
transitively (respectively, quasi-transitively).

A walk w on the (simple) graph G is a sequence w = (w0, w1, . . . , wn) of vertices wi such that n ≥ 0 and
ei = ⟨wi, wi+1⟩ ∈ E for i ≥ 0. The length |w| of a walk w is the number of its edges, and w is called closed if w0 = wn. The
distance dG(v,w) between vertices v, w is the length of the shortest walk of G between them.
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An n-step self-avoiding walk (SAW) on G is a walk w = (w0, w1, . . . , wn) of length n ≥ 0 with no repeated vertices.
The walk w is called non-backtracking if wi+1 ̸= wi−1 for i ≥ 1. A cycle is a walk (w0, w1, . . . , wn) with n ≥ 3 such that
w0 = wn, and wi ̸= wj for 0 ≤ i < j < n. Note that a cycle has a specified orientation. The girth of G is the length of its
shortest cycle. A triangle (respectively, quadrilateral) is a cycle of length 3 (respectively, 4).

We denote by G (respectively, Q) the set of infinite, rooted, connected, transitive (respectively, quasi-transitive), simple
graphs with finite vertex-degrees. The subset of G (respectively, Q) containing graphs with degree d is denoted Gd
(respectively, Qd), and the subset of Gd (respectively, Qd) containing graphs with girth g is denoted Gd,g (respectively,
Qd,g ) . The root of such graphs is denoted 0 (or 1 when the graph is a Cayley graph of a group with identity 1).

Let Σn(v) be the set of n-step SAWs starting at v ∈ V , and σn(v) := |Σn(v)| its cardinality. Let G ∈ Q. It is proved
in [25,26] that the limit

µ = µ(G) := lim
n→∞

σn(v)1/n, v ∈ V , (2.1)

exists, and µ(G) is called the connective constant of G. We shall have use for the SAW generating function

Zv(ζ ) =

∑
π a SAW
from v

ζ |π |
=

∞∑
n=0

σn(v)ζ n, v ∈ V , ζ ∈ R. (2.2)

By (2.1), each Zv has radius of convergence 1/µ(G). We shall sometimes consider SAWs joining midpoints of edges of G
(in the manner of [9,18]).

There are two (related) types of graph functions relevant to this work. We recall first the definition of a ‘graph height
function’, as introduced in [23] in the context of connective constants.

Definition 2.1 ([23]). Let G ∈ Q. A graph height function on G is a pair (h,H) such that:

(a) h : V → Z and h(0) = 0,
(b) H is a subgroup of Aut(G) acting quasi-transitively on G such that h is H-difference-invariant in the sense that

h(αv) − h(αu) = h(v) − h(u), α ∈ H, u, v ∈ V ,

(c) for v ∈ V , there exist u, w ∈ ∂v such that h(u) < h(v) < h(w).

A graph height function (h,H) of G is called transitive if H acts transitively on G.

The properties of normality and unimodularity of the group H are discussed in [23], but do not appear to be especially
relevant to the current work.

Secondly, we remind the reader of the definition of a harmonic function on a graph G = (V , E). A function h : V → R
is called harmonic if

h(v) =
1

deg(v)

∑
u∼v

h(u), v ∈ V .

Cayley graphs of finitely generated groups (with symmetric generator sets) make appearances in this paper, and the
reader is referred to [21,22] for background material on such graphs. We denote by 1 the identity of any group Γ under
consideration.

3. General results

Let G = (V , E) be an infinite, connected graph. For h : V → R, we define two functions m : V → V and M : V → R,
depending on h, by

m(u) ∈ argmax{h(x) − h(u) : x ∼ u}, Mu = h(m(u)) − h(u), u ∈ V . (3.1)

There may be more than one candidate vertex for m(u), and hence more than one possible value for the term Mm(u). If
so, we make a choice for the value m(u), and we fix m(u) thereafter. Let q(v) denote the unique neighbour of v := m(u)
other than u and m(v). We shall apply the functions m and q repeatedly, and shall omit parentheses in that, for example,
mqm(u) denotes the vertex m(q(m(u))), and (qm)2(u) denotes qmqm(u). This notation is illustrated in Fig. 3.1.

Let Qharm ⊆ Q3 be the subset of graphs G with the following properties: there exists h : V → R such that h is harmonic
and, for u ∈ V ,

Mm(u) − Mu < min{Mu,Mqm(u)}, (3.2)

2Mqm(u) > Mm(u) − Mu + Mmqm(u). (3.3)

Although inequalities (3.2) and (3.3) lack obvious motivation, they turn out to be useful (see Theorem 3.1) in establishing
certain cases of the inequality µ(G) ≥ φ. We note two consequences of (3.2) and (3.3):
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Fig. 3.1. An illustration of the notation of Eqs. (3.2)–(3.3).

(a) since h is assumed harmonic, we have Mu ≥ 0 for u ∈ V , and hence Mu > 0 by (3.2),
(b) it is proved at (5.6) that, subject to (3.2) and (3.3),

h(qm(u)) > h(u), h(mqm(u)) > h(m(u)), h((qm)2(u)) > h(m(u)),

whence qm(u) ̸= u, mqm(u) ̸= m(u), (qm)2(u) ̸= m(u).

Conditions (3.2)–(3.3) will be used in the proof of part (a) of the following theorem. Less obscure but still sufficient
conditions are contained in Remark 3.2, following.

Theorem 3.1. We have that µ(G) ≥ φ if any of the following hold.

(a) G ∈ Qharm.
(b) G ∈ G3 has a transitive graph height function.
(c) G ∈ Q3,g where g ≥ 3, and there exists a function h : V (G) → R such that, for u ∈ V ,

h(qm(u)) > h(u), h(mqm(u)) > h(m(u)), (3.4)

h((qm)γ q(u)) > h(u), (3.5)

where γ = ⌈
1
2 (g − 1)⌉.

(d) G ∈ Q3,g where g ≥ 3, and there exists a harmonic function h on G satisfying (3.2) and (3.5).

Remark 3.2. Condition (3.2) holds whenever there exists A > 0 and a harmonic function h : V → R such that, for u ∈ V ,
A < Mu ≤ 2A. Similarly, both (3.2) and (3.3) hold whenever there exists A > 0 such that, for u ∈ V , 2A < Mu ≤ 3A.

Let Γ be an infinite, finitely presented group, and let G be a locally finite Cayley graph of Γ . If there exists a surjective
homomorphism F from Γ to Z, then F is a transitive graph height function on G (see [21]). Such a graph height function
is called a group height function.

Example 3.3. Here are some examples of Theorem 3.1 in action.

(a) The hexagonal lattice H supports a harmonic function h with Mu ≡ 1, so that part (a) of the theorem applies (see
Remark 3.2). To see this, we embed H into the plane as in the dashed lines of Fig. 3.2. Let each edge have length 1,
and let h(u) be the horizontal coordinate of the vertex u. (The exact value of µ(H) was proved in [9].)

(b) The Cayley graph of a finitely presented group Γ = ⟨S | R⟩ with |S| = 3 has a transitive graph height function
whenever it has a group height function, and hence part (b) applies. See Theorem 6.3 for a sufficient condition on
a transitive cubic graph to possess a transitive graph height function.

(c) The Archimedean lattice A = J4, 6, 12K lies in Q3,4 and possesses a harmonic function satisfying (3.2) and (3.3).
The harmonic function in question is illustrated in Fig. 6.1, and the claimed inequalities may be checked from the
figure. See also Remark 9.8.

(d) The inequality µ(A) ≥ φ may be proved also as follows. The lattice A can be embedded into the plane as in the
solid lines of Fig. 3.2. As in (a) above, let h(u) be the horizontal coordinate of u. By Theorem 3.1(c), the connective
constant is at least φ.

The proof of Theorem 3.1 is found in Section 5.

4. Examples of infinite, transitive, cubic graphs

4.1. Cubic graphs with µ ≥ φ

We list here examples of infinite, cubic graphs G with µ(G) ≥ φ. As mentioned earlier, we have no example that
violates the inequality (however, see Section 4.2). A number of these examples are well known, and others have been
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Fig. 3.2. The dashed lines form the hexagonal lattice H, and the solid lines the J4, 6, 12K lattice.

studied by other authors. In some cases, Theorem 3.1 may be applied, and such cases are prefixed by the part of the
theorem that applies. Most of these examples are transitive, and all are quasi-transitive.

A. (b) The 3-regular tree has connective constant 2.
B. (a) The ‘ladder’ L (see Fig. 5.1) has µ = φ. This exact value is elementary and well known; see, for example,

[20, p. 284].
C. The ‘twisted ladder’ TL (see Fig. 5.2) has µ =

√
1 +

√
3 ≈ 1.653 > φ. To see this, observe that the generating

function of SAWs from 0 (see (2.2)) that move only eastwards or within quadrilaterals is Z(ζ ) =
∑

∞

m=0 f (ζ )
m,

where f (ζ ) = 2ζ 2 + 2ζ 4. The radius of convergence, 1/µ(TL), of Z is the root of the equation f (ζ ) = 1.
D. (a) The hexagonal lattice H satisfies µ(H) ≥ φ, by Example 3.3(a). It has been proved in [9] that µ =

√
2 +

√
2.

E. (a) It is explained in [19, Ex. 4.2] that the square/octagon lattice J4, 8, 8K satisfies µ > φ.
F. (a, c) The Archimedean J4, 6, 12K lattice has connective constant at least φ. See Example 3.3(c, d) and Remark 9.8.
G. (b) The Cayley graph of the lamplighter group has a so-called group height function, and hence a transitive graph

height function. See Example 3.3(b) and [21, Ex. 5.3].
H. The following examples concern so-called Fisher graphs (see [18] and Section 7). For G ∈ G3, the Fisher graph GF

(∈ Q3) is obtained by replacing each vertex by a triangle. It is shown at [18, Thm 1] that the value of µ(GF) may be
deduced from that of µ(G), and furthermore that µ(GF) > φ whenever µ(G) > φ.

I. In particular, the Fisher graph HF of H satisfies µ(HF) > φ.
J. The Archimedean lattices mentioned above are the hexagonal lattice H = J6, 6, 6K, the square/octagon lattice

J4, 8, 8K, together with J4, 6, 12K, and HF = J3, 12, 12K. To this list we may add the ladder L = J4, 4,∞K. These
are examples of so-called transitive, TLF-planar graphs [36], and all such graphs are shown in Section 9 to satisfy
µ ≥ φ.

K. More generally, if G ∈ Gd where d ≥ 3, and

1
µ(G)

≤

⎧⎪⎨⎪⎩
1
φr+1 +

1
φr+2 if d = 2r + 1,

2
φr+1 if d = 2r,

then its (generalized) Fisher graph satisfies µ(GF) ≥ φ. See Proposition 7.4. Since µ ≤ d − 1, the above display can
be satisfied only if d ≤ 10.

L. The Cayley graph G of the group Γ = ⟨S | R⟩, where S = {a, b, c} and R = {c2, ab, a3}, is the Fisher graph of
the 3-regular tree, and hence µ(G) > φ. The exact value of µ(G) may be calculated by [18, Thm 1] (see also
Proposition 7.4(a) and [11, Ex. 5.1]). We note that the J3, 12, 12K lattice is a quotient graph of G by adding the
further relator (ac)6. Since the last lattice has connective constant at least φ, so does G (see [19, Cor. 4.1]).

M. The Cayley graph G of the group Γ = ⟨S | R⟩, where S = {a, b, c} and R = {a2, b2, c2, (ac)2}, is the generalized
Fisher graph of the 4-regular tree. The connective constant µ(G) may be calculated exactly, as in Theorem 7.3, and
satisfies µ > φ. Since the ladder L is the quotient graph of G obtained by adding the further relator (bc)2, we have
by [19, Cor. 4.1] that µ(G) > φ (see [19]).

N. The Cayley graph of the Grigorchuk group with three generators has µ ≥ φ. The proof uses a special construction
due to Malyshev based on the orbital Schreier graphs, and is presented in Section 8.

O. (b) A group height function of a Cayley graph is also a transitive graph height function (see [21]). Therefore, any
cubic Cayley graph with a group height function satisfies µ ≥ φ.

P. (b) Let G ∈ G3 be such that: there exists H ≤ Aut(G) that acts transitively but is not unimodular. By [21, Thm 3.5],
G has a transitive graph height function, whence µ ≥ φ.
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Fig. 5.1. The singly infinite ladder L+ . The doubly infinite ladder L extends to infinity both leftwards and rightwards.

Fig. 5.2. The doubly infinite ‘twisted ladder’ TL is obtained from the ladder by twisting every other quadrilateral.

4.2. Open question

We mention a general situation in which we are unable to show that µ ≥ φ. Let G be the Cayley graph of an infinite,
finitely generated, virtually abelian group Γ = ⟨S | R⟩ with |S| = 3. Is it generally true that µ(G) ≥ φ? Whereas such
groups are abelian-by-finite, the finite-by-abelian case is fairly immediate (see Theorem 6.6).

A method for constructing such graphs was described by Biggs [2, Sect. 19] and developed by Seifter [37, Thm 2.2].
Cayley graphs with two or more ends are considered in Section 10.

5. Proof of Theorem 3.1

We begin with some notation that will be used throughout this article. Let L+ be the singly-infinite ladder of Fig. 5.1.
An eastward SAW on L+ is a SAW starting at 0 that, at each stage, steps either to the right (that is, horizontally, denoted H)
or between layers (that is, vertically, denoted V). Note that the first step of an eastward walk is necessarily H, and every
V step is followed by an H step. Let Wn be the set of n-step eastward SAWs on L+.

It is clear that Wn is in one–one correspondence with the set of n-letter words w in the alphabet {H, V} that start with
the letter H and have no pair of consecutive appearances of the letter V. We shall frequently consider Wn as this set of
words, and we shall make use of the set Wn throughout this paper.

It is elementary, by considering the first two steps, that ηn = |Wn| satisfies the recursion

ηn = ηn−1 + ηn−2, n ≥ 2,

with η0 = η1 = 1. Therefore,

lim
n→∞

η1/nn = φ. (5.1)

Let G = (V , E) ∈ Q3, and let Wn denote the set of n-step walks starting at the root 0. Let h : V → R. We shall first
construct an injection f : Wn → Wn, and then we will show that, subject to appropriate conditions, each f (w) is a SAW.
In advance of giving the formal definition of f , we explain it informally. When thinking of an element of Wn as a word
of length n, we apply the function m at every appearance of H, and q at every appearance of V; for example, the word
HVHH corresponds to the vertex m2qm(0).

Definition 5.1. For w = (w1w2 · · ·wn) ∈ Wn, we let f (w) = (f0, f1, . . . , fn) be the n-step walk on G given as follows.

1. f0 = 0, f1 = m(f0).
2. Assume k ≥ 1 and (f0, f1, . . . , fk) have been defined.

(a) If wk+1 = H, then fk+1 = m(fk).
(b) If wk+1 = V, then fk+1 = q(fk).

Lemma 5.2. The function f is an injection from Wn to Wn.

Proof. Let w,w′
∈ Wn satisfy w ̸= w′, and let l be such that wi = w′

i for 1 ≤ i < l, and wl = H, w′

l = V. It is necessarily
the case that l ≥ 2 and wl−1 = w′

l−1 = H. We have that fi(w) = fi(w′) for 1 ≤ i < l, and

fl(w) = m2(u), fl(w′) = qm(u),

where u = fl−2(w). Since m2(u) ̸= qm(u), we have f (w) ̸= f (w′) as required. □
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Proof of Theorem 3.1(a). Let G = (V , E) ∈ Qharm, and let h : V → R be harmonic such that (3.2)–(3.3) hold.

Lemma 5.3. The function f is an injection from Wn to Σn(0).

Proof. In the light of Lemma 5.2, it suffices to show that each f (w) is a SAW.
Let u ∈ V . The three neighbours of m(u) are u, qm(u), m2(u) (see Fig. 3.1). Since h is harmonic,

3h(m(u)) = h(u) + h(qm(u)) + h(m2(u)), u ∈ V ,

so that

h(qm(u)) − h(m(u)) = Mu − Mm(u). (5.2)

Therefore, by (3.2),

h(qm(u)) − h(u) = Mu − Mm(u) +
[
h(m(u)) − h(u)

]
(5.3)

= 2Mu − Mm(u) > 0,

h(mqm(u)) − h(m(u)) = Mu − Mm(u) +
[
h(mqm(u)) − h(qm(u)

]
(5.4)

= Mu − Mm(u) + Mqm(u)) > 0,

and, by (5.2) with u replaced by qm(u), and (3.3),

h((qm)2(u)) − h(m(u)) = Mu − Mm(u) + Mqm(u) +
(
Mqm(u) − Mmqm(u)

)
(5.5)

> 0.

See Fig. 3.1 again. By (5.3)–(5.5),

qm(u) ̸= u, mqm(u) ̸= m(u), (qm)2(u) ̸= m(u), (5.6)

as claimed above Theorem 3.1.
Let w ∈ Wn. Let Sk be the statement that

(a) f0, f1, . . . , fk are distinct, and
(b) if wk = H, then h(fk) > h(fi) for 0 ≤ i ≤ k − 1, and
(c) if wk = V, then h(fk) > h(fi) for 0 ≤ i ≤ k − 2.

If Sk holds for every k, then the fk are distinct, whence f (w) is a SAW. We shall prove the Sk by induction.
Evidently, S0 and S1 hold. Let K ≥ 2 be such that Sk holds for k < K , and consider SK .

1. Suppose first that wK = V, so that wK−1 = H. By (5.3) (or (5.6)) with u = fK−2 and v = m(fK−2) = fK−1, we have
that h(fK ) > h(fK−2).

(a) If wK−2 = H, the claim follows by SK−2.
(b) Assume wK−2 = V (so that, in particular, K ≥ 4). We need also to show that h(fK ) > h(fK−3). In this case, we

take u = fK−4 so thatm(u) = m(fK−4) = fK−3, and (qm)2(u) = fK in (5.5), thereby obtaining that h(fK ) > h(fK−3)
as required.

2. Assume next that wK = H.

(a) If wK−1 = H, the relevant claims of SK follow by SK−1 and the fact that fK = m(fK−1).
(b) If wK−1 = V, then wK−2 = H. By (5.4), h(fK ) > h(fK−2), and the claim follows by SK−1 and SK−2.

This completes the induction, and the lemma is proved. □

By Lemma 5.3, |Σn(0)| ≥ |Wn|, and part (a) follows by (5.1). □

Proof of Theorem 3.1(b). Let G ∈ G3 and let (h,H) be a transitive graph height function. For u ∈ V , let M =

max{h(v) − h(u) : v ∼ u} as in (3.1). We have that M > 0 and, by transitivity, M does not depend on the choice of
u. Since h is H-difference-invariant, the neighbours of any v ∈ V may be listed as v1, v2, v3 where

h(vi) − h(v) =

⎧⎨⎩
M if i = 1,
−M if i = 2,
η if i = 3,

where η is a constant satisfying |η| ≤ M . By the transitive action of H, we have that −η ∈ {−M, η,M}, whence
η ∈ {−M, 0,M}.

If η = 0, h is harmonic and satisfies (3.2)–(3.3), and the claim follows by part (a). If η = M , it is easily seen that the
construction of Definition 5.1 results in an injection from Wn to Σn(v). If η = −M , we replace h by −h to obtain the same
conclusion. □
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Proof of Theorem 3.1(c). This is a variant of the proof of part (a). With γ = ⌈
1
2 (g − 1)⌉ as in the theorem, let Tk be the

statement that:

(a) if wk = H, then h(fk) > h(fi) for 0 ≤ i ≤ k − 1, and
(b) if wk = V, then h(fk) > h(fi) whenever i satisfies either

(i) i = k − 2s ≥ 0 for s ∈ N, or
(ii) i = k − (2t + 1) ≥ 0 for t ∈ N, t ≥ γ .

Lemma 5.4. Assume that Tk holds for every k. The vertices fk are distinct, so that each f (w) is a SAW.

Part (c) follows from this by Lemma 5.2, as in the proof of part (a).

Proof of Lemma 5.4. Let k ≥ 1. If wk = H then, by Tk, fk ̸= f0, f1, . . . , fk−1. Assume that wk = V. By Tk, we have that
fk ̸= fi for 0 ≤ i < k except possibly for the values i ∈ I := {k − 1, k − 3, . . . , k − (2γ − 1)}. If fk = fi with i ∈ I , then G
has girth not exceeding 2γ − 1 (< g), a contradiction. Since this holds for all k, the fk are distinct, and hence f (w) is a
SAW. □

We next prove the Tk by induction. Evidently, T0 and T1 hold. Let K ≥ 2 be such that Tk holds for k < K , and consider
TK .

Suppose first that wK = V, so that wK−1 = H. By (3.4) with u = fK−2,

h(fK ) > h(fK−2). (5.7)

A. Assume wK−2 = H. By (5.7) and TK−2, we have that h(fK ) > h(fi) for i ≤ K − 2.
B. Assume wK−2 = V (so that, in particular, K ≥ 4). By TK−2,

h(fK−2) > h(fK−2−2s), for s ∈ N, K − 2 − 2s ≥ 0,
h(fK−2) > h(fK−2−(2t+1)), for t ≥ γ , K − 2 − (2t + 1) ≥ 0.

Hence, by (5.7),

h(fK ) > h(fK−2s), for s ∈ N, K − 2s ≥ 0, (5.8)
h(fK ) > h(fK−(2t+3)), for t ≥ γ , K − 2 − (2t + 1) ≥ 0.

It remains to show that

h(fK ) > h(fK−(2γ+1)). (5.9)

Exactly one of the following two cases occurs.

(i) There are two (or more) consecutive appearances of H in wK , . . . , wK−2γ . In this case there exists 1 ≤ t ≤ γ

such that wK−2t = H, implying by TK−2t that

h(fK−2t ) > h(fi), 0 ≤ i ≤ K − 2t − 1.

Inequality (5.9) follows by (5.8).
(ii) We have that (wK , . . . , wK−2γ ) = (V,H,V,H, . . . ,V), in which case (5.9) follows from (3.5).

Suppose next that wK = H.

A. If wK−1 = H, the relevant claims of TK follow by TK−1 and the fact that fK = m(fK−1).
B. If wK−1 = V, then wK−2 = H. By (3.4) and TK−2, h(fK ) > h(fK−2) > h(fi) for 0 ≤ i ≤ K − 3. Finally, h(fK ) > h(fK−1)

since fK = m(fK−1).

This completes the induction. □

Proof of Theorem 3.1(d). It suffices by part (c) to show that the harmonic function h satisfies (3.4). This holds as in (5.3)
and (5.4). □

6. Transitive graph height functions

By Theorem 3.1(b), the possession of a transitive graph height function suffices for the inequality µ(G) ≥ φ. It is not
currently known exactly which G ∈ G3 possess transitive graph height functions, and it is shown in [22, Thms 5.1, 8.1]
that the Cayley graph of neither the Grigorchuk group nor the Higman group has a graph height function at all. We pose
a weaker question here. Suppose G ∈ G3 possesses a graph height function (h,H). Under what further condition does G
possess a transitive graph height function? A natural candidate function g : V → Z is obtained as follows.
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Fig. 6.1. The left figure depicts part of the Archimedean lattice A = J4, 6, 12K. Potentials may be assigned to the vertices as illustrated in the right
figure, and the potential differences are duplicated by translation, and by reflection in a horizontal axis. The resulting harmonic function satisfies
(3.2).

Proposition 6.1. Let Γ act transitively on G = (V , E) ∈ Gd where d ≥ 3. Assume that (h,H) is a graph height function of G,
where H ⊴ Γ and [Γ : H] < ∞. Let κi ∈ Γ be representatives of the cosets, so that Γ /H = {κiH : i ∈ I}, and let

g(v) =

∑
i∈I

h(κiv), v ∈ V . (6.1)

The function g : V → Z is Γ -difference-invariant.

A variant of the above will be useful in the proof of Theorem 10.1.

Proof. The function g is given in terms of the representatives κi of the cosets, but its differences g(v) − g(u) do not
depend on the choice of the κi. To see this, suppose κ1 is replaced in (6.1) by some κ ′

1 ∈ κ1H. Since H is a normal
subgroup, κ ′

1 = ηκ1 for some η ∈ H. The new function g ′ satisfies

g ′(v) − g(v) = h(κ ′

1v) − h(κ1v) = h(ηκ1v) − h(κ1v),

so that

[g ′(v) − g ′(u)] − [g(v) − g(u)] = [h(ηκ1v) − h(κ1v)] − [h(ηκ1u) − h(κ1u)] = 0,

since η ∈ H and h is H-difference-invariant.
We show as follows that g is Γ -difference-invariant. Let α ∈ Γ , and write α = κjη for some j ∈ I and η ∈ H. Since

Γ /H can be written in the form {κiκjH : i ∈ I},

g(αv) − g(αu) =

∑
i∈I

[
h(κiκjηv) − h(κiκjηu)

]
= g(ηv) − g(ηu)
= g(v) − g(u),

since g is H-difference-invariant. □

If the function g of (6.1) is non-constant, it follows that (g − g(0),Γ ) is a transitive graph height function, implying
by Theorem 3.1(b) that µ(G) ≥ φ. This is not invariably the case, as the following example indicates.

Example 6.2. Consider the Archimedean lattice A = J4, 6, 12K of Fig. 6.1. Then A is transitive and cubic, but it has no
transitive graph height function. This is seen by examining the structure of A. There are a variety of ways of showing
µ(A) ≥ φ, and we refer the reader to Theorem 3.1 and the stronger inequality of Remark 9.8.

Theorem 6.3. Let Γ act transitively on G = (V , E) ∈ G3. Let (h,H) be a graph height function of G, where H ⊴ Γ and
[Γ : H] < ∞. Pick κi ∈ Γ such that Γ /H = {κiH : i ∈ I}, and let g : V → Z be given by (6.1). If there exists a constant
C < ∞ such that

dG(v, κiv) ≤ C, v ∈ V , i ∈ I, (6.2)

then (g − g(0),Γ ) is a transitive graph height function.
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Proof. By the comment prior to Example 6.2, we need to show that g is non-constant. Since (h,H) is a graph height
function, we may pick v ∈ V such that h(v) > 2Cδ, where

δ := max{|h(v) − h(u)| : u ∼ v}.

By (6.2),

[h(κiv) − h(κi)] ∈ [h(v) − h(1)] + [−2Cδ, 2Cδ].

Therefore, by (6.1),

[g(v) − g(1)] ∈ |I|h(v) +
[
−2Cδ|I|, 2Cδ|I|

]
,

so that g(v) > g(1) as required. □

Corollary 6.4. Let Γ = ⟨S | R⟩ be an infinite, finitely-generated group. Let H ⊴ Γ be a finite-index normal subgroup, and let
(h,H) be a graph height function of the Cayley graph G (so that it is a ‘strong’ graph height function, see [21]). Pick κi ∈ Γ

such that Γ /H = {κiH : i ∈ I}, and let g : V → Z be given by (6.1). If

max
1≤i≤k

⏐⏐[κi]⏐⏐ < ∞, (6.3)

where [κi] = {g−1κig : g ∈ Γ } is the conjugacy class of κi, then (g − g(0),Γ ) is a transitive graph height function.

Proof. Since dG(g, κig) = dG(0, g−1κig), condition (6.2) holds by (6.3). □

Example 6.5. An FC-group is a group all of whose conjugacy classes are finite (see, for example, [40]). Clearly, (6.3) holds
for FC-groups.

We note a further situation in which there exists a transitive graph height function.

Theorem 6.6. Let Γ act transitively on G = (V , E) ∈ Gd where d ≥ 3, and let (h,H) be a graph height function on G. If there
exists a short exact sequence 1 → K

α
−→ Γ

β
−→ H → 1 with |K | < ∞, then G has a transitive graph height function.

Proof. Suppose such an exact sequence exists. Fix a root v0 ∈ V , find γ ∈ Γ such that v = γ v0, and define g(v) := h(βγ v0).
Certainly g(v0) = 0 and g is non-constant. It therefore suffices to show that g is Γ -difference-invariant. Let u, v ∈ V

and find γ ′
∈ Γ such that u = γ ′v0. For ρ ∈ Γ ,

g(ρv) − g(ρu) = h(βργ v0) − h(βργ ′v0)
= h(βρβγ v0) − h(βρβγ ′v0)
= h(βγ v0) − h(βγ ′v0) since βρ ∈ H

= g(v) − g(u),

and the proof is complete. □

7. Graphs with girth 3 or 4

As stated in Section 2, Gd,g denotes the subset of G containing graphs with degree d and girth g . Our next theorem is
concerned with G3,3, and the following (Theorem 7.2) with G3,4.

Theorem 7.1. For G ∈ G3,3, we have that

x1 ≤ µ(G) ≤ x2, (7.1)

where x1, x2 ∈ (1, 2) satisfy

1
x21

+
1
x31

=
1

√
2
, (7.2)

1
x22

+
1
x32

=
1
2
. (7.3)

Moreover, the upper bound x2 is sharp.

The bounds of (7.2)–(7.3) satisfy x1 ≈ 1.529 < 1.618 ≈ φ and x2 ≈ 1.769, so that φ ∈ (x1, x2). The upper bound x2 is
achieved by the Fisher graph of the 3-regular tree (see Proposition 7.4 and [11,18]).
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Fig. 7.1. Each vertex of G is replaced in the Fisher graph GF by a cycle.

Theorem 7.2. For G ∈ G3,4, we have that

y1 ≤ µ(G) ≤ y2, (7.4)

where

y1 = 121/6, (7.5)

and y2 = 1/ζ where ζ is the smallest positive root of the equation

2x2(1 + x + x2) = 1. (7.6)

Moreover, the upper bound y2 of (7.4) is sharp.

The lower bound of (7.5) satisfies 121/6
≈ 1.513 < 1.618 ≈ φ. The upper bound is approximately y2 ≈ 1.900, and

is achieved by the Fisher graph of the 4-regular tree (see Proposition 7.4). The proofs of Theorems 7.1 and 7.2 are given
later in this section.

The emphasis of the current paper is upon lower bounds for connective constants of cubic graphs. The upper bounds
of Theorems 7.1 and 7.2 are included as evidence of the accuracy of the lower bounds, and in support of the unproven
possibility that µ ≥ φ in each case. We note a more general result (derived from results of [11,43]) for upper bounds of
connective constants as follows.

Theorem 7.3. For G ∈ Gd,g where d, g ≥ 3, we have that µ(G) ≤ y where ζ := 1/y is the smallest positive real root of the
equation

(d − 2)
M1(ζ )

1 + M1(ζ )
+

M2(ζ )
1 + M2(ζ )

= 1, (7.7)

and

M1(ζ ) = ζ , M2(ζ ) = 2(ζ + ζ 2 + · · · + ζ g−1). (7.8)

The upper bound y is sharp, and is achieved by the free product graph F := K2 ∗ K2 ∗ · · · ∗ K2 ∗ Zg , with d − 2 copies of the
complete graph K2 on two vertices and one copy of the cycle Zg of length g.

See [11] for the definition of free product graphs. Rather than repeat the general definition here, we explain that
the extremal graph F of this theorem is the (simple) Cayley graph of the free product group ⟨S | R⟩ with S =

{a1, a2, . . . , ad−2, b} and R = {a21, a
2
2, . . . , a

2
d−2, b

g
}.

The proofs follow. Let G = (V , E) ∈ Gd where d ≥ 3. A (generalized) Fisher graph GF is obtained from G by replacing
each vertex by a d-cycle, called a Fisher cycle, as illustrated in Fig. 7.1. The Fisher transformation originated in the work of
Fisher [10] on the Ising model. We shall study the relationship between µ(G) and µ(GF), and to that end we need GF to be
quasi-transitive (see (2.1)). When d = 3, GF is invariably quasi-transitive but, when d ≥ 4, one needs to be specific about
the choice of the Fisher cycles. Let v ∈ V , and order the neighbours of v in a fixed but arbitrary manner as (u1, u2, . . . , ud).
We replace v by a Fisher cycle, denoted Fv , with ordered vertex-set in one–one correspondence with the edges ⟨v, ui⟩,
i = 1, 2, . . . , d, in that order. For x ∈ V , find αx ∈ Aut(G) such that αx(v) = x, and replace x by the Fisher cycle αx(Fv). The
family {αx : x ∈ V } acts quasi-transitively on GF, as required.

The following proposition relates the connective constants of G and GF, and it is valid in the slightly more general
context of non-simple graphs. Let Nd be the set of infinite, rooted, connected, transitive graphs with degree d (we do not
assume these graphs are simple). A Fisher graph GF of G ∈ Nd is given as for simple graphs.
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Fig. 7.2. A degree-6 vertex v is replaced by a Fisher 6-cycle. A SAW passing through v may be redirected around the cycle as shown. The entry
and exit of the SAW at the Fisher cycle traverses either 2 edges clockwise, or 4 edges anticlockwise.

Proposition 7.4. Let G ∈ Nd where d ≥ 3.

(a) [18, Thm 1(a)] If d = 3,
1

µ(GF)2
+

1
µ(GF)3

=
1

µ(G)
. (7.9)

(b) If d = 2r ≥ 4 is even,
2

µ(GF)r+1 ≤
1

µ(G)
. (7.10)

(c) If d = 2r + 1 ≥ 5 is odd,
1

µ(GF)r+1 +
1

µ(GF)r+2 ≤
1

µ(G)
. (7.11)

Proof of Proposition 7.4. We use the methods of [18], where a proof of part (a) appears at Theorem 1. (Ref. [18] was
directed at simple graphs only, but the proof of [18, Thm 1] is valid also in the non-simple case. Indeed, there exists a
unique non-simple G ∈ N3.)

Here is an outline of the proof. Consider SAWs on G and GF that start and end at midpoints of edges. Given such a
SAW π on G, we shall construct a corresponding SAW π ′ on GF. When π reaches a vertex v of G, π ′ is directed around
the corresponding d-cycle C of GF. There are d − 1 possible exit points of π ′ from C . For each such point, π ′ may be sent
around C either clockwise or anticlockwise (as illustrated in Fig. 7.2). If the exit lies s (≤ d/2) edges along C from the
entry, a single step of π becomes a walk of length either s+ 1 or d− s+ 1. Such a substitution is made at each vertex of
π , resulting in a SAW π ′ on GF.

We formalize the above, thereby extending the arguments of [18]. Let d = 2r ≥ 4 (the case of odd d is similar). Write
G = (V , E) and GF = (VF, EF). The set E may be considered as a subset of EF. By the argument leading to [18, eqn (15)], it
suffices to consider SAWs on GF that begin and end at midpoints of edges of E.

The generating function of SAWs beginning at a given midpoint e of E on the graph G is given by

Z(ζ ) =

∑
π∈Σ(G)

ζ |π |, (7.12)

where Σ(G) is the set of such SAWs. Let ZF be the generating function of SAWs on GF starting at e and ending in the set
of midpoints of E. The function ZF is derived as follows. For π ∈ Σ(G), let e0, e1, . . . , en be the midpoints visited by π ,
and let Ci be the Fisher cycle of GF touching ei and ei+1. Considering the ei as midpoints of EF, let ki be the length of the
shorter of the two routes from ei to ei+1 around Ci. We replace the product ζ |π | in (7.12) by

Pπ (ζ ) :=

n−1∏
i=0

(ζ ki+1
+ ζ d−ki+1)

to obtain

ZF(ζ ) =

∑
π∈Σ(G)

Pπ (ζ ).

Since 1 ≤ ki ≤ r , we deduce that

ZF(ζ ) ≥ Z
(
min{ζ 2 + ζ d, ζ 3 + ζ d−1, . . . , 2ζ r+1

}
)
, ζ ≥ 0. (7.13)

The radius of convergence of ZF is 1/µ(GF), and (7.10) follows from (7.13) on letting ζ ↑ 1/µ(GF) and noting that the
minimum in (7.13) is achieved by 2ζ r+1. □
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Fig. 7.3. The two situations in the proof of Lemma 7.6.

Lemma 7.5. Let G = (V , E) ∈ G3,3.

(a) For v ∈ V , there exists exactly one triangle passing through v.
(b) If each such triangle of G is contracted to a single vertex, the ensuing graph G′ satisfies G′

∈ G3.

Proof. (a) Assume the contrary: each u ∈ V lies in two or more triangles. Since deg(u) = 3, there exists v ∈ V such that
⟨u, v⟩ lies in two distinct triangles, and we write w1, w2 for the vertices of these triangles other than u, v. Since each wi
has degree 3, we have than w1 ∼ w2. This implies that G is finite, which is a contradiction.

(b) Let T be the set of triangles in G, so that the elements of T are vertex-disjoint. We contract each T ∈ T to a vertex,
thus obtaining the graph G′

= (V ′, E ′). Since each vertex of G′ arises from a triangle of G, the graph G′ is cubic, and G is
the Fisher graph of G′. Since G is infinite, so is G′.

We show next that G′ is transitive. Let v′

1, v
′

2 ∈ V ′, and write Ti = {ai, bi, ci}, i = 1, 2, for the corresponding triangles of
G. Since G is transitive, there exists α ∈ Aut(G) such that α(a1) = a2. By part (a), α(T1) = T2. Since α ∈ Aut(G), it induces
an automorphism α′

∈ Aut(G′) such that α′(v′

1) = v′

2, as required.
Finally, we show that G′ is simple. If not, there exist two vertex-disjoint triangles of G, T1 and T2 say, with two edges

between their vertex-sets. Each vertex in these two edges belongs to (two) faces of size 3 and 4. By transitivity, every
vertex has this property. By consideration of the various possible cases, one arrives at a contradiction. □

Proof of Theorem 7.1. Since G is the Fisher graph of G′
∈ G3, by Proposition 7.4(a),

1
µ(G)2

+
1

µ(G)3
=

1
µ(G′)

.

By [20, Thm 4.1],
√
2 ≤ µ(G′) ≤ 2,

and (7.1) follows. When G′ is the 3-regular tree T3, we have µ(G′) = 2, and the upper bound is achieved. □

The following lemma is preliminary to the proof of Theorem 7.2.

Lemma 7.6. Let G = (V , E) ∈ G3,4. If G is not the doubly infinite ladder L, each v ∈ V belongs to exactly one quadrilateral.

Proof. Let G = (V , E) ∈ G3,4 and v ∈ V . Assume v belongs to two or more quadrilaterals. We will deduce that G = L.
By transitivity, there exist two (or more) quadrilaterals passing through every vertex v, and we pick two of these,

denoted Cv,1, Cv,2. Since v has degree 3, exactly one of the following occurs (as illustrated in Fig. 7.3).

(a) Cv,1 and Cv,2 share two edges incident to v.
(b) Cv,1 and Cv,2 share exactly one edge incident to v.

Assume first that Case (a) occurs, and let Πx be the property that x ∈ V belongs to three (or more) quadrilaterals, any
two of which share exactly one incident edge of x, these

(3
2

)
= 3 edges being distinct.

Let ⟨u, v⟩ and ⟨w, v⟩ be the two edges shared by Cv,1 and Cv,2, and write Cv,i = (u, v, w, zi), i = 1, 2. Since u lies in the
quadrilaterals Cv,1, Cv,2, and (u, z1, w, z2), we have that Πu occurs. By transitivity, Πx occurs for every x.

Let x be the adjacent vertex of v other than u and w. Note that x /∈ {z1, z2} and x ̸∼ u, w, since otherwise G would
have girth 3. By Πv , either x ∼ z1 or x ∼ z2. Assume without loss of generality that x ∼ z1. If x ∼ z2 in addition, then G
is finite, which is a contradiction. Therefore, x ̸∼ z2.

Let y be the incident vertex of z2 other than u and w, and note that y /∈ {u, v, w, x, z1, z2}. By Πz2 , there exists a
quadrilateral containing both ⟨y, z2⟩ and ⟨z2, u⟩. Since u has degree 3, either y ∼ z1 or y ∼ v. However, neither is possible
since both z2 and v have degree 3. Therefore, Case (a) does not occur.

Assume Case (b) occurs, and write Cv,i = (u, v, wi, zi), i = 1, 2, for the above two quadrilaterals passing through v. Let
Π2

x (respectively, Π3
x ) be the property that x ∈ V belongs to two quadrilaterals (respectively, three quadrilaterals), and
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Fig. 7.4. The second diagram of Fig. 7.3 is extended by one further quadrilateral.

each incident edge of x lies in at least one of these quadrilaterals (respectively, every pair of incident edges of x lies in at
least one of these quadrilaterals). Since Π2

v occurs, by transitivity Π2
x occurs for every x ∈ V .

Since G is infinite, there exists a ‘new’ edge incident to the union of Cv,1 and Cv,2. Without loss of generality, we take
this as ⟨z1, x⟩ with x /∈ {u, v, w1, w2, z1, z2}. By Π2

z1 , there exists a quadrilateral of the form (z1, x, y, z). Since G is simple
with degree 3 and girth 4, and dG(y, z1) = 2, y /∈ {z1, u, v, w1, w2}.

We prove next that y ̸= z2. If y = z2, then Π3
u occurs, whence Π3

z1 occurs by transitivity. Therefore, there exists
a quadrilateral passing through the two edges ⟨x, z1⟩, ⟨z1, w1⟩, and we denote this (x, z1, w1, y′). It is immediate that
y′ /∈ {u, v, w2, z2} since G is simple with degree 3 and girth 4, and therefore y′ is a ‘new’ vertex. By Π3

w1
, y′

∼ w2, and G is
finite, a contradiction. Therefore, y ̸= z2, and hence y is a ‘new’ vertex, and z = w1. In summary, the two quadrilaterals
of the right side of Fig. 7.3 have been extended by adding a third quadrilateral on the left side, as illustrated in Fig. 7.4.
By inspection of the latter figure, we see that Π2

u occurs but not Π3
u .

We now iterate the above procedure, adding at each stage a new quadrilateral to the graph already obtained. Suppose
G contains a finite, connected subgraph S of the ladder L comprising k (≥ 3) quadrilaterals. Since G is infinite, it contains
some ‘new’ edge e with exactly one endpoint in S. By the above considerations applied to e, we deduce that G contains a
subgraph of L comprising k + 1 quadrilaterals. We continue by induction to find that G = L. □

Proof of Theorem 7.2. If G = L, then µ = φ, which satisfies (7.4). We may therefore assume that G ̸= L.
Let T be the set of quadrilaterals of G. By Lemma 7.6, each vertex lies in exactly one element of T . We contract each

element of T to a degree-4 vertex, thus obtaining a graph G′. We claim that

G′
∈ N4, and G is a Fisher graph of G′. (7.14)

Suppose for the moment that (7.14) is proved. By [20, Thm 4.1(b)], µ(G′) ≥
√
3, and, by Proposition 7.4(b),

2
µ(G)3

≤
1

µ(G′)
≤

1
√
3
,

which implies µ(G) ≥ 121/6.
We prove (7.14) next. It suffices that G′

= (V ′, E ′) ∈ N4, and G is then automatically the required Fisher graph.
Evidently, G′ has degree 4. We show next that G′ is transitive. Let v′

1, v
′

2 ∈ V ′, and write Ci = (ai, bi, ci, di), for the unique
quadrilateral of G corresponding to v′

i . Since G is transitive, there exists α ∈ Aut(G) such that α(a1) = a2. By Lemma 7.6,
α(C1) = C2. Since α ∈ Aut(G), it induces an automorphism α′

∈ Aut(G′) such that α′(v′

1) = v′

2, as required. In conclusion,
(7.14) holds.

For the upper bound, we refer to the following proof of the more general Theorem 7.3. □

Proof of Theorem 7.3. Let G ∈ Gd,g where d, g ≥ 3, and let F (∈ Gd,g ) be the given free product graph (see the statement
of the theorem, and the remark that follows it). By [43, Thm 11.6], F covers G. Therefore, there is an injection from SAWs
on G with a given root to a corresponding set on F , whence µ(G) ≤ µ(F ).

By [11, Thm 3.3], µ(F ) = 1/ζ where ζ is the smallest positive real root of (7.7). □

8. The Grigorchuk group

The Grigorchuk group Γ was introduced in [12] (see also the more recent papers [13,14]) as a group of intermediate
growth. It is defined as follows. Let T be the rooted binary tree with root labelled ∅. The vertex-set of T can be identified
with the set of finite strings u having entries 0, 1, where the empty string corresponds to the root ∅. Let Tu be the subtree
of all vertices with root labelled u.

Let Aut(T ) be the automorphism group of T , and let a ∈ Aut(T ) be the automorphism that, for each string u,
interchanges the two vertices 0u and 1u together with their subtrees.

Any γ ∈ Aut(T ) may be applied in a natural way to either subtree Ti, i = 0, 1. Given two elements γ0, γ1 ∈ Aut(T ), we
define γ = (γ0, γ1) to be the automorphism of T obtained by applying γ0 to T0 and γ1 to T1. Define automorphisms b, c ,
d of T recursively as follows:

b = (a, c), c = (a, d), d = (1, b), (8.1)
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Fig. 8.1. The 3-neighbourhood of the identity. The walk (1, c, ca) may be re-routed as (1, b, bc, c, ca).

Fig. 8.2. The one-ended orbital Schreier graph S of the ray 1∞ .

where 1 is the identity automorphism. The Grigorchuk group Γ is defined as the subgroup of Aut(T ) generated by the set
S = {a, b, c}. Denote by G the Cayley graph of Γ endowed with the generator set S. Since each element of S has order 2,
we may label an edge of G by the corresponding generator; an edge labelled g is called a g-edge.

The 3-neighbourhood of 1 in the Cayley graph G of Γ is drawn in Fig. 8.1. Since G ∈ G3,4, we have by Theorem 7.2 that
y1 ≤ µ(G) ≤ y2 where the yi are given in (7.5) and (7.6). The lower bound µ(G) ≥ y1 may be improved as follows.

Theorem 8.1. The Cayley graph G of the Grigorchuk group Γ satisfies µ(G) ≥ φ.

Proof. The main ideas of this proof are due to Anton Malyshev, who has kindly given permission for them to be included
here. A ray of T is a SAW on T starting at ∅. The collection of all infinite rays is called the boundary of T and denoted
∂T . Since each γ ∈ Γ preserves the root ∅, the orbit of any v ∈ T is a subset of the generation of T containing v. Since
γ ∈ Γ preserves adjacency, γ maps ∂T into ∂T .

The orbit Γ ρ of ρ ∈ ∂T gives rise to a graph, called the orbital Schreier graph of ρ, and denoted here by S(ρ). The vertex-
set of S(ρ) is Γ ρ. For ρ1, ρ2 ∈ Γ ρ, S(ρ) has an edge between ρ1 and ρ2 if and only if ρ2 = xρ1 for some x ∈ {a, b, c};
we label this edge with the generator x and call it an x-edge. (Recall that x2 = 1 for x ∈ {a, b, c}.) Such orbital Schreier
graphs have been studied in [15,16,41] and the references therein.

Let 1∞ denote the rightmost infinite ray of T , with orbital Schreier graph S := S(1∞) illustrated in Fig. 8.2. It is standard
(see, for example, [15, Thm 7.3] and [41, p. 29]) that, if ρ ∈ Γ 1∞, S(ρ) is graph-isomorphic to the singly infinite graph S
(the edge-labels may depend on the choice of ρ). If ρ /∈ Γ 1∞, S(ρ) is graph-isomorphic to a certain doubly infinite chain
which does not feature in this proof.

Let W0 be the set of labelled walks on S starting at the root 1∞ that, at each step, either move one step rightwards
or pass around a loop (no loop may be traversed more than once). Members of W0 may be considered as words in the
alphabet ℵ = {a, b, c} without consecutive repetitions. Walks in W0 are not generally self-avoiding on S , but we shall see
next that they give rise to a certain set W0 of self-avoiding walks on G starting at its root 1.

Each w ∈ W0 lifts to a distinct walk w on G. Furthermore, we claim that

w is a SAW on G. (8.2)

To see (8.2), suppose w is not a SAW. Then w contains some shortest subword s of length 3 or more satisfying s = 1. On
considering the action of Γ on S (see Fig. 8.2), we deduce that S contains a cycle of length 3 or more. By inspection of
S , this is seen to be a contradiction.

Let R = {r1, r2, . . . } be the set of right-hand endpoints of the a-edges of S , labelled in the order they are encountered
when moving to the right from 1∞ (in the sense of Fig. 8.2). An ordered pair of elements ri, rj ∈ R is called consecutive if
|i − j| = 1. Let W be the subset of W0 containing words that end in a. As above, W lifts to a set W of SAWs on G. It turns
out that W is not sufficiently large to obtain µ(G) ≥ φ, and therefore we shall need to augment W to a larger set W ′ of
words, as follows.
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We think of the set R as being points of renewal of walks in W . More specifically, each w ∈ W can be broken into
sections (called units) beginning and ending (respectively) with a consecutive pair z, z ′

∈ R, and each unit σ may be any
of the following.

(a) If both b and c are rightward edges from z, σ is a word in {ba, ca}.
(b) If b is rightward from z, and c is a loop at z, σ is a word in {ba, cba, bca, cbca}.
(c) If c is rightward from z, and b is a loop at z, σ is a word in {ca, bca, cba, bcba}.

We now augment W by replacing (a) by (a′), as follows.

(a′) If both b and c are rightward edges from z, let σ be any word in the set {ba, ca, bcba, cbca}.

LetW ′ be the superset ofW (viewed as sets of words in the alphabet ℵ) comprising words ending in R, without consecutive
repetitions, and satisfying (a′), (b), (c). Let W ′ be the set of walks on G obtained as lifts of elements of W ′. As above, each
w′

∈ W ′ lifts to a distinct walk w′ ∈ W ′.

Lemma 8.2. Every w′ ∈ W ′ is a SAW on G.

The proof of this lemma is given after the end of the current proof. The generating function Z of W ′ (see (2.2)) may
be expressed in the form

Z(ζ ) = A0

∞∑
n=0

A1A2 · · · An,

where A0 = 2ζ 2 and each Ak, for k ≥ 1, is either

Z1(ζ ) = 2ζ 2 + 2ζ 4 or Z2 = ζ 2 + 2ζ 3 + ζ 4.

Furthermore, Z1 appears infinitely often in the sequence (Ak : k = 1, 2, . . . ). Since Z1(1/φ) > 1 and Z2(1/φ) = 1, we have
that Z(ζ ) = ∞ for ζ > 1/φ. The claim of the theorem follows. □

Proof of Lemma 8.2. For clarity of exposition, we consider first a single instance of the ‘additional’ subword bcba in (a′),
which we view as a substitute for the unit ca of (a) (the same argument applies to cbca viewed as a substitute for ba). Let
w = x(ca)y ∈ W where x, y are words terminating with the letter a (we allow y to be empty), and let w′

= x(bcba)y be
obtained from w by replacing the instance of ca by bcba. Thus, w is routed along the image of the 2-path (1, c, ca) (under
the action of x) as indicated in Fig. 8.1; similarly, w′ is obtained from w by replacing this 2-path by the image under x of
the 4-path (1, b, bc = cb, c, ca) of the figure. The lifted walk w′ fails to be a SAW only if w visits either xb or xbc.

There is a notational complication, arising from the need to distinguish between elements of Γ , words in the alphabet
ℵ, and the walks on G that the last generate.

A. Suppose w visits the vertex xb.

(i) By inspection of Fig. 8.2, we have that xb ∈ W0. By (8.2), x does not visit the vertex xb of G since that would
contradict the fact that xb is a SAW. Therefore, w visits xb after it visits the vertex x of G. That is, y begins with a
subword y′, with length at least 4, such that x(ca)y′ lifts to a SAW from 1 to xb.

(ii) The subword y′ cannot end with the letter b since, if it did, the penultimate vertex of x(ca)y′ would be x, in
contradiction of the fact that x(ca)y′ lifts to a SAW.

(iii) Suppose y′ ends with the letter a. By inspection of Fig. 8.2, x(ca)y′b ∈ W0, and hence x(ca)y′b lifts to a SAW x(ca)y′b.
However, x(ca)y′b contains a cycle containing the vertex x, a contradiction.

(iv) Suppose y′ ends with the letter c. The penultimate letter of y′ is either a or b. It cannot be b since that would imply
that the SAW x(ca)y′ visits the vertex xc twice.
Therefore, y′

= y′′ac for some word y′′, and furthermore x(ca)y′′a ends at xbc. As above, we have that x(ca)y′′ab ∈ W0,
and hence x(ca)y′′ab is a SAW. However, x(ca)y′′ab contains a cycle containing the vertex xc , a contradiction.

B. Suppose w visits the vertex xbc but not the vertex xb.

(i′) The walk w cannot visit the vertex xbc before it visits the vertex xc , since any such visit to xbc must be followed
by xc , in contradiction of the fact that w is a SAW. That is, y begins with a subword y′ such that x(ca)y′ lifts to a
SAW from 1 to xbc.

(ii′) The subword y′ cannot end with b, since that would require two visits by the SAW w to the vertex xc.
(iii′) The subword y′ cannot end in a, as in (iii) above.
(iv′) If y′ ends in c , then the penultimate vertex of x(ca)y′ is xb, which is excluded by assumption.

We conclude that any substitution of a single unit gives rise to a word in W ′ that lifts to a SAW on G.
Suppose next that several units of a word w ∈ W are altered by substitutions of the form of (a′) above. Such

substitutions necessarily involve distinct units of w. We consider these substitutions one by one, in the natural order
of w. If the new walk, which will be denoted v′, is not self-avoiding, there is an earliest substitution which creates a
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cycle. The above argument may be applied to that substitution to obtain a contradiction in a manner similar to the above.
We expand this slightly as follows.

Let w = x(ca)y ∈ W (the case w = x(ba)y ∈ W is handled similarly), and let w′
= x(bcba)y be derived from w by

substituting bcba for ca. Suppose further that certain substitutions have already been made to some of the units of the
initial word x ∈ W , resulting in a new word x′. Write v = x′(ca)y and v′

= x′(bcba)y, noting that

the walks w, w′, v, v′ traverse the same set of a-edges of G,
in the same order and in the same directions.

(8.3)

Suppose

v is a SAW, but v′ is not. (8.4)

We will obtain a contradiction, and the full claim of the lemma follows. By (8.4), v visits either xb or xc.
C. Suppose v visits the vertex xb.

(i) We prove first that x′ does not visit xb. Suppose the converse. By (8.3), the final letter of both x and x′ is a, so that
the final step of x and x′ is along the directed edge [xa, x⟩. In particular, x′ does not traverse the edge ⟨x, xb⟩ in either
direction. As in A(i) above, x does not visit xb. By (8.3), x′ cannot traverse the edge ⟨xba, xb⟩ in either direction. The
claim follows.

(ii) Therefore, v visits xb after it visits the vertex x of G. That is, y begins with a subword y′ such that both x(ca)y′ and
x′(ca)y′ lift to SAWs from 1 to xb. This leads to a contradiction as in A(ii)–(iv) above.

D. Suppose v visits the vertex xbc but not the vertex xb.

(i′) The walk v cannot visit the vertex xbc before it visits the vertex xc , since any such visit to xbc must be followed
immediately by xc , in contradiction of the fact that v is a SAW.

(ii′) Therefore, y begins with a subword y′ such that x′(ca)y′ lifts to a SAW from 1 to xbc. This leads to a contradiction
as in B(ii′)–(iv′) above.

The proof is concluded. □

9. Transitive TLF-planar graphs

9.1. Background and main theorem

We consider next the class of so-called ‘topologically locally finite, planar graphs’ (otherwise known as TLF-planar
graphs), as defined in the next paragraph. The basic properties of such graphs were presented in [36], to which the reader
is referred for further information. In particular, the class of TLF-planar graphs includes the one-ended planar Cayley
graphs and the transitive tilings (including the square, triangular, and hexagonal lattices).

We use the word plane to mean a simply connected Riemann surface without boundaries. An embedding of a graph
G = (V , E) in a plane P is a function η : V ∪ E → P such that η restricted to V is an injection and, for e = ⟨u, v⟩ ∈ E, η(e)
is a C1 image of [0, 1]. An embedding is (P-)planar if the images of distinct edges are disjoint except possibly at their
endpoints, and a graph is (P-)planar if it possesses a (P-)planar embedding. An embedding is topologically locally finite
(TLF ) if the images of the vertices have no accumulation point, and a connected graph is called TLF-planar if it possesses a
planar TLF embedding. Let Td denote the class of transitive, TLF-planar graphs with vertex-degree d. We shall sometimes
confuse a TLF-planar graph with its TLF embedding. The boundary ∂S of S ⊆ P is defined by ∂S := S ∩ P \ S, where T is
the closure of a subset T of P .

The principal theorem of this Section 9 is as follows.

Theorem 9.1. Let G ∈ T3 be infinite. Then µ(G) ≥ φ.

The principal methods of the proof are as follows: (i) the construction of an injection from eastward SAWs on L+

to SAWs on G, (ii) a method for verifying that certain paths on G are indeed SAWs, and (iii) the generalized Fisher
transformation of [18] and Section 7.

A face of a TLF-planar graph (or, more accurately, of its embedding) is an arc-connected component of the (topological)
complement of the graph. The size k(F ) of a face F is the number of vertices in its topological boundary, if bounded; an
unbounded face has size ∞. Let G = (V , E) ∈ Td and v ∈ V . The type-vector Jk1, k2, . . . , kdK of v is the sequence of sizes
of the d faces incident to v, taken in cyclic order around v. Since G is transitive, the type-vector is independent of choice
of v modulo permutation of its elements, and furthermore each entry satisfies ki ≥ 3. We may therefore refer to the
type-vector Jk1, k2, . . . , kdK of G, and we define

f (G) =

d∑
i=1

(
1 −

2
ki

)
,

with the convention that 1/∞ = 0. We shall use the following two propositions.
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Proposition 9.2 ([36, p. 2827]). Let G = (V , E) ∈ T3.

(a) If f (G) < 2, G is finite and has a planar TLF embedding in the sphere.
(b) If f (G) = 2, G is infinite and has a planar TLF embedding in the Euclidean plane.
(c) If f (G) > 2, G is infinite and has a planar TLF embedding in the hyperbolic plane (the Poincaré disk).

Moreover, all faces of the above embeddings are regular polygons.

There is a moderately extensive literature concerning the function f and the Gauss–Bonnet theorem for graphs. See,
for example, [7,28,30].

Proposition 9.3. The type-vector of an infinite graph G ∈ T3 is one of the following:

A. Jm,m,mK with m ≥ 6,
B. Jm, 2n, 2nK with m ≥ 3 odd, and m−1

+ n−1
≤

1
2 ,

C. J2m, 2n, 2pK with m, n, p ≥ 2 and m−1
+ n−1

+ p−1
≤ 1.

Recall that the elements of a type-vector lie in {3, 4, . . . } ∪ {∞}.

Proof. See [36, p. 2828] for an identification of the type-vectors in T3. The inequalities on m, n, p arise from the condition
f (G) ≥ 2. □

9.2. Overview and preliminary results

Let G ∈ T3 be infinite. By Proposition 9.2, f (G) ≥ 2. If f (G) = 2 then, by Proposition 9.3, the possible type-vectors are
precisely those with type-vectors J6, 6, 6K, J3, 12, 12K, J4, 8, 8K, J4, 6, 12K, J4, 4,∞K, that is, the hexagonal lattice [9] and its
Fisher graph [18, Thm 1], the square/octagon lattice [19, Example 4.2], the Archimedean lattice J4, 6, 12K of Example 3.3(c),
Example 6.2, and Remark 9.8, and the doubly infinite ladder of Fig. 5.1. It is explained in the above references that each
of these has µ ≥ φ.

It suffices, therefore, to prove Theorem 9.1 when G ∈ T3 is infinite with f (G) > 2. By Proposition 9.3, the cases to be
considered are:

A. Jm,m,mK where m > 6,
B. Jm, 2n, 2nK where m ≥ 3 is odd and m−1

+ n−1 < 1
2 ,

C. J2m, 2n, 2pK where m, n, p ≥ 2 and m−1
+ n−1

+ p−1 < 1.

These cases are covered in the following order, as indexed by section number.

Section 9.3 : min{ki} ≥ 5, Jk1, k2, k3K ̸= J5, 8, 8K,
Section 9.4 : min{ki} = 3,
Section 9.5 : J4, 2n, 2pK where p ≥ n ≥ 4 and n−1

+ p−1 < 1
2 ,

Section 9.6 : J4, 6, 2pK where p ≥ 6,
Section 9.7 : J5, 8, 8K.

Note that Section 9.6 includes the case of the Archimedean lattice A = J4, 6, 12K with f (A) = 2 (see also Example 3.3(c)).
Let the graph G lie in one of the last five categories. We identify G with a specific planar, TLF embedding in the

hyperbolic plane every face of which is a regular polygon. The required proof in each case is similar in overall approach
to that of Theorem 3.1. Let Wn be the set of eastward n-step SAWs from 0 on the singly-infinite ladder L+ of Fig. 5.1.
Fix a root v ∈ V , and let Σn(v) be the set of n-step SAWs on G starting at v. We shall construct an injection from Wn to
Σn(v), and the inequality µ(G) ≥ φ will follow by (5.1).

Let w ∈ Wn. For each of the five categories above, we shall explain how the word w encodes an element of Σn(v). In
building an element of Σn(v) sequentially, at each stage there is a choice between two new edges, which, in the sense
of the embedding, we may call ‘right’ and ‘left’ (when viewed from the previous edge). The key step is to show that the
ensuing paths on G are indeed SAWs so long as the cumulative differences between the aggregate numbers of right and
left steps remain sufficiently small.

Some preliminary lemmas follow. Let G ∈ Td be infinite, where d ≥ 3. A cycle C of G is called clockwise if its orientation
after embedding is clockwise. Suppose a walker traverses C clockwise. On arriving at a vertex w of C , the walker faces
d−1 possible exits from w, the rightmost of which is designated ‘right’ and the leftmost ‘left’ (the other d−3 are neither
right nor left). Let r = r(C) (respectively, l = l(C)) be the number of right (respectively, left) turns taken by the walker as
it traverses C clockwise, and let

ρ(C) = r(C) − l(C). (9.1)

Lemma 9.4. Let G ∈ Td be infinite with d ≥ 3. Let C be a cycle of G, and let F := {F1, F2, . . . , Fs} be the set of faces enclosed
by C. There exists F ∈ F such that the boundary of F \ F is a cycle of G. The set of edges lying in ∂F \ C forms a path.
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Fig. 9.1. An illustration of the cycles C , C ′ , CF , with the path π from ca to cb .

Proof. Let C be a cycle of G, and let F ′
⊆ F be the subset of faces that lie in the bounded component of P \ C , and that

share an edge with C . Let I be the (connected) subgraph of G comprising the edges and vertices of the faces in F ′, and
let Id be its dual graph (with the infinite face omitted). Then Id is finite and connected, and thus has some spanning tree
T which is non-empty. Pick a vertex t of T with degree 1, and let F be the corresponding face. The first claim follows
since the removal of t from T results in a connected subtree. The second claim holds since, if not, the interior of C is
disconnected, which is a contradiction. □

Lemma 9.5. Let G ∈ Td be infinite with d ≥ 3. For any cycle C = (c0, c1, . . . , cn) of G,

ρ(C)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
= 6 +

s∑
i=1

[
k(Fi) − 6

]
if d = 3,

≥ 4 +

s∑
i=1

[
k(Fi) − 4

]
if d ≥ 4,

(9.2)

where F = {F1, F2, . . . , Fs} is the set of faces enclosed by C.

Proof. The proof is by induction on the number s = s(C) of faces enclosed by C . It is trivial when s = 1 that r(C) = k(F1)
and l(C) = 0, and (9.2) follows in that case.

Let S ≥ 2 and assume that (9.2) holds for all C with s(C) < S. Let C = (c0, c1, . . . , cn) be such that s(C) = S, and pick
F ∈ F as in Lemma 9.4. Let π be the path of edges in ∂F \ C , as illustrated in Fig. 9.1.

Let CF (respectively, C ′) be the boundary cycle of F (respectively, F \ F ), each viewed clockwise. We write π in the
form π = (ca, ψ1, ψ2, . . . , ψm, cb) where a ̸= b, ψi /∈ C . We claim that

ρ(C)
{
= ρ(C ′) + ρ(CF ) − 6 if d = 3,
≥ ρ(C ′) + ρ(CF ) − 4 if d ≥ 4.

(9.3)

The induction step follows from (9.3) by applying the induction hypothesis to C ′ and noting that ρ(CF ) = k(F ).
We prove (9.3) by considering the contributions made to its left and right sides by vertices in the cycles C, C ′, CF . Any

vertex y ∈ C \{ca, cb} contributes equal amounts to the left and right sides. We turn, therefore, to vertices in the remaining
path π .

1. The cycle CF (respectively, C ′) takes a right (respectively, left) turn at each vertex ψi. The net contribution from ψi
to the right (respectively, left) side of (9.3) is 1 − 1 = 0 (respectively, 0).

2. Consider the turns made by C, C ′, CF at a vertex x ∈ {ca, cb}.

(a) Suppose d = 3. At x, CF takes a right turn, C ′ takes a right turn, and C takes a left turn. The net contribution
from x to the right (respectively, left) side of (9.3) is 1 + 1 = 2 (respectively, −1).

(b) Suppose d ≥ 4. At x, CF takes a right turn. Furthermore, if C ′ takes a right turn, then C does not take a left
turn. The net contribution from x to [ρ(C ′) + ρ(CF )] − ρ(C) is at most 2.

We sum the above contributions, noting that Case 2 applies for exactly two values of x, to obtain (9.3). The proof is
complete. □

Lemma 9.6. Let G ∈ Td be infinite with type-vector Jk1, k2, . . . , kdK, and let C be a cycle of G.

(a) If d = 3 and min{ki} ≥ 6, then ρ(C) ≥ 6.
(b) If d = 3 and Jk1, k2, k3K = J5, 2n, 2nK with n ≥ 5, then ρ(C) ≥ 5.
(c) If d ≥ 4 and min{ki} ≥ 4, then ρ(C) ≥ 4.
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Proof. (a, c) These are immediate consequences of (9.2).
(b) Suppose Jk1, k2, k3K = J5, 2n, 2nK with n ≥ 5, and let M = M(C) be the number of size-2n faces enclosed by a cycle
C . We shall prove ρ(C) ≥ 5 by induction on M(C). If M = 0, then C encloses exactly one size-5 face, and ρ(C) = 5. Let
S ≥ 1, and assume ρ(C) ≥ 5 for any cycle C with M(C) < S.

Let C be a cycle with M(C) = S. Since every vertex of C is incident to no more than one size-5 face inside C , C contains
some size-2n face F with at least one edge in common with C . Let C ′ be the boundary of the set obtained by removing F
from the inside of C; that is, C ′ may be viewed as the sum of the cycles C and ∂F with addition modulo 2. Then C ′ may
be expressed as the edge-disjoint union of cycles C1, C2, . . . , Cm satisfying M(Ci) < S for i = 1, 2, . . . ,m.

By (9.2) and the induction hypothesis,

ρ(C) = 6 + [2n − 6] +

m∑
i=1

[ρ(Ci) − 6]

≥ 2n − m.

Each Ci shares an edge with ∂F , and no two such edges have a common vertex. Therefore, m ≤ n, and the induction step
is complete since n ≥ 5. □

9.3. Proof that µ ≥ φ when min{ki} ≥ 5 and Jk1, k2, k3K ̸= J5, 8, 8K

This case covers the largest number of instances. Certain other special families of type-vectors will be considered in
Sections 9.4–9.7. By Proposition 9.3, it suffices to assume

either min{ki} ≥ 6, or Jk1, k2, k3K = J5, 2n, 2nK with n ≥ 5. (9.4)

We shall construct an injection from the set Wn to the set Σn(v) of SAWs on G starting at v ∈ V . For w ∈ Wn, we
shall define an n-step SAW π (w) on G, and the map π : Wn → Σn(v) will be an injection. The idea is as follows. With G
embedded in the plane, one may think of the steps of a SAW on G (after its first edge) as taking a sequence of right and
left turns. For given w ∈ Wn, we will explain how the letters H and V in w are mapped to the directions right/left.

Let n ≥ 1 and w = (w1w2 · · ·wn) ∈ Wn, so that in particular w1 = H. We shall construct the SAW π = π (w) via an
intermediate SAW π ′ which is constructed iteratively as follows. In order to fix an initial direction, we choose a 2-step
SAW (v′, v, v′′) of G starting at some neighbour v′ of v, and we assume in the following that the turn in the path (v′, v, v′′)
is rightwards (the other case is similar). We set π ′(w) = (v′, v, v′′) if n = 1 and we call this rightwards turn the first turn
of π ′. The first letter of w is w1 = H, and the second is either H or V, and the latter determines whether the second turn
of π ′ is the same as or opposite to the previous turn. We adopt the rule that:

if (w1w2) = (HV), the second turn is the same (rightwards) as the previous,
if (w1w1) = (HH), the second turn is opposite (leftwards) to the previous.

(9.5)

For k ≥ 3, the kth turn of π ′ is either to the right or the left, and is either the same or opposite to the (k − 1)th turn.
Whether it is the same or opposite is determined as follows:

when (wk−2wk−1wk) = (HHH), it is opposite,
when (wk−2wk−1wk) = (HHV), it is the same,
when (wk−2wk−1wk) = (HVH), it is opposite,
when (wk−2wk−1wk) = (VHH), it is the same,
when (wk−2wk−1wk) = (VHV), it is opposite.

(9.6)

When the iterative construction is complete, a path π ′
= (v′

= π ′

−1, v = π ′

0, v
′′

= π ′

1, . . . , π
′
n) on G ensues. Since π ′

proceeds by right or left turns, it is non-backtracking. The following claim will be useful in showing it is also self-avoiding.

Lemma 9.7. Let i ∈ {0, 1, . . . , n}. For any subpath of π ′ beginning at π ′

i , the numbers of right turns and left turns differ by
at most 3.

Proof. A subpath of π ′ corresponds to some subword w′ of w, and we may assume the length of w′ is at least three. Let
k ≥ 1. A k-block of w′ is defined to be a subword B of w′ of the form VHkV, where Hk denotes k consecutive appearances
of H. A block is a k-block for some k ≥ 1. A k-block B is called even (respectively, odd) according to the parity of k.

A k-block B generates k+1 turns in π ′ corresponding to the letters HkV. These k+1 turns are determined by the k+1
triples HVH, VHH, HHH, . . . , HHV (with k − 2 appearances of HHH). By inspection of (9.6), the corresponding turns are
related to their predecessors by the sequence osoo . . .os, where o (respectively, s) means ‘opposite’ (respectively, ‘same’),
that is, with k − 1 opposites and 2 sames. Suppose, for illustration, that the turn immediately prior to the block was R,
where R (respectively, L) denotes right (respectively, left). Then the corresponding sequence of turns begins LLRL . . .

(a) If B is odd, then, in the corresponding k + 1 turns made by π ′, the numbers of right and left turns are equal.
Moreover, if the first turn is to the right (respectively, left), then the last turn is to the left (respectively, right).
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(b) If B is even, the numbers of right and left turns differ by 3. Moreover, the first turn is to the left if and only if the
last turn is to the left, and in that case there are 3 more left turns than right turns.

Let B be an odd block. By (a), B makes no contribution to the aggregate difference between the number of right and
left turns. Furthermore, the first turn of B equals the first turn following B (since the last turn of B is opposite to the first,
and the following subword HVH results in a turn equal to the first). We may therefore consider w′ with all odd blocks
removed (which is to say, an odd k-block is replaced by a single V), and we assume henceforth that w′ has no odd blocks.

Using a similar argument for even blocks based on (b) above, the effects of two even blocks cancel each other, and we
may therefore remove any even number of even blocks from w′ (with a single V remaining) without altering the aggregate
difference. After performing these reductions, we obtain from w′ a reduced word w′′ with form HaVHb, HaVH2rVHb, or
Hr , where a ≥ 0, r ≥ 1, b ≥ 0. We consider each of these cases separately.

Let ∆ denote the difference (in absolute value) between the numbers of left and right turns, and write ( )m for a
sequence of length m. Each turn of w′′ is related to its previous turn according to (9.6). Therefore, once the first turn of
w′′ is determined, the rest follow by sequential application of (9.6). The first turn depends on the character (V or H) prior
to w′′, but its value is immaterial to the value of ∆. We may therefore choose the previous character arbitrarily.

A. The case w′′
= HaVHb. Suppose that w′′ is preceded by H.

(i) Let a ≥ 2. The corresponding sequence is (ooo· · ·)a−1s(osoo· · ·)b, and ∆ ≤ 2.
(ii) Let a = 1. The sequence is s(osoo· · ·)b, so that ∆ ≤ 2.
(iii) Let a = 0. The sequence is (osoo· · ·)b, so that ∆ ≤ 2.

B. The case w′′
= HaVH2rVHb. Suppose that w′′ is preceded by H.

(i) Let a ≥ 2. The sequence is (ooo· · ·)a−1s(osoo· · ·)2rs(osoo· · ·)b so that ∆ ≤ 2.
(ii) Let a = 1. The sequence is s(osoo· · ·)2rs(osoo· · ·)b, so that ∆ ≤ 2.
(iii) Let a = 0. The sequence is (osoo· · ·)2rs(osoo· · ·)b, so that ∆ ≤ 3.

C. The case w′′
= Hr . We may suppose that r ≥ 4, since otherwise ∆ ≤ 3 trivially. Suppose that w′′ is preceded by H.

The sequence is (ooo· · ·)r−1, so that ∆ ≤ 1.
In every case ∆ ≤ 3, and the proof is complete. □

Write π ′(w) = (v′, v = x0, v′′
= x1, . . . , xn), and remove the first step to obtain a SAW π (w) = (v = x0, x1, . . . , xn).

By Lemmas 9.6(a, b) and 9.7, subject to (9.4), π (w) contains no cycle and is thus a SAW. This is seen as follows. Suppose
ν = (xi, xi+1, . . . , xj = xi) is a cycle. The cycle has one more turn than the path, and hence, by Lemma 9.7, |ρ(ν)| ≤ 4, in
contradiction of Lemma 9.6(a, b). In conclusion, π maps Wn to Σn(v).

The map π : Wn → Σn(v) is an injection since, by examination of (9.5)–(9.6), π (w) ̸= π (w′) if w ̸= w′. We deduce by
(5.1) that µ(G) ≥ φ.

9.4. Proof that µ ≥ φ when min{ki} = 3

Assume min{ki} = 3. By Proposition 9.3 and the assumption f (G) > 2, the type-vector is J3, 2n, 2nK for some n ≥ 7.
On contracting each triangle to a single vertex, we obtain the graph G′

= Jn, n, nK; therefore, G is a Fisher graph of G′. By
Proposition 7.4(a),

1
µ(G)2

+
1

µ(G)3
=

1
µ(G′)

.

It is proved in Section 9.3 that µ(G′) ≥ φ, and the inequality µ(G) ≥ φ follows (see also [18]).

9.5. Proof that µ ≥ φ for J4, 2n, 2pK with p ≥ n ≥ 4 and n−1
+ p−1 < 1

2

Let G = (V , E) ∈ T3 be infinite with type-vector J4, 2n, 2pK where p ≥ n ≥ 4 and n−1
+ p−1 < 1

2 . Note that G has girth
4, and every vertex is incident to exactly one size-4 face.

From G, we obtain a new graph G′ by contracting each size-4 face to a vertex. For u, v ∈ V lying in different size-4 faces
Fu, Fv of G, there exists α ∈ Aut(G) that maps v to v, and hence maps Fu to Fv . Therefore, α induces an automorphism of G′,
so that G′ is transitive. We deduce that G′

∈ T4, and in addition G′ is infinite with girth n ≥ 4 and type-vector Jn, p, n, pK.
We shall make use of G′ later in this proof.

Let v ∈ V . We will construct an injection from Wn to Σn(v) in a manner similar to the argument following (9.4). An
edge of G is called square if it lies in a size-4 face, and non-square otherwise. Let w = (w1w2 · · ·wn) ∈ Wn. We shall
construct a non-backtracking n-step walk π = π (w) on G from v, and then show it is a SAW. For k = 1, set π (w) = (v, v′)
where ⟨v, v′

⟩ is the unique non-square edge of G incident to v. We perform the following construction for k = 2, 3, . . . , n,
in which the edges of π are denoted e1, e2, . . . , en in order.
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Fig. 9.2. The dashed line is the projected SAW on G′ . After a right (respectively, left) turn, the projection either moves straight or turns left
(respectively, right).

1. Suppose (wk−1wk) = (HV). The edge ek is chosen to be square according to the following rules.

(a) If the edge ek−1 of π corresponding to wk−1 is square, then the next edge ek of π is square. That is, ek−1 and
ek form a length-2 path on the same size-4 face of G.

(b) Suppose ek−1 is non-square. Then the next edge ek is one of the two possible square edges, chosen as follows.
In contracting G to G′, the walk (π0, π1, . . . , πk−1) contracts to a walk π ′

= π ′(w) on G′. Find the most recent
turn at which π ′ turns either right or left. If, at that turn, π ′ turns left (respectively, right), the walk π on G
turns left (respectively, right). If no turn of π ′ is rightwards or leftwards, then (for definiteness) π turns left.

2. Suppose (wk−1wk) = (HH).

(a) If the edge ek−1 of π corresponding to wk−1 is square, then the next edge ek of π is the unique possible
non-square edge.

(b) Suppose ek−1 is non-square. Then ek is one of the two possible square edges, chosen as follows. In the notation
of 1(b) above, find the most recent turn at which π ′ turns either right or left. If at that turn, π ′ turns left
(respectively, right), the walk π on G turns right (respectively, left). If π ′ has no such turn, then π turns right.

3. Suppose (wk−1wk) = (VH), so that, in particular, k ≥ 3. The edge ek−1 of G corresponding to wk−1 must be square.
If ek−2 is square (respectively, non-square), then ek is the unique possible non-square (respectively, square) edge.

We claim that the mapping π : Wn → Σn(v) is an injection. By construction, π (w) = π (w′) if and only if w = w′,
and, furthermore, π (w) is non-backtracking. It remains to show that each π (w) is a SAW. In showing this as follows, we
shall make use of the projected walk π ′(w) on the graph G′.

We begin the proof that π = π (w) is a SAW with some observations concerning the above construction, illustrated in
part by Fig. 9.2.

(i) Every non-square edge of π corresponds to the letter H. Thus, π ′
= π ′(w) takes a step only (but not invariably)

when H appears.
(ii) Each non-square edge of π is followed by a square edge of some size-4 face F . Having touched a size-4 face F , the

walk π proceeds around F before departing along the unique non-square edge incident with the point of departure.
(iii) The walk π never traverses consecutively more than three edges of any F . In addition, π ′ is non-backtracking.
(iv) The projected walk π ′ takes steps on G′. The steps of π ′ can be rightwards, straight on, or leftwards. If we pay no

attention to the straight-on steps, then each left step is followed immediately by a right step, and vice versa.

By the above, the numbers of right and left turns of π ′ have difference at most 1, and moreover the same holds for
any subwalk ν of π ′(w). By Lemma 9.6(c) or directly, no such ν can form a cycle. Hence π ′(w) (and therefore π (w) also)
is a SAW. The proof is complete.

9.6. Proof that µ ≥ φ for J4, 6, 2pK with p ≥ 6

Let G ∈ T3 be infinite with type-vector J4, 6, 2pK where p ≥ 6. (We include the case p = 6, being the Archimedean
lattice of Fig. 6.1.) Associated with G is the graph P := Jp, p, pK as drawn in Fig. 9.3. As illustrated in the figure, each
vertex u of P lies in the interior of some size-6 face of G denoted Hu. Let u be a vertex of P and let v be a vertex of Hu. Let
π = (u0 = u, u1, . . . , un) be a SAW on P from u. We shall explain how to associate with π a family of SAWs on G from
v. The argument is similar to that of the proof of Proposition 7.4.

A hexagon H of G has six edges, which we denote according to approximate compass bearing. For example, pw(H) is
the edge on the west side of H , and similarly pnw, pne, pe, pse, psw. For definiteness, we assume that Hu has orientation as
in Fig. 9.3, and v ∈ psw(Hu), as in Fig. 9.4.
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Fig. 9.3. The graph G with an embedded (dashed) copy of the graph P = Jp, p, pK.

Fig. 9.4. The step (u, u1) on P may be mapped to any of the four SAWs on G from v, as drawn on the right.

Let Σn(u) be the set of n-step SAWs on P from u, the first edge of which is either north-westwards or eastwards (that
is, away from psw(Hu)). Suppose the first step of the SAW π ∈ Σn(u) is to the neighbour u1 that lies eastward of u (the
other cases are similar). With the step (u, u1), we may associate any of four SAWs on G from v to pw(Hu1 ), namely those
illustrated in Fig. 9.4. These paths have lengths 2, 3, 5, 6. If u1 lies to the north-west of u, the corresponding four paths
have lengths 3, 4, 4, 5.

We now iterate the above construction. At each step of π , we construct a family of 4 SAWs on G that extend the walk
on G to a new hexagon. When this process is complete, the ensuing paths on G are all SAWs, and they are distinct.

Let ZP (ζ ) (respectively, ZG(ζ )) be the generating function of SAWs on P from u (respectively, on G from v), subject to
above italicized assumption. In the above construction, each step of π is replaced by one of four paths, with lengths lying
in either (2, 3, 5, 6) or (3, 4, 4, 5), depending on the initial vertex of the segment. Since

ζ 2 + ζ 3 + ζ 5 + ζ 6 ≥ ζ 3 + 2ζ 4 + ζ 5 [= ζ 3(1 + ζ )2], ζ ∈ R,

we have, by the argument that led to (7.13), that

ZP (ζ 3(1 + ζ )2) ≤ ZG(ζ ), ζ ≥ 0. (9.7)

Let z > 0 satisfy

z3(1 + z)2 =
1
µ(P)

. (9.8)

Since 1/µ(P) is the radius of convergence of ZP , (9.7) implies z ≥ 1/µ(G), which is to say that

µ(G) ≥
1
z
. (9.9)

As in Section 9.3, µ(P) ≥ φ. It suffices for µ(G) ≥ φ, therefore, to show that the (unique) root in (0,∞) of

x3(1 + x)2 =
1
φ

satisfies x ≤ 1/φ, and it is easily checked that, in fact, x = 1/φ.

Remark 9.8 (Archimedean Lattice A = J4, 6, 12K). The inequality µ(A) ≥ φ may be strengthened. In the special case
p = 6, we have that µ(P) =

√
2 +

√
2; see [9]. By (9.8)–(9.9), µ(G) ≥ 1.676.
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Fig. 9.5. The dashed line is the projected SAW π ′ on G′ , assumed in the figure to satisfy ρ(π ′) ≥ 0. When ρ(π ′) ≥ 0 (respectively, ρ(π ′) < 0), the
projection may move leftwards but not rightwards (respectively, rightwards but not leftwards) at its next pentagon.

9.7. Proof that µ ≥ φ for J5, 8, 8K

Let G ∈ T3 be infinite with type-vector J5, 8, 8K. The proof in this case is essentially the same as that of Section 9.5,
but with squares replaced by pentagons.

Let G′ be the simple graph obtained from G by contracting each size-5 face of G to a vertex. As in the corresponding
step at the beginning of Section 9.5, we have that G′

∈ T5 is infinite with type-vector J4, 4, 4, 4, 4K. A midpoint of G is
called pentagonal if it belongs to a size-5 face, and non-pentagonal otherwise.

We opt to consider SAWs that start and end at midpoints of edges. Let m be the midpoint of some non-pentagonal
edge of G, and let Σn(m) be the set of n-step SAWs on G from m. We will find an injection from Wn to Σn(m). Let
w = (w1w2 · · ·wn) ∈ Wn. We construct as follows a non-backtracking path π = π (w) on G starting from m. The first step
of π (w) is (v, v′) where v′ is an arbitrarily chosen midpoint neighbouring m. We write π = (π0, π1, . . . , πn).

For any walk π ′ of G′, let ρ(π ′) = r(π ′)−l(π ′), where r(π ′) (respectively, l(π ′)) is the number of right (respectively, left)
turns of π ′. Since walks move between midpoints, each step of π ′ involves a turn, and thus the terminology is consistent
with its previous use.

We iterate the following for k = 2, 3, . . . , n (cf. the construction of Section 9.5).

1. Suppose (wk−1wk) = (HV). The midpoint πk is chosen to be pentagonal according to the following rules.

(a) If πk−1 is pentagonal, the next point πk is also pentagonal.
(b) Suppose πk−1 is non-pentagonal. On contracting G to G′, the path on G, so far, gives rise to a walk π ′ on G′.

If ρ(π ′) < 0 (respectively, ρ(π ′) ≥ 0), then the next turn of π is to the left (respectively, right).

2. Suppose (wk−1wk) = (HH).

(a) If πk−1 is pentagonal, then πk is non-pentagonal.
(b) Suppose πk−1 is non-pentagonal. In the notation of 1(b) above, if ρ(π ′) < 0 (respectively, ρ(π ′) ≥ 0), then

the next turn of π is to the right (respectively, left).

3. Suppose (wk−1wk) = (VH), and note that πk−1 is necessarily pentagonal. If πk−2 is pentagonal (respectively,
non-pentagonal), then πk is non-pentagonal (respectively, pentagonal).

We claim that the mapping π : Wn → Σn(m) is an injection, and this claim is justified very much as in the
corresponding step of Section 9.5. It is straightforward that π is an injection from Wn to the set of n-step non-backtracking
paths of G from m, and it suffices to show that any π (w) is self-avoiding.

Points (i)–(iv) of Section 9.5 are replaced in the current setting by the following, illustrated in Fig. 9.5.

(i) Any step of π leading to a non-pentagonal midpoint corresponds to the letter H. Thus, π ′
= π ′(w) takes a step only

(but not invariably) when H appears.
(ii) Each non-pentagonal midpoint of π is followed by a pentagonal midpoint of some size-5 face F . Having touched

a size-5 face F , the walk π proceeds around F before departing to the unique non-pentagonal midpoint available
from the point of departure.

(iii) The walk π never uses consecutively more then three midpoints of any F . In addition, π ′ is non-backtracking.
(iv) The projected walk π ′ takes steps on G′. The steps of π ′ can be rightwards, leftwards, or ‘between’. If we pay no

attention to the ‘between’ steps, then each left step is followed immediately by a right step, and vice versa.

As in Section 9.5, we need to show that, after contracting each pentagon to a vertex, the ensuing non-backtracking
walk π ′(w) is a SAW on G′. For any subwalk ν of π ′(w), it may be checked (see (iv) above, as in the proof of Section 9.5),
that its numbers of right and left turns differ by at most 1. By Lemma 9.6(c) or directly, ν cannot form a cycle. Hence
π ′(w) (and therefore π (w) also) is a SAW, and the proof is complete.
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10. Groups with two or more ends

10.1. Groups and ends

The number of ends of a connected graph G is the supremum over its finite subgraphs H of the number of infinite
components that remain after removal of H . We recall from [34, Prop. 6.2] that the number of ends of an infinite transitive
graph is invariably 1, 2, or ∞. Moreover, a two-ended (respectively, ∞-ended) graph is necessarily amenable (respectively,
non-amenable). The number of ends of a finitely generated group is the number of ends of any of its Cayley graphs.

We present two principal theorems in this section concerning Cayley graphs of 2-ended and ∞-ended groups, with
further results in Section 10.3. Theorems 10.1 and 10.2 are proved, respectively, in Sections 10.2 and 10.4. As in [19], all
Cayley graphs in this paper are in their simple form, that is, multiple edges are allowed to coalesce.

Theorem 10.1. Let Γ = ⟨S | R⟩ be a finitely presented group with two ends. Any Cayley graph G of Γ with degree 3 or more
satisfies µ(G) ≥ φ.

We have only partial results for ∞-ended Cayley graphs of finitely generated groups Γ = ⟨S | R⟩, as given in
Theorem 10.2. As usual, we consider only finite generator sets S with 1 /∈ S and which are symmetric in that S = S−1. A
generator set S is called minimal if no proper subset is a generator set. Stallings [38,39] proved that a group with two or
infinitely many ends is either an HNN extension or an amalgamated product (see Section 10.3 for further details, and for
an explanation of the above terms). The proof of Theorem 10.2 is found in Section 10.4.

Theorem 10.2. Let Γ be a finitely generated group with infinitely many ends, and let m (≥ 3) be the minimum cardinality
of a generator set.

(a) If m ≥ 4, then µ(G) ≥
√
3 (> φ) for any Cayley graph G of Γ .

(b) Suppose m = 3 and Γ is an HNN extension. Any Cayley graph G of Γ satisfies µ(G) ≥ φ.
(c) Suppose Γ = H ∗C K is an amalgamated product with generator set S ⊆ H∪K satisfying |S| = 3. There exists a minimal

generator set S ′
⊆ H ∪ K with |S ′

| = 3 whose Cayley graph G′ satisfies µ(G′) ≥ φ.
(d) If Γ = H ∗C K is an amalgamated product, there exists a minimal generator set S whose Cayley graph G satisfies

µ(G) ≥ φ.

Further results are presented in Theorem 10.4, and will be used in the proof of Theorem 10.2. We do not know whether
the above two theorems can be extended to multiply ended transitive graphs. Indeed, we have no example of a 2-ended,
transitive, cubic graph that is not a Cayley graph (see [42]).

10.2. Proof of Theorem 10.1

We are grateful to Anton Malyshev for his permission to present his ideas in this proof. Let Γ be as in the statement
of the theorem, and recall from [8, Thm 1.6] (see also [29,35,38]) that there exists β ∈ Γ with infinite order such that
the infinite cyclic subgroup H := ⟨β⟩ of Γ has finite index, and β preserves the ends of Γ . By Poincaré’s theorem for
subgroups, we may choose β such that H ⊴ Γ . We write ω1 for the end of Γ containing the ray {βk1 : k = 1, 2, . . . },
and ω0 for its other end.

Let F : H → Z be given by F (βn) = n, and let G be a locally finite Cayley graph of Γ . By [21, Thm 3.4(ii)], there exists
a harmonic, H-difference-invariant function h : Γ → R that agrees with F on H.

Let g be a harmonic function on G. For an edge e⃗ = [u, v⟩ of G endowed with an orientation from u to v, we write
∆g(e⃗) = g(v)− g(u). A cut of G is a finite set of edges that separates the two ends of G; a cut is minimal if no strict subset
is a cut. The (g-)size of a cut C is given as the aggregate g-flow across C , that is,

sC (g) =

∑
e⃗∈C

∆g(e⃗),

where the sum is over all edges in C oriented such that initial vertex (respectively, final vertex) of each edge is connected
in G \ C to ω0 (respectively, ω1). Here are two observations of which the first is standard. (See [17, Chap. 1] for a general
account of flows and electrical networks.)

(a) Since g is assumed harmonic, sC (g) is constant for all minimal cuts C . (Outline proof. Let C1, C2 be minimal cuts, and
let D be a minimal cut such that each Ci lies in the connected component of G \ D containing ω1. Let i ∈ {1, 2} and
let Fi be the union of bounded components of G \ (Ci ∪ D). By summing ∆g(e⃗) over all oriented edges e⃗ = [u, v⟩
of G with u ∈ Fi (so that each undirected edge of Fi appears twice, once with each orientation), and using the fact
that g is harmonic, we find that sCi (g) = sD(g). The claim follows.) We write s(g) := sC (g) for the size of g , that is,
the common g-size of all minimal cuts C .
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(b) We have that s(h) ̸= 0. (Outline proof. Assume s(h) = 0, so that sC (h) = 0 for all minimal cuts C . Let C be a minimal
cut and find k ≥ 1 such that 1 and β lie in the same bounded component F of G \ (β−kC ∪ βkC). Let F ′ be obtained
from G by identifying all endpoints of edges of β−kC which do not lie in F (respectively, all endpoints of edges of
βkC2 not lying in F ) as a single composite vertex c− (respectively, c+). Since sβ−kC (h) = sβkC (h) = 0, the function
h is harmonic on F ′, and in addition the total h-flow through F ′ from c− to c+ is zero. It follows that h is constant
on F . In particular, h(1) = h(β), a contradiction.)

We now develop the argument of Proposition 6.1. Let {κi : i ∈ I} be a set of representatives of the cosets of H, so that
Γ /H = {κiH : i ∈ I} and |I| < ∞. For κ ∈ Γ , we write sign(κ) = 1 (respectively, sign(κ) = −1) if the ends of Γ are
κ-invariant (respectively, the ends are swapped under κ). Note that

s(κh) = sign(κ)s(h) (10.1)

where κh(α) := h(κα) for α ∈ Γ .
Let g : Γ → R be given by

g(α) =

∑
i∈I

sign(κi)h(κiα), α ∈ Γ . (10.2)

Since g is a sum of harmonic functions, it is harmonic. Furthermore, (as in the proof of Proposition 6.1), g is Γ -skew-
difference-invariant in that

g(αv) − g(αu) = sign(α)[g(v) − g(u)], u, v ∈ Γ , α ∈ Γ . (10.3)

By (10.1) and (10.2), s(g) = |I|s(h) ̸= 0, whence g is non-constant.
Let a, b, c denote the values of g(v)−g(u) for v ∈ ∂u. By (10.3), a, b, c are independent of the choice of u up to negation,

and, since g is harmonic, a + b + c = 0. By re-scaling and re-labelling where necessary, since g is non-constant we may
assume |a|, |b| ≤ c = 1. The directed edge e⃗ = [u, v⟩ is labelled with the corresponding letter (with ambiguities handled
as below), and is allocated weight ∆g(e⃗). Thus, a directed edge labelled d has weight ±d.

A SAW π = (π0, π1, . . . , πn) is called maximal if g(πk) < g(πn) for k < n. We shall construct a family of maximal SAWs
π of sufficient cardinality to yield the claim. Choose (π0, π1) such that g(π1) = g(π0)+ 1. There are three possibilities for
the vector (a, b, c).

(a) Suppose (a, b, c) = (0,−1, 1). For n ≥ 1, a maximal SAW π = (π0, π1, . . . , πn) can be extended to two distinct
maximal SAWs by adding either (i) the directed edge [πn, w⟩ with weight 1, or (ii) the directed edge [πn, w⟩ with
weight 0, followed by the edge [w, x⟩ with weight 1. The number wn of such walks of length n from a given starting
point satisfies wn = wn−1 + wn−2, whence µ ≥ φ.

(b) Suppose (a, b, c) = (− 1
2 ,−

1
2 , 1). Since there are no odd cycles comprising only edges with weight ±

1
2 , the labels

of such edges, ⟨u, v⟩ say, may be arranged in such a way that [u, v⟩ and [v, u⟩ receive the same label. A maximal
SAW π = (π0, π1, . . . , πn) that ends with a c-edge can be extended by following sequences of additional directed
edges labelled one of ac , bc , abac , babc , thus creating a new walk denoted π ′. Since π is maximal, we have that
h(πn) − h(πn−1) = 1. By tracking the signs of the weights of any additional edge, we see that any such π ′ is
both self-avoiding and maximal. The number wn of such SAWs with length n from a given starting point satisfies
wn = 2wn−2 + 2wn−4. Therefore, limn→∞w

1/n
n equals the root in [1,∞) of the equation x4 = 2(x2 + 1), namely

x =

√
1 +

√
3 > φ.

(c) Suppose b < a < 0, −a − b = c = 1. There are no cycles comprising only directed edges labelled either a or b. A
maximal SAW π = (π0, π1, . . . , πn) that ends with a c-edge can be extended by following edges labelled either (i)
ac , or (ii) bc , babc , bababc , and so on; any such extension results in a maximal SAW, as in Case (b) above. The number
wn of such SAWs with an odd length n from a given starting point satisfies wn = 2wn−2 +wn−4 +wn−6 + · · · +w1.
It is easily checked that wn ≥ Cφn, as required.

The proof is complete.

10.3. Multiply ended graphs

Let Γ be an infinite, finitely generated group. By Stalling’s splitting theorem (see [38,39]), Γ has two or more ends if
and only if one of the following two properties holds.

(i) Γ = ⟨S, t | R, t−1C1t = C2⟩ is an HNN extension, where H = ⟨S | R⟩ is a presentation of the group H , |S| < ∞, C1
and C2 are isomorphic finite subgroups of H , and t is a new symbol.

(ii) Γ = H ∗C K is a free product with amalgamation, where H , K are groups, and C ̸= H, K is a finite group.

A further characterization of ∞-ended groups is provided in [39] (see also [6, Sect. 1.3]).
Part (i) above may be taken as the definition of an HNN extension, named as an acronym of the authors of [27]. The

amalgamated product H ∗C K of part (ii) is an extension of the notion of the free product, and is defined as follows. Let
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H , K , C be groups, and let φ : C → H , ψ : C → K be injective homomorphisms. Let N be the smallest normal subgroup
of the free product H ∗K containing all elements of the form φ(c)ψ(c)−1, c ∈ C . Then H ∗C K is defined to be the quotient
group (H ∗ K )/N .

Readers are referred to [3,31,33] for the background and properties of amalgamated products. Although the group C ,
in (ii), is not required to be a subgroup of either H or K , when we speak of C as such a subgroup we mean the image of
C under the corresponding map (φ or ψ , as appropriate). We will generally assume that C ̸= H, K . We next remind the
reader of the normal form theorem (Theorem 10.3) for amalgamated products, and then we summarize the results of this
section in Theorem 10.4.

Theorem 10.3 (Normal form, [3, Sect. 2.2], [31, p. 187], [33, Cor. 4.4.1]).

(a) Every g ∈ H ∗C K can be written in the reduced form g = cv1 · · · vn where c ∈ C, and the vi lie in either H \ C or K \ C
and they alternate between these two sets. The length l(g) := n of g is uniquely determined, and l(g) = 0 if and only if
g ∈ C. Two such expressions of the form v1 · · · vn, w1 . . . wn represent the same element in H ∗C K if and only if there
exist c0 (= 1), c2, . . . , cn (= 1) ∈ C such that wk = ck−1vkc−1

k .
(b) Let A (respectively, B) be a set of right coset representatives of (the image of) C in H (respectively, K), where the

representative of C is 1. Every g ∈ H ∗C K can be expressed uniquely in the normal form g = cx1 · · · xn where c ∈ C,
and the xi lie in either A or B, and they alternate between these two sets.

Here are the results of this section.

Theorem 10.4.

(i) Let Γ = ⟨S, t | R, t−1C1t = C2⟩ be an HNN extension as above. Any locally finite Cayley graph G of Γ admits a group
height function (see [21]). If such G is cubic, then µ(G) ≥ φ.

(ii) Let Γ = H ∗C K be an amalgamated product as above.

(a) Suppose C = {1}. Let S ⊆ H ∪ K be a generator set of Γ satisfying |S| ≥ 3. The corresponding Cayley graph G
satisfies µ(G) ≥ φ.

(b) Suppose C ̸= {1}. Any generator set S satisfying both

1. S ∩ C ̸= ∅, |S| ≥ 3, and
2. there exists s1 ∈ S (respectively, s2 ∈ S) with a normal form beginning with an element of H\C (respectively,

an element of K \ C),

generates a Cayley graph G with µ(G) ≥ φ.
(c) Suppose C ̸= {1} and C is a normal subgroup of both H and K . Any generator set S satisfying S∩C ̸= ∅ generates

a Cayley graph G with µ(G) ≥ φ.

Proof of Theorem 10.4(i). Let H = ⟨S | R⟩, and let h : Γ → Z be the unique function satisfying h(1) = 0 and, for γ ∈ Γ ,

h(γ t) − h(γ ) = 1,
h(γ s) − h(γ ) = 0. s ∈ S.

By [21, Thm 4.1] applied to the unit vector in ZS∪{t} with 1 in the entry labelled t , h is a group height function (and hence
a transitive graph height function) on any locally finite Cayley graph of Γ . When G is cubic, the inequality µ(G) ≥ φ
follows by Theorem 3.1(b). □

We turn to the proof of Theorem 10.4(ii). By [20, Thm 1], we have µ(G) ≥
√
3 > φ if the generator-set S satisfies

|S| ≥ 4. We may, therefore, assume henceforth that |S| = 3. It is straightforward to check the following lemma.

Lemma 10.5. Let Γ be a finitely generated group with two or more ends. Let S = {s, s1, s2} be a generator set whose Cayley
graph G is cubic. Then, subject to possible permutation of the generators, exactly one of the following holds.

A. s2 = s21 = s22 = 1.
B. s2 = s1s2 = 1.

Proof of Theorem 10.4(ii)(a) when |S| = 3. When C = {1}, Γ is the free product of H and K . In this case, S ∩ H
(respectively, S ∩ K ) generates H (respectively, K ). To see this, let h ∈ H \ {1}. If h is not a word in the alphabet S ∩ H ,
then it has a shortest representation as a product (of elements in S) including at least one element of S ∩ H and one of
S ∩ K . This contradicts Theorem 10.3(a).

Since S is symmetric, without loss of generality we may write S = {s, s1, s2} with s ∈ H , s1, s2 ∈ K , and either A or B
of Lemma 10.5 holds. It suffices to construct an injection from Wn into the set of n-step SAWs on G starting from 1. Let
⟨x, y⟩ be an edge of G, so that x−1y ∈ S. When endowed with an orientation, the now oriented edge [x, y⟩ is said to be
labelled by the generator x−1y.
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Assume A of Lemma 10.5 holds. Let w ∈ Wn, and construct a SAW π = (π0, π1, . . . , πn) on G as follows. We set
π0 = 1, π1 = s, and we iterate the following construction for k = 2, 3, . . . , n.

1. If wk = V, the kth edge of π is that labelled s2.
2. If (wk−1wk) = (HH), the kth edge is that labelled s (respectively, s1) if the (k− 1)th edge is labelled s1 (respectively,

s).
3. If (wk−1wk) = (VH), the kth edge is that labelled s.

The outcome may be expressed in the form π = p1s2p2s2 · · · where each pi = ss1ss1 · · · is a word of alternating s and s1.
The letters in π alternate between the two sets H \ {1} and K \ {1} with the possible exception of isolated appearances of
s1s2, each of which is in K \{1}. Now s1s2 ̸= 1, whence s1s2 ∈ K \{1}. By Theorem 10.3(a), the map w ↦→ π is an injection.

Assume B of Lemma 10.5 holds. Let Gn be the Cayley graph of Z2 ∗ Zn for 3 ≤ n < ∞. We have that H ∼= Z2, and the
Cayley graph of K is a cycle of length at least 4. Therefore, G is isomorphic to Gn for some n ≥ 4. The exact value µ(G)
may be deduced from [11, Thm 3.3], but it suffices here to note that

µ(G) ≥ µ(G3) > φ. (10.4)

The above strict inequality holds since G3 is the graph obtained from the cubic tree by the Fisher transformation of [18]
(see item H of Section 4.1). □

Proof of Theorem 10.4(ii)(b) when |S| = 3. Let Γ , G, S, s1, s2 be as given, and s ∈ S ∩ C . We may write S = {s, s1, s2},
and either A or B of Lemma 10.5 holds. By assumption 2, we have that s1, s2 /∈ C; since s−1

∈ C , it follows that s2 = 1.
Under A, the normal form of s1 (respectively, s2) begins and ends with elements of H \ C (respectively, K \ C). Under

B, the normal form of s1 (respectively, s2) ends with an element of K \ C (respectively, H \ C).
Let w ∈ Wn, and construct a SAW π on G as follows. We set π0 = 1, π1 = s1, and we iterate the following for

k = 2, 3, . . . , n.

1. Suppose wk = V. The kth edge of π is that labelled s.
2. Suppose (wk−1wk) = (HH). The kth edge is that labelled s1 (respectively, s2) if the (k − 1)th edge is labelled by the

member of {s1, s2} whose normal form ends with an element of K \ C (respectively, H \ C).
3. Suppose (wk−1wk) = (VH). The kth edge is that labelled s1 (respectively, s2) if the (k − 2)th step is labelled by the

member of {s1, s2} whose normal form ends with an element of K \ C (respectively, H \ C).

We claim that the resulting π is a SAW. If not, there exists a representation of the identity of the form

1 = p1sp2s · · · spr , (10.5)

where r ≥ 1, and each pi is a non-empty alternating product of elements of H \ C and K \ C such that p1p2 · · · pr is such
a product also, with some aggregate length L ≥ 1 (we allow also that p1 and/or pr may equal 1). Each s in (10.5) lies in C ,
and we may move these members of C to the left end of the product by the following procedure. Consider a consecutive
pair of elements in (10.5) of the form pis, with pi ∈ H \ C (respectively, pi ∈ K \ C). Now, pis lies in some right coset
of C in H (respectively, in K ), whence pis = ciai for some ci ∈ C and ai ∈ A (respectively, ai ∈ B), where we have used
the notation of Theorem 10.3(b). Replacing pis by ciai, and iterating this procedure, we obtain a normal form c ′v1v2 · · · vL,
which cannot equal the identity since L ≥ 1. This contradicts (10.5), and the claim of part (b) follows. □

Proof of Theorem 10.4(ii)(c) when |S| = 3. We write S = {s, s1, s2}. Clearly, |S ∩ C | ≤ 2, since C is a proper subgroup
of both H and K .

Assume that |S ∩ C | = 2, and let {s1, s2} = S ∩ C and {s} = S \ C . Since s−1 /∈ C , it follows by Lemma 10.5 that s2 = 1.
Since C is a normal subgroup of both H and K , we have by Theorem 10.3 that αCα−1

= C for α ∈ Γ . Since S generates Γ ,
every g ∈ Γ may be expressed as a word in the alphabet {s, s1, s2}, and hence in the form g = c1sc2s · · · scr with ci ∈ C .
By the normality of C , g = csk for some c ∈ C , k ∈ N. However, s2 = 1, so that there are only finitely many choices for g ,
a contradiction.

Therefore, we have |S ∩ C | = 1, and we write {s} = S ∩ C and {s1, s2} = S \ C . Either A or B of Lemma 10.5 holds.
If one of {s1, s2} has a normal form starting with an element in H \ C , and the other has a normal form starting with

an element in K \ C , then the claim follows by Theorem 10.4(ii)(b). For the remaining case, we may assume without loss
of generality that the normal forms of both s1 and s2 start with elements in H \ C . It follows that, under either A and B,
both normal forms end in H \ C .

Here is an intermediate lemma, proved later in this section.

Lemma 10.6. For j ∈ N,

if A holds, (s1s2)j, (s1s2)j−1s1, (s2s1)j−1s2 /∈ C,

if B holds, sj1 /∈ C .
(10.6)
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We shall construct an injection from the set Wn into the set of n-step SAWs on G from 1. For w ∈ Wn, we construct a
SAW π on G with π0 = 1, π1 = s1 as follows.

1. Each letter V in w corresponds to an edge in π with label s.
2. Assume A holds. The letters H in w correspond to the elements of the sequence (s1, s2, s1, s2, . . . ), in order. That is,

for k ≥ 1, the (2k − 1)th (respectively, (2k)th) occurrence of H corresponds to s1 (respectively, s2).
3. Assume B holds. The letters H in w correspond to edges labelled s1.

We show next that the resulting walks are self-avoiding.
Assume B holds. If one of the corresponding walks fails to be self-avoiding, there exists a representation of the identity

as

1 = sk11 ssk21 s · · · sskr1 , (10.7)

where r ≥ 1, k1, kr ∈ N ∪ {0}, ki ∈ N for 2 ≤ i < r , and K = k1 + · · · + kr ≥ 1. Since C is normal, we have 1 = csK1 for
some c ∈ C . This contradicts (10.6), and we deduce that each such π is self-avoiding.

Assume A holds. The above argument remains valid with adjusted (10.7), and yields that 1 = ct for some c ∈ C and

t ∈
{
(s1s2)j, (s2s1)j, (s1s2)j−1s1, (s2s1)j−1s2 : j ∈ N

}
.

Therefore, t = c−1
∈ C , in contradiction of (10.6). We deduce that each such π is self-avoiding. □

Proof of Lemma 10.6. Let t1 ∈ H \ C and t2 ∈ K \ C , so that

l([t1t2]n) = 2n, n ∈ N.

Since S generates H ∗C K , we can express t1t2 as a word in the alphabet {s, s1, s2}, denoted t(s, s1, s2). Let t̃ be the word
obtained from t(s, s1, s2) by removing all occurrences of s and using the group relations on S to reduce the outcome to a
minimal form. More precisely, since s ∈ C and C is normal in H and K , every occurrence of s in t(s, s1, s2) may be moved
leftwards to obtain t(s, s1, s2) = ct ′(s1, s2) for some c ∈ C and some word t ′(s1, s2). On reducing t ′ by the group relations
on S, we obtain t̃ , and note that

if A holds, t̃ is an alternating product of s1 and s2.

if B holds, t̃ ∈ {sk1, s
k
2 : k ∈ N}.

(10.8)

Since t̃ = c−1t1t2, we have l(̃t) = l(t1t2) = 2. By the normality of C again, there exists c ′
∈ C such that l((̃t)n) =

l(c ′
[t1t2]n) = 2n. In particular, by Theorem 10.3(a),

(̃t)n /∈ C, n ∈ N. (10.9)

Suppose A holds. By (10.8),

t̃ ∈
{
(s1s2)k, (s2s1)k, (s1s2)k−1s1, (s2s1)k−1s2 : k ∈ N

}
. (10.10)

If t̃ ∈ {(s1s2)k−1s1, (s2s1)k−1s2 : k ∈ N}, we have (̃t)2 = 1, which contradicts (10.9). Therefore,

t̃ ∈
{
(s1s2)k, (s2s1)k : k ∈ N

}
.

If (s1s2)j ∈ C for some j ∈ N, then

(̃t)j ∈
{
[(s1s2)j]k, [(s2s1)j]k : k ∈ N

}
⊆ C,

which contradicts (10.9). Hence (s1s2)j /∈ C for j ∈ N, as required. Suppose next that c := (s1s2)j−1s1 ∈ C for some j ∈ N.
Since C is a normal subgroup of both H and K , we have s2cs−1

2 = s2(s1s2)j ∈ C . Therefore, (s1s2)2j ∈ C , which contradicts
(10.9) as above. A similar argument holds for the case c := (s2s1)j−1s2. The first statement of (10.6) is proved.

Suppose B holds. A similar argument is valid by (10.8), as follows. Suppose t̃ = sk1 (a similar argument holds in the
other case, using the fact that s1s2 = 1). If sj1 ∈ C for some j ∈ N, then (̃t)j = (sj1)

k
∈ C , in contradiction of (10.9). The

second statement of (10.6) follows. □

10.4. Proof of Theorem 10.2

Since Γ has infinitely many ends, any generator set S has cardinality 3 or more. In particular, m ≥ 3. Part (a) follows by
(1.1). Part (b) follows by Theorem 10.4(i). We turn to part (c), and assume henceforth that Γ = H ∗C K is an amalgamated
product as in Section 10.3.

Let S ⊆ H ∪ K be a generator set of Γ with |S| = 3. We may assume S is minimal, as follows. If S is not minimal, it
has a proper subset which is a generator set, in contradiction of the fact that |S| = m = 3.
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Since C is a proper subset of both H and K , there exist s1 ∈ S ∩ (H \ C) and s2 ∈ S ∩ (K \ C). Let s ∈ S \ {s1, s2} and,
without loss of generality, assume s ∈ H . If s ∈ C , the inequality µ ≥ φ follows by Theorem 10.4(ii)(b). We may, therefore,
assume henceforth that s ∈ H \ C , so that

s, s1 ∈ H \ C, s2 ∈ K \ C . (10.11)

By Lemma 10.5, one of the following occurs.

A. s2 = s21 = s22 = 1.
B. s22 = ss1 = 1.

Assume A holds.

(a) Suppose ss1 ∈ C . If ss1 = s1s, then S ′
:= {ss1, s1, s2} is a minimal generator set with Cayley graph G′ satisfying

µ(G′) ≥ φ by Theorem 10.4(ii)(b).
Suppose ss1 ̸= s1s, and let ω be the order of ss1, that is, the least k such that (ss1)k = 1. Since ss1 ̸= s1s, we have
that ω ≥ 3, and hence

s, ss1s, ss1ss1s are distinct elements of H \ C, and
s1, s1ss1, s1ss1ss1 are distinct elements of H \ C .

(10.12)

Let Π be the set of finite labelled walks on the Cayley graph G of S starting at 1 and satisfying:

1. the first edge is labelled s2,
2. between any two consecutive appearances of edges labelled s2, there appears one of the six words in (10.12),

and nothing further,
3. after the final appearance of s2, there appears one of the words in (10.12).

We claim that members of Π are SAWs on G, and we prove this next. A walk π ∈ Π is a word in the alphabet S
with the form π = s2a1s2a2s2 · · · s2ar where r ≥ 1 and a1, a2, . . . , ar ∈ H \ C . Now, π is a SAW if and only if no
subword of π equals the identity 1. Any subword containing the letter s2 has length (in the sense of Theorem 10.3)
at least one, and is therefore not the identity. Let ν be a subword not containing s2, so that ν is a subword of some
ai. By inspection of (10.12), and the fact that ss1 has order three or more, we have that ν ̸= 1.
The generating function (2.2) corresponding to the set Π is

Z(ζ ) =

∞∑
k=1

f (ζ )k where f (ζ ) = ζ (2ζ + 2ζ 3 + 2ζ 5).

By a simple calculation, f (1/φ) > 1, whence

Z(1/φ) = ∞. (10.13)

Therefore, µ(G) ≥ φ.
(b) Suppose ss1 ∈ H \ C . We construct an injection from Wn into the set of n-step SAWs on G from 1 as follows. Let

w ∈ Wn, and let π denote the following walk on G. Set π0 = 1, π1 = s2.

1. At each occurrence of V in w, π traverses the edge labelled s1.
2. Any run of the form Hr in w corresponds to a walk s2, s2s, s2ss2, s2ss2s, . . . of length r in π .

The resulting π traverses the edges of G in the manner of a word of the form α = (a1s1a2s1 · · · s1ar ) where each ai
is a word starting with s2 and alternating s and s2 (we allow ar to be empty). By (10.11), each ai is in the reduced
form of Theorem 10.3(a). At each occurrence of s1 in α, there may be a consecutive appearance of generators in
H \ C taking the form ss1. At each such instance, we may group ss1 as a single element of H \ C , thus obtaining a
reduced form for α.
If π is not self-avoiding, some non-trivial subword of α equals the identity 1. By Theorem 10.3, this subword must
have length 0, which cannot occur. Therefore, π is a SAW.

Assume B holds, so that s−1
1 = s. If C = {1}, the claim follows by Theorem 10.4(ii)(a). Assume C ̸= {1}. Consider the

minimal generator set S̃ = {s2, u := s2s1, v := ss2} with corresponding Cayley graph G̃. We construct an injection f from
Wn into the set of n-step SAWs on G̃ from 1, as follows. Let w ∈ Wn and construct π = f (w) as follows. Set π0 = 1,
π1 = u, and let k ≥ 2.

1. If wk = V, the kth edge of π is labelled s2.
2. If wk = H, the kth edge of π lies in {u, v}.

(i) If (wk−1wk) = (HH), the kth edge of π has the same label as the (k − 1)th.
(ii) If (wk−1wk) = (VH), the kth edge of π is labelled as the inverse of that of the (k − 2)th.
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The resulting π has the form of the word

α = (uk1s2vk2s2 · · · s2xkr ) (10.14)

where r ≥ 2, ki ≥ 1 (we allow kr = 0), the powers of u and v alternate, and x ∈ {u, v} as appropriate. The walk π is the
image π = f (w) where w = Hk1VHk2V· · ·VHkr . By considering the various possibilities (as follows), we obtain that every
non-trivial subword of α has non-zero length, and hence π is a SAW.

Here is a brief amplification of the last stage. Suppose the walk π contains some cycle. Then the word α of (10.14)
contains a subword of the form β = t l11 s2t

l2
2 s2 · · · s2xlm that satisfies β = 1, where m ≥ 2, li > 0 (we allow l1 = 0 and

lm = 0, but not both), {t1, t2} = {u, v} and the powers of u and v alternate, and x ∈ {u, v} is chosen accordingly. The only
cancellations that can arise in β from the group relations on S (under Case B) are of the form s2s2 = 1. Such a product
appears only where either (i) β ends with the sequence vs2 (so that lm = 0), or (ii) some s2 is preceded by v and followed
by u, thus forming the subsequence vs2u. At each such occurrence, exactly one cancellation occurs. The resulting word β ′

(after such cancellations) is an alternating product of terms in H \C and K \C , with strictly positive length. (For example,
if β = vt1s2ut2s2vk3s2 where t1, t2, t3 > 0, then β ′

= vt1−1ss2s1ut2−1s2vt3−1s, and the last product, when expanded in
terms of the generators s, s1, s2, is in reduced form.) By Theorem 10.3(a), β ′

̸= 1, a contradiction. We conclude that π is
a SAW. The proof of part (c) is complete.

Finally, we prove part (d) of the theorem. If Γ has a minimal generator set S satisfying |S| ≥ 4, the corresponding
Cayley graph G satisfies µ(G) ≥

√
3 > φ by (1.1). We may, therefore, assume that every minimal generator set of Γ has

cardinality 3.
By considering the reduced form of Theorem 10.3(a), we may find some generator set S satisfying S ⊆ H ∪ K , and,

by passing to subsets if necessary, we may assume S is minimal. By the above, |S| = 3. By part (c), there is a minimal
generator set S ′

⊆ H ∪ K whose Cayley graph G′ has µ(G′) ≥ φ.

Remark 10.7. Theorem 10.2(c) falls short of the assertion that µ ≥ φ for all Cayley graphs of amalgamated products
with three generators. There are nevertheless some partial results in this direction. Let S = {s, s1, s2} be a generator set
satisfying (10.11), and let G be the corresponding Cayley graph. If A holds, and either ss1 /∈ C , or ss1 ∈ C and ss1 ̸= s1s, then
µ(G) ≥ φ. The proof is given above. If B holds, one may show that µ(G) ≥ φ so long as s21 /∈ C . The proof is by construction
of an injection from the set Wn of n-step SAWs on the Cayley graph of the free product Z2∗Z3 = ⟨a, b, b2 | a2, b3⟩ starting
at a given vertex, into the set Πn of n-step walks π on G with π0 = 1 and satisfying: π can be expressed as a word of
the form α = (a1s2a2s2 · · · s2ar ) where each ai lies in T := {s, s2, s1, s21} (we allow a1 and ar to be empty). The details are
omitted.
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