Probability and Measure, Hand-out 4 Fourier transforms: uniqueness and inversion

A finite Borel measure is determined uniquely by its Fourier transform. There is a formula for the measure in terms of its transform, and this is quite simple in the integrable case.

Let X be a random variable taking values in \mathbb{R}^{n}. Its characteristic function ϕ_{X} is the Fourier transform of its law μ_{X}, which is to say that

$$
\phi_{X}(u)=\mathbb{E}\left(e^{i\langle u, X\rangle}\right), \quad u \in \mathbb{R}^{n} .
$$

The 'heat kernel' function is given by

$$
p(t, x, y)=\frac{1}{(2 \pi t)^{n / 2}} e^{-\frac{1}{2}|y-x|^{2} / t}, \quad t>0, x, y \in \mathbb{R}^{n}
$$

Recall the identity

$$
e^{-\frac{1}{2} w^{2}}=\int_{\mathbb{R}} e^{i u w} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u .
$$

Write $w=(x-y) / \sqrt{t}$ and make a change of variable to find when $n=1$ that

$$
p(t, x, y)=\frac{1}{2 \pi} \int_{\mathbb{R}} e^{i u x} e^{-\frac{1}{2} u^{2} t} e^{-i u y} d u
$$

whence, for $n \geq 1$,

$$
p(t, x, y)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\langle u, x\rangle} e^{-\frac{1}{2}|u|^{2} t} e^{-i\langle u, y\rangle} d u
$$

Theorem. Let X be a random variable taking values in \mathbb{R}^{n}. The law μ_{X} of X is uniquely determined by knowledge of its characteristic function ϕ_{X}. Moreover, if ϕ_{X} is integrable, then X has a density function f_{X} where

$$
f_{X}(z)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \phi_{X}(u) e^{-i\langle u, z\rangle} d u, \quad z \in \mathbb{R}^{n}
$$

Proof. Let Y be a standard Gaussian random variable in \mathbb{R}^{n}, independent of X, and let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be bounded and measurable. Then, for $t>0$,

$$
\begin{aligned}
\mathbb{E}(g(X+Y \sqrt{t})) & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} g(x+y \sqrt{t}) \frac{1}{(2 \pi)^{n / 2}} e^{-\frac{1}{2}|y|^{2}} d y \mu_{X}(d x) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} p(t, x, z) g(z) d z \mu_{X}(d x) \\
& =\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} \frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\langle u, x\rangle} e^{-\frac{1}{2}|u|^{2} t} e^{-i\langle u, z\rangle} d u \mu_{X}(d x)\right) g(z) d z \\
& =\int_{\mathbb{R}^{n}}\left(\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \phi_{X}(u) e^{-\frac{1}{2}|u|^{2} t} e^{-i\langle u, z\rangle} d u\right) g(z) d z,
\end{aligned}
$$

where we have used Fubini's theorem and the change of variables $z=x+y \sqrt{t}$.
By this formula, ϕ_{X} determines $\mathbb{E}(g(X+Y \sqrt{t}))$ for any given g. For any bounded continuous function g, we have by bounded convergence that

$$
\mathbb{E}(g(X+Y \sqrt{t})) \rightarrow \mathbb{E}(g(X)) \quad \text { as } t \downarrow 0,
$$

whence ϕ_{X} determines $\mathbb{E}(g(X))$ for any given g. It follows that ϕ_{X} determines μ_{X}.
If ϕ_{X} is integrable and if g is continuous with compact support, then $\left|\phi_{X}(u)\right| \cdot$ $|g(z)| \in L^{1}\left(\mathbb{R}^{2 n}, \mathcal{B}, \lambda\right)$. By dominated convergence,

$$
\begin{aligned}
\mathbb{E}(g(X+Y \sqrt{t})) & =\int_{\mathbb{R}^{n}}\left(\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \phi_{X}(u) e^{-\frac{1}{2}|u|^{2} t} e^{-i\langle u, z\rangle} d u\right) g(z) d z \\
& \rightarrow \int_{\mathbb{R}^{n}}\left(\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \phi_{X}(u) e^{-i\langle u, z\rangle} d u\right) g(z) d z
\end{aligned}
$$

as $t \downarrow 0$. Hence X has the claimed density function.

