
In memory of Roland L. DobrushinDECAY OF CORRELATIONS IN SUBCRITICALPOTTS AND RANDOM-CLUSTER MODELSGeoffrey Grimmett and Marcelo PizaAbstract. We prove exponential decay for the tail of the radius R of the cluster at theorigin, for subcritical random-cluster models, under an assumption slightly weaker than thatE(Rd�1) <1 (here, d is the number of dimensions). Speci�cally, if E(Rd�1) <1 throughoutthe subcritical phase, then P(R � n) � exp(��n) for some � > 0. This implies the exponentialdecay of the two-point correlation function of subcritical Potts models, subject to a hypothesisof (at least) polynomial decay of this function. Similar results are known already for percolationand Ising models, and for Potts models when the number q of available states is su�cientlylarge; indeed the hypothesis of polynomial decay has been proved rigorously for these cases. Intwo dimensions, the hypothesis that E(R) <1 is weaker than requiring that the susceptibilitybe �nite, i.e., that the two-point function be summable. The principal new technique is aform of Russo's formula for random-cluster models reported by Bezuidenhout, Grimmett, andKesten. For the current application, this leads to an analysis of a �rst-passage problem forrandom-cluster models, and a proof that the associated time constant is strictly positive if andonly if the tail of R decays exponentially.
1. IntroductionThe probability theory of phase transition in physical systems is fairly developed (see thepapers published in [14]). For a variety of models of interest, it turns out that there is aunique point of phase transition, which separates a `subcritical' phase from a `supercriti-cal' phase. Throughout the subcritical phase, one often �nds that the correlation functionsdecay exponentially over large distances. In contrast, they are bounded away from zeroin the supercritical phase. This general picture of statistical mechanics has been veri�edin many probabilistic systems, including the percolation and Ising models. Such percola-tion/Ising systems may be incorporated together with Potts models within the broader classof `random-cluster models', and the latter class of models provides a beautiful general set-ting for studying such systems. In particular, one may ask whether or not the exponentialdecay of the connectivity function characterises the subcritical phases of all random-clustermodels. The current paper is directed at this question.1991 Mathematics Subject Classi�cation. 60K35, 82B20.Key words and phrases. Random-cluster model, Potts model, �rst-passage percolation, connectivity func-tion, phase transition.Address of authors. Statistical Laboratory, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB,United Kingdom.This version was prepared on 18 November 1996. 1



2 GEOFFREY GRIMMETT AND MARCELO PIZADecay rates are fundamental to understanding the structure of models of statisticalphysics. One of the major thrusts of the modern theory of Gibbs states is directed towardsa control of correlation functions over large spatial scales. This programme was initiated inpart in a famous paper of Dobrushin and Pecherski [11], who established in a certain con-text that polynomial decay of correlation functions implies exponential decay. Such resultshave provided stepping stones towards proofs of full exponential decay; see [18, 24, 27] forfurther examples of such theorems. In the present paper, we prove a similar result in thegeneral context of the random-cluster model (otherwise known as the Fortuin{Kasteleynrepresentation).In advance of presenting the technical details, we state briey the main result of thispaper. (For formal de�nitions, the reader is referred to Section 2.) Let p and q be theparameters of a random-cluster model on Zd where d � 2; here, p is the edge parameter,and q is the cluster-weighting parameter. Suppose q � 1, and let pc(q) be the critical valueof p, i.e., pc(q) = supfp : �p;q(0$1) = 0g;where �p;q is the appropriate probability measure, and f0$1g is the event that the originis in an in�nite open cluster. [For cognoscenti, we remark that �p;q is the random-clustermeasure obtained using `free boundary conditions'.] Writing f0$ @�ng for the event thatthe open cluster at the origin intersects the sphere of radius n, it is presumably the casethat(1.1) �p;q(0$ @�n) � e��nfor some � = �(p; q) satisfying(1.2) �(p; q) > 0 if p < pc(q):Inequalities of the form (1.1) have been proved in the special cases when q = 1, q = 2, and qis su�ciently large. These cases correspond respectively to the percolation model ([13]), theIsing model ([2, 4, 6]), and Potts models with large q ([21, 22, 23]). Although the argumentsused in these three special situations have certain features in common, there is no uni�edproof, and in particular no proof which extends to general values of q.For percolation and Ising models, the exponential decay of the two-point function was�rst proved in two stages. Initially, it was shown that exponential decay is valid wheneverthe susceptibility is �nite, i.e., whenever the two-point connectivity function (or correlationfunction in the case of the Ising model) is summable; and later it was proved that the suscep-tibility is indeed �nite throughout the subcritical phase. (This was achieved by Hammersley[18] and Aizenman{Barsky [3] for percolation, and by Simon{Lieb [24, 27] and Aizenman{Barsky{Fern�andez [4] for the Ising model. In the case of percolation, a direct argument,avoiding the �rst stage, was discovered by Menshikov [25, 26].) In proofs of exponentialdecay for the percolation model, the BK inequality plays a central role (see [7, 13]). Whenq = 2, this role is played by the Simon{Lieb inequality (see [24, 27]). No such method isknown for general q, although various attempts have been made to �ll the gap (see [9, 15]).In this paper, we establish the �rst stage of the above programme in the general settingof random-cluster models. We prove that(1.3) if lim supn!1 nnd�1�p;q(0$ @�n)o <1 when p < pc(q)



DECAY OF CORRELATIONS IN RANDOM-CLUSTER MODELS 3then there exists � = �(p; q), satisfying �(p; q) > 0 when p < pc(q), such that(1.4) �p;q(0$ @�n) � e��n for all large n:Next we discuss briey the assumption (1.3). Hypothesis (1.3) requires that �p;q(0 $@�n) decay at least as fast as 1=nd�1, and is implied by the stronger statement that(1.5) �p;q(Rd�1) <1 when p < pc(q);where R = maxfn : 0$ @�ng is the radius of the open cluster at the origin (and we use �p;qto denote expectation as well as probability); we shall return to this discussion just beforethe statement of Theorem 1 in Section 3. By elementary geometrical considerations, thereexists a positive constant � = �(d) such that(1.6) �jCj1=d � R+ 1 � jCjwhere C = fx : 0 $ xg is the open cluster at the origin. Therefore (1.6) is implied by thestatement(1.7) �p;q(jCjd�1) <1 when p < pc(q);which is equivalent, when d = 2, to the �niteness of the susceptibility�(p; q) = �p;q(jCj):The relationship between random-cluster models and percolation/Ising/Potts models iswell explored and documented elsewhere (see the references in [16]). The result describedabove has the following implication for ferromagnetic Potts models. If the two-point cor-relation function decays at least as fast as a certain negative polynomial, then it decays atleast as fast as e��n. Hypothesis (1.3) is not easily translated into an exactly equivalentstatement for Potts models. Either of the following two conditions su�ces for Potts models:(a) the two-point correlation function decays at least as fast as 1=n2(d�1),(b) the �nite-volume quantity �1�n(�0 = 1)� q�1 decays at least as fast as 1=nd�1.(Here, �1� is a ferromagnetic Potts measure on f1; 2; : : : ; qg� having `1' boundary conditions,and �0 is the spin at the origin.)For this study, it is natural to investigate a certain related �rst-passage problem arisingas follows from the random-cluster model. Let Fn denote the minimum number of closededges amongst paths of the lattice joining the origin to @�n, i.e., Fn is the minimal numberof extra edges required to be open in order that f0$ @�ng occurs. It may be shown, usingthe ergodicity of �p;q (see [12, 16, 20]), that the limit(1.8) �(p; q) = limn!1nn�1Fnoexists and is constant (�p;q-a.s.). It is presumably the case that(1.9) �(p; q) > 0 for p < pc(q):



4 GEOFFREY GRIMMETT AND MARCELO PIZAWe show in Theorem 4 that (1.9) holds if and only if �p;q(0 $ @�n) decays exponentiallyas n!1 when p < pc(q) (i.e., (1.1) and (1.2) hold). As noted earlier in a related context,exponential decay is proved only for q = 1, q = 2, and for su�ciently large q. The above�rst-passage problem has been studied in the case of percolation (q = 1) by Kesten [19], andrelated results are known for the two-dimensional Ising model (see [12] and its references).A similar �rst-passage problem has been studied by Fontes and Newman [12]. By utilisingone of their arguments, we shall establish su�cient conditions for the conclusion �(p; q) > 0.This in turn implies the required exponential decay.Incidentally, the comparison inequalities (see [16], Thm 2.2) imply exponential decay forsu�ciently small p. The problem is prove it all the way up to the critical point.2. Random-cluster modelsIn this section, we introduce appropriate notation, and we de�ne random-cluster measures.For general results and historical background, we refer the reader to [16] and the referencestherein.We de�ne a random-cluster measure on a �nite graph G = (V;E) as follows. Let0 � p � 1 and q > 0. The relevant sample space is the �nite set 
E = f0; 1gE, con-taining con�gurations that allocate 0's and 1's to the edges of G. For ! 2 
E , we call anedge e open if !(e) = 1, and closed otherwise. The random-cluster measure on G, havingparameters p and q, is the probability measure �G;p;q on 
E given by(2.1) �G;p;q(!) = 1ZG;p;q�Ye2E p!(e)(1� p)1�!(e)�qk(!); ! 2 
E ;where k(!) is the number of open components of ! (i.e., the number of components of thegraph (V; �(!)), where �(!) is the set of open edges under !), and(2.2) ZG;p;q = X!2
E �Ye2E p!(e)(1� p)1�!(e)�qk(!)is the normalising factor (or `partition function').We shall de�ne a random-cluster measure on an in�nite lattice by taking weak limitsof such measures on �nite boxes of the lattice. In advance of doing this, we present somenotation which will be useful later. Let L be the d-dimensional hypercubic lattice havingvertex set Zd and edge set E containing all pairs of vertices which are euclidean distance 1apart; we assume throughout that d � 2. We shall write x = (x1; x2; : : : ; xd) for x 2 Zd,and denote by hx; yi an edge joining vertices x and y. A path of L is an alternating sequencex0; e0; x1; e1; : : : of distinct vertices xi and edges ej such that ej = hxj ; xj+1i for each j. Ifthis path terminates at some xn then it is said to join x0 to xn and to have length n; if apath has in�nitely many vertices then it is said to connect x0 to 1. We writekxk = maxi fjxijg where x = (x1; x2; : : : ; xd):The basic con�guration space is 
 = f0; 1gE endowed with the �-�eld F generated bythe �nite-dimensional cylinders of 
. A con�guration ! (2 
) is an assignment of 0 or 1to each edge e (2 E ), and may be put into one{one correspondence with the set �(!) =



DECAY OF CORRELATIONS IN RANDOM-CLUSTER MODELS 5fe 2 E : !(e) = 1g of `open' edges in !. The `open paths' of a con�guration ! are thosepaths of L all of whose edges are open. If A and B are sets of vertices, we write fA $ Bgfor the event that there exists an open path joining some vertex of A to some vertex ofB. Similarly we write fA $ 1g for the event that some vertex of A is the endpoint of anin�nite open path. The complements of such events are denoted using the symbol=.For any subset E of E , we write FE for the �-�eld of subsets of 
 generated by the�nite-dimensional cylinders of E, so that F = FE . A box � is a subset of Zd of the form� = dYi=1 [xi; yi]for some x; y 2 Zd, and where [xi; yi] is interpreted as [xi; yi] \ Z. The box � generates asubgraph of L with vertex set � and edge set E� containing all edges hu; vi with u; v 2 �.Of particular interest are the boxes �n = [�n; n]d, for n � 1. The boundary @V of a set Vof vertices is the set of all vertices x (2 V ) which are adjacent to some vertex of L not in V .For a box �, we write 
0� for the subset of 
 containing all con�gurations ! satisfying!(e) = 0 for e =2 E� .Let 0 � p � 1 and q � 1. We de�ne �0�;p;q to be the random-cluster measure on the�nite graph (�; E�) `with boundary condition 0' (this is the equivalent of free boundaryconditions for ferromagnetic systems). This is done basically as in (2.1), but on a slightlydi�erent probability space. More precisely, let �0�;p;q be the probability measure on (
;F)satisfying(2.3) �0�;p;q(!) = 1Z0�;p;q� Ye2E� p!(e)(1� p)1�!(e)�qk(!;�) for ! 2 
0�;where k(!;�) is the number of components of the graph (Zd; �(!)) which intersect �, andwhere Z0�;p;q is the appropriate normalising constant(2.4) Z0�;p;q = X!2
0�� Ye2E� p!(e)(1� p)1�!(e)�qk(!;�):Note that �0�;p;q(
0�) = 1.The following facts are known and relevant (see [16]).(a) The limit �p;q = lim�!Zd �0�;p;q exists, in the sense of weak convergence of measures.(b) The measure �p;q is ergodic.(c) If ���;p;q is a random-cluster measure on � with some boundary condition � other than`0' (see [16]), then all weak limits as � ! Zd of ���;p;q are equal to �p;q, so long asp < pc(q), where pc(q) is the following critical value(2.5) pc(q) = supfp : �p;q(0$1) = 0g:(d) Random-cluster measures (with q � 1) satisfy the FKG inequality.The relationship between random-cluster models and Potts models is well documentedelsewhere (see the references in [16]). We note here only that the q-state Potts modelwith pair-interaction J (> 0) corresponds to the random-cluster model with parameters



6 GEOFFREY GRIMMETT AND MARCELO PIZAp = 1� e�J and q. In particular, the two-point correlation function of the Potts model withspins � satis�es h��0;�xi � q�1 = (1� q�1)�p;q(0$ x);where h�i denotes averages with respect to the Potts measure on L arising from free boundaryconditions, and �i;j is the Kronecker delta. Now,�p;q(0$ x) � �p;q(0$ @�n) if kxk = n;so that upper bounds for �p;q(0 $ @�n) imply upper bounds for the Potts correlationfunction.3. Exponential decayWe are interested here in the rate of decay of connectivity functions in the subcritical phase,i.e., when p < pc(q). We prove exponential decay under a certain assumption which weintroduce next. Let q � 1. For 0 � p � 1, de�ne(3.1) Z(p; q) = lim supn!1 nnd�1�p;q(0$ @�n)o:Now Z(p; q) is non-decreasing in p, and we may therefore de�ne(3.2) pg(q) = supfp : Z(p; q) <1g:Clearly pg(q) � pc(q), and it is generally believed that equality holds here. The criticalpoint pg(q) plays the role of the quantity pT in the percolation literature (see [13], p. 45),although pg(q) and pT have di�erent (but similar) de�nitions. As observed in Section 1, itis known that pg(q) = pc(q) if q = 1, q = 2, or q is su�ciently large.The condition Z(p; q) <1 amounts to assuming that the radius R = maxfkxk : 0$ xghas a tail decaying at least as fast as n�(d�1), and is a weaker assumption than the momentcondition �p;q(Rd�1) <1. [The expression �(X) denotes the mean of the random variableX under the measure �.] Actually Z(p; q) = 0 if �p;q(Rd�1) <1, sincend�1�p;q(0$ @�n) = nd�1�p;q(R � n) � 1Xk=n kd�1�p;q(R = k):There is a converse also. If p < pg(q) then Z(p; q) <1, implying thatnc�p;q(0$ @�n)! 0 for all c satisfying c < d� 1:This in turn implies that �p;q(Rc) < 1 for all c satisfying c < d � 1 (see [17], Problem5.6.18).Theorem 1. Let 0 < p < 1 and q � 1, and suppose that p < pg(q). There exists � = �(p; q)satisfying �(p; q) > 0 such that(3.3) �p;q(0$ @�n) � e��n for all large n:This theorem is proved in Section 5.



DECAY OF CORRELATIONS IN RANDOM-CLUSTER MODELS 7When d = 2, it is believed that the critical point pc(q) coincides with the self-dual point�q = pq=(1 + pq); see [16, 28]. It is known that pc(q) � �q, but no rigorous proof ofthe converse inequality is available for general q (� 1). It would be su�cient to prove a`reasonable' decay rate for �p;q(0$ @�n) as n!1, when p < pc(q). Using Theorem 1, we�nd that pc(q) = �q if �p;q(0$ @�n) � c(p)n for all n;where c(p) <1 for p < pc(q).4. Two lemmas, and a �rst-passage problemNext we state and prove two fundamental inequalities. After this, we apply them in studyinga �rst-passage problem.First we review a fundamental formula of [8]. Fix q 2 (0;1), p 2 (0; 1), and let  p bethe random-cluster measure with parameters p and q on the �nite graph G = (V;E); laterwe shall set G = � and  p = �0�;p;q. It is proved in [8] that, for any event A,(4.1) ddp  p(A) = 1p(1� p) n p(N1A)�  p(N) p(A)owhere 1A is the indicator function of A, and N is the number of open edges (i.e., for! 2 
E = f0; 1gE, we have N(!) =Pe !(e)). A version of this formula is often attributedto Russo in the case q = 1 (percolation) although it was known earlier to those working inreliability theory (see the discussion in [13]).There is a partial order on 
E given by: ! � !0 if and only if !(e) � !0(e) for all e 2 E.A function f : 
E ! R is called increasing if f(!) � f(!0) whenever ! � !0, and is calleddecreasing if �f is increasing. An event A (� 
E) is called increasing (resp. decreasing) ifits indicator function 1A is increasing (resp. decreasing).Henceforth we assume that q � 1, so that  p satis�es the FKG inequality. Suppose thatA is an increasing event (but not the empty set ?). For ! 2 
E , let FA(!) be the minimumnumber of additional edges necessary for A to occur; that is to say,(4.2) FA(!) = inf(Xe �!0(e)� !(e)	 : !0 � !; !0 2 A):It may be checked that N + FA is an increasing random variable, and also thatFA(!)1A(!) = 0 for all !. Therefore, by the FKG inequality, p(N1A) =  p�(N + FA)1A� �  p(N + FA) p(A);whence  p(N1A)�  p(N) p(A) �  p(FA) p(A):Substituting this into (4.1), we obtain the following lemma.



8 GEOFFREY GRIMMETT AND MARCELO PIZALemma 2. Let q � 1 and 0 < p < 1. For any increasing event A (6= ?),(4.3) ddp �log p(A)	 �  p(FA)p(1� p) :In the proof of Theorem 1, this inequality plays the role of inequalities (3.10) and (3.36)of [13], used by Menshikov [25, 26] to prove exponential decay for subcritical percolationmodels. Integrating (4.3) over the interval [r; s], and using the facts that p(1� p) � 14 andthat FA is a decreasing random variable, we �nd that r(A) �  s(A) exp��4 Z sr  p(FA)dp�(4.4) �  s(A) exp��4(s� r) s(FA)	; if r � s:There is a further relation between the probability of A and the mean of FA.Lemma 3. Let q � 1 and 0 < r < s < 1. Then, for any increasing event A,(4.5)  r(FA � k) � � qs� r � (1� r)qr + (1� r)q�k  s(A) for all k � 0:This lemma is very closely related to the `sprinkling' lemma of [5], a version of which isvalid for random-cluster models; see also [13]. We shall make use of it in the following way.By (4.5) with C = q2(1� r)=f(s� r)(r + (1� r)q)g, r(FA) = 1Xk=0 r(FA > k) � KXk=0�1� Ck s(A)�where K = maxfk : Ck s(A) � 1g. We sum this as usual, noting that C > 1, to �nd that(4.6)  r(FA) � � log s(A)logC � C �  s(A)C � 1 if r < s:In advance of proving the latter lemma, we present an application of the two lemmastogether. Henceforth let q � 1. Returning to the lattice L, we set An = f0 $ @�ng, andwrite Fn for FAn . As remarked in Section 1, Derrienic's theorem (see [12, 20]) implies theexistence of the constant limit(4.7) �(p; q) = limn!1nn�1Fno �p;q-a.s.Using a comparison inequality (see [16], Thm 2.2) we have that �(p; q) is non-increasing inp, and we de�ne pow(q) = supfp : �(p; q) > 0g:Next we de�ne the correlation length �(p; q) by�(p; q)�1 = limn!1�� 1n log�p;q�0$ ne1�� ;



DECAY OF CORRELATIONS IN RANDOM-CLUSTER MODELS 9where e1 is a unit vector in the direction of increasing �rst coordinate, and where the limitexists by the FKG inequality and subadditivity. (We adopt the convention that 1�1 = 0.)Note that �(p; q) is non-decreasing in p. Using the argument of [16], Thm 5.14, we have thatlimn!1�� 1n log �p;q(An)� = �(p; q)�1;whence �p;q(An) decays exponentially if and only if �(p; q) < 1. We de�ne the furthercritical point pcorr(q) = supfp : �(p; q) <1g:Theorem 4. Let q � 1. It is the case that pow(q) = pcorr(q).It is clear from the above observations that pow(q) = pcorr(q) � pg(q) � pc(q), and itis a consequence of Theorem 1 that pcorr(q) = pg(q). It is believed also that pg(q) = pc(q).As observed earlier, this is known only for q = 1, q = 2, and for su�ciently large q. The�rst-passage problem and the time constant �(p; q) have been studied in detail when q = 1;see [19, 20]. Several authors have paid serious attention to a closely related question whenq = 2 and d = 2, namely, the corresponding question for the two-dimensional Ising model,where the `passage time' Fn is replaced by the minimum number of changes of spin alongpaths from the origin to @�n; see [1, 12]. The time constant in the Ising case cannot exceedthe corresponding random-cluster time constant �(p; 2), since each edge of the Ising modelhaving endpoints with unlike spins gives rise to a closed edge in the associated (coupled)random-cluster process.In some of the following proofs we shall make use of Lemmas 2 and 3 applied to the in�nite-volume random-cluster measures. Let A be an increasing (non-empty) cylinder event in themeasurable space (
;F), and set  p = �0�M ;p;q, where M is a positive integer. We apply(4.4) and (4.6) accordingly, noting thatq(1� r)s� r < C < qs� r :Now, take the limit as M !1, to obtain that, for 0 < r < s < 1,�r;q(A) � �s;q(A) expn�4(s� r)�s;q(FA)o;(4.8) �r;q(FA) � � log�s;q(A)logfq=(s� r)g � CC � 1 :(4.9)Before turning to the proof of Theorem 4, we make one further observation. Inequalities(4.8) and (4.9), with A = An, imply that the correlation length �(p; q) is strictly increasingin p whenever it is �nite (cf. [13], Thm 5.14).Proof of Lemma 3. Let r < s. We shall employ a suitable coupling of the measures  rand  s. Let E = fe1; e2; : : : ; emg be the edges of the graph G, and let U1; U2; : : : ; Um beindependent random variables having the uniform distribution on [0; 1]. We shall examinethe edges in turn, to determine whether they are open or closed for the respective parametersr and s. The outcome will be a pair (�; !) of con�gurations each lying in 
 = f0; 1gE suchthat � � !. The con�gurations �, ! are random in the sense that they are functions of theUj .



10 GEOFFREY GRIMMETT AND MARCELO PIZAFirst, we declare �(e1) = 1 if and only if U1 <  r(J1);!(e1) = 1 if and only if U1 <  s(J1),where Ji is the set of con�gurations  (2 
) with (ei) = 1. Note that  r(J1) �  s(J1)since r < s, and therefore �(e1) � !(e1).Let M be an integer satisfying 1 � M < m. Having de�ned �(ei), !(ei) such that�(ei) � !(ei) (for i �M), we de�ne �(eM+1) and !(eM+1) as follows. We declare�(eM+1) = 1 if and only if UM+1 <  r�JM+1 ��FM (�)�;!(eM+1) = 1 if and only if UM+1 <  s�JM+1 ��FM (!)�;where FM () is the set of con�gurations � satisfying �(ei) = (ei) for 1 � i �M . We havethat  r(JM+1 j FM (�)) �  s(JM+1 j FM (!)) since r < s and �(ei) � !(ei) for 1 � i � M ;this implies that �(eM+1) � !(eM+1).Continuing likewise, we obtain a pair (�; !) of con�gurations satisfying:(a) � � !,(b) � is distributed according to the measure  r,(c) ! is distributed according to the measure  s.We write � for the probability measure associated with the Uj .By a straightforward computation (cf. equation (3.10) of [16]), p(Ji j Di) = pp+ (1� p)q ; p(Ji j Dci ) = p;where Di is the event that there is no open path of E n feig joining the endpoints of ei, andDci is the complement of Di. Using conditional expectations, we deduce that, since q � 1,then(4.10) pp+ (1� p)q �  p(Ji j D) � pfor any event D de�ned on the states of E n feig. It follows from the de�nition of the �(ei)and !(ei) that���(eM+1) = 0 ��U1; U2; : : : ; UM� = 1�  r�JM+1 ��Fm(�)� � (1� r)qr + (1� r)q :By a similar argument,��!(eM+1) = 1; �(eM+1) = 0 ���U1; U2; : : : ; UM�=  s�JM+1 ��FM (!)��  r�JM+1 ��FM (�)� � s� rq :



DECAY OF CORRELATIONS IN RANDOM-CLUSTER MODELS 11A full derivation of the last inequality is obtainable as follows. Using Lemma 2 with A = Ji(so that FJi = 1Jci ) together with (4.10), 0p(Ji) �  p(Ji)�1�  p(Ji)�p(1� p) � 1p+ (1� p)q � 1q :Now integrate over the interval [r; s] to obtain that(4.11)  s(Ji)�  r(Ji) � s� rq :Finally, s�JM+1 ��FM (!)��  r�JM+1 ��FM (�)� �  s�JM+1 ��FM (!)��  r�JM+1 ��FM (!)�;and the claim follows by applying (4.11) with i = M + 1 to the graph obtained from G bycontracting (resp. deleting) any edge ei (for 1 � i � M) with !(ei) = 1 (resp. !(ei) = 0).Cf. Theorem 2.3 of [16].It follows from the above that(4.12) ��!(eM+1) = 1 ����(eM+1) = 0; U1; U2; : : : ; UM� � s� rq � r + (1� r)q(1� r)q :Now �x a con�guration � (2 
) and a set B of edges such that �(e) = 0 for e 2 B. Weclaim that(4.13) ��� = �; !(e) = 1 for e 2 B� � �s� rq � r + (1� r)q(1� r)q �jBj �(� = �):This follows from the recursive construction of � and ! in terms of the familyU1; U2; : : : ; Um,in the light of the bound (4.12).Inequality (4.13) implies the claim of the lemma, as follows. Let � be a con�gurationsatisfying FA(�) � k. There exists a set B = B� of edges such that(a) jBj � k,(b) �(e) = 0 for e 2 B,(c) the con�guration obtained from � by allocating state 1 to all edges in B lies in theevent A.If more than one such set B exists, we pick the earliest in some deterministic ordering of allsubsets of E. Then, by (4.13), s(A) � ��FA(�) � k; !(e) = 1 for e 2 B��= X�:FA(�)�k ��� = �; !(e) = 1 for e 2 B��� �s� rq � r + (1� r)q(1� r)q �k  r(FA � k): �



12 GEOFFREY GRIMMETT AND MARCELO PIZAProof of Theorem 4. Let r < s < pow(q). There exists a constant  = (s; q) (> 0) suchthat(4.14) �s;q(Fn) � n(s; q) for all n � 1:Now let A = An = f0 $ @�ng. In conjunction with (4.14), (4.8) implies the exponentialdecay of �r;q(An), whence r < pcorr(q). Therefore pow(q) � pcorr(q).Conversely, suppose that r < s < pcorr(q). There exists � = �(s; q) (> 0) such that�s;q(An) � e��n for all n. By (4.9) with A = An and some positive � = �(r; s; q),�r;q(Fn) � � log(e��n)logfq=(s� r)g � � = �nlogfq=(s� r)g � �;whence r < pow(q). Therefore pcorr(q) � pow(q). �5. Proof of Theorem 1There are two stages in the proof. In the �rst stage, we use inequalities (4.4) and (4.6) in aniterative scheme in order to prove that �p;q(An) decays `near-exponentially' when p < pg(q).In the second stage, we use Theorem 4 together with an argument developed by Fontesand Newman [12] to deduce full exponential decay. The conclusions of these two stages aresummarised in the following two lemmas.Lemma 5. Let 0 < p < 1 and q � 1, and suppose that p < pg(q). There exist constantsc(p), �(p), satisfying c(p) > 0, 0 < �(p) < 1, such that�p;q(An) � exp��cn�� for all n � 1:We recall the ow constant �(p; q) de�ned in (1.8) and (4.7). As before, C is the vertexset of the open cluster at the origin.Lemma 6. Let 0 < p < 1 and q � 1. If �p;q�jCj2d+�� <1 for some � > 0, then �(p; q) > 0.Before embarking on the proofs of these lemmas, we make some remarks. First, Lemma5 will be proved by an iterative scheme which may be continued further. If this is done, oneobtains thereby a proof that �p;q(An) decays at least as fast as exp���k(p)n= logk n� forany k � 1, where �k(p) > 0 and logk n is the kth iterate of logarithm.Secondly, the hypothesis of Lemma 6 is implied by the conclusion of Lemma 5, using(1.6). Therefore Lemmas 5 and 6 imply that �(p; q) > 0 when p < pg(q), whence Theorem1 follows by Theorem 4.Thirdly, essentially the only feature of the measure �p;q which enables Lemma 6 is theFKG property. More precisely, a version of Lemma 6 holds with �p;q replaced by any ergodicprobability measure satisfying the FKG inequality. In addition, the moment condition maybe relaxed just a little; see [10, 12].Proof of Lemma 5.. We shall make central use of inequalities (4.4) and (4.6), in an iterativescheme. Rather than using these inequalities in the forms presented for �nite graphs, weshall make use of their in�nite-volume versions (4.8) and (4.9). In the following, we shallsometimes use real quantities when integers are required. It will be clear that this notational



DECAY OF CORRELATIONS IN RANDOM-CLUSTER MODELS 13simpli�cation has no ultimate e�ect on the validity of the proof. All o(1) and O(1) termsare to be interpreted in the limit n!1.Fix q � 1. For p < pg(q), there exists c1(p) satisfying c1(p) > 0 such that(5.1) �p;q(An) � c1(p)nd�1 for all n:Let r < s < t < pg(q). By (4.9),�s;q(Fn) � � log�t;q(An)logC +O(1) � (d� 1) lognlogC +O(1)where 1 < C = q=(t� s) <1. Insert this into (4.8) to obtain that(5.2) �r;q(An) � c2(r)nd�1+�2(r) for all nfor some strictly positive and �nite c2(r) and �2(r). This holds for all r < pg(q), and is animprovement over (5.1).Next we shall obtain an improvement of (5.2). Let m be a positive integer, and letRi = im for 0 � i � K, where K = bn=mc. Let Li be the event f@�Ri $ @�Ri+1g, and letHi = FLi , the minimal number of extra edges needed for Li to occur. Clearly,(5.3) Fn � K�1Xi=0 Hi;since every path from 0 to @�n traverses each annulus �Ri+1 n�Ri . There exists a constant� (� 1) such that j@�Rj � �Rd�1 for all R. Therefore, by the translation invariance of �p;q,(5.4) �p;q(Li) � j@�Ri j�p;q(Am) � �nd�1�p;q(Am):Let r < s < pg(q), and let c2 = c2(s), �2 = �2(s) where the functions c2(p) and �2(p)are given as in (5.2). It follows from (5.2) and (5.4) that(5.5) �s;q(Li) � �nd�1 c2md�1+�2 � 12if(5.6) m = �(2�c2)nd�1	1=(d�1+�2);and we choose m accordingly (here and later, we assume that n is large). Now Hi � 1 if Lidoes not occur, whence(5.7) �s;q(Fn) � K�1Xi=0 �1� �s;q(Li)	 � 12K



14 GEOFFREY GRIMMETT AND MARCELO PIZAby (5.3) and (5.5). Also,(5.8) K = bn=mc � Dn�3by (5.6), for appropriate positive constants D, �3 satisfying D > 0, 0 < �3 < 1. Inconjunction with (4.8) and (5.7), this lower bound for K implies that(5.9) �r;q(An) � exp��c3n�3	 for all n:where c3 = c3(r) > 0, 0 < �3 = �3(r) < 1. This holds for all r < pg(q). �Proof of Lemma 6. We prove that �(p; q) > 0 by an argument to be found in [12]. Let �nbe the set of all paths of L joining the origin to @�n. With T (�) denoting the number ofclosed edges in a path �, we have thatT (�) + 1 �Xx2� 1jCx \ �jwhere the sum is over all vertices x of �, and Cx is the open cluster at x. It follows byJensen's inequality thatT (�) + 1j�j � 1j�jXx2� 1jCxj � ( 1j�jXx2� jCxj)�1 :Therefore, Fn + 1n � inf�2�n�T (�) + 1j�j � � K�1nwhere Kn = sup�2�n( 1j�jXx2� jCxj) :Using (4.7), we �nd that �(p; q) � K�1 a.s., where(5.10) K = lim supm!1 "sup( 1j�jXx2� jCxj : j�j = m)# ;where the (inner) supremum is over all paths from the origin containing m vertices. Wepropose to show that K <1 a.s., whence �(p; q) > 0 as required.Let f eCx : x 2 Zdg be a collection of independent subsets of Zd with the property thateCx has the same distribution as Cx. We claim, as in [12], that fjCxj : x 2 Zdg is dominatedstochastically by fMx : x 2 Zdg, whereMx = sup�j eCyj : y 2 Zd; x 2 eCy	:We prove this inductively. Let v1; v2; : : : be a deterministic ordering of Zd. Given the randomvariables f eCx : x 2 Zdg, we shall construct a family fDx : x 2 Zdg having the same jointdistributions as fCx : x 2 Zdg and satisfying (for each x) Dx � eCy for some y depending on
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