Probability and Measure, Hand-out 2 Non-measurable subsets of $\ensuremath{\mathbb{R}}$

The Axiom of Choice states the following. Let S be a set, and let $\mathcal{A} = \{A_{\alpha} : \alpha \in \mathcal{I}\}$ be a collection of disjoint non-empty subsets of S. There exists a subset R of S containing exactly one element of each $A_{\alpha}, \alpha \in \mathcal{I}$.

Let I = [0, 1), and let \mathcal{L} be the σ -field of Lebesgue-measurable subsets of I. We shall show that there exists a subset R of I such that $R \notin \mathcal{L}$.

Define the equivalence relation \sim on I by $x \sim y$ if x - y is rational. Let $\mathcal{A} = \{A_{\alpha} : \alpha \in \mathcal{I}\}$ be the equivalence classes of this equivalence relation. By the Axiom of Choice, we may find a set of representatives, say $R = \{c_{\alpha} : \alpha \in \mathcal{I}\}$ where $c_{\alpha} \in A_{\alpha}$ for each α . We call c_{α} the *representative* of A_{α} . Assume R is measurable (in that $R \in \mathcal{L}$). Now,

(1)
$$I = \bigcup_{q \in \mathbb{Q} \cap [0,1)} (q+R)$$

where \mathbb{Q} is the rationals and addition is done modulo 1. We note two facts about the sets q + R, $q \in \mathbb{Q} \cap [0, 1)$.

- 1. They are disjoint. If $x \in (q+R) \cap (q'+R)$, then $x = q + c_1 = q' + c_2 \pmod{1}$ for representatives c_1, c_2 . Therefore $c_1 c_2 = q' q \pmod{1}$ is rational, whence c_1, c_2 lie in the same equivalence class. But R contains exactly one representative of each class, so $c_1 = c_2$ and therefore $q = q' \pmod{1}$.
- 2. The q+R are measurable (since each is a translation, modulo 1, of the measurable R). They have the same measure, as follows. Let $q, q' \in \mathbb{Q} \cap [0, 1)$ satisfy q < q'. Define the mapping $f: I \to I$ by f(x) = x+q'-q modulo 1. Thus f is a translation modulo 1. When restricted to the domain q+R, f is a one-one correspondence between q+R and q'+R. Therefore, $\lambda(q+R) = \lambda(q'+R)$.

It follows that (1) is a countably-infinite disjoint union of sets with the same measure. By the countable additivity of Lebesgue measure λ , and the fact that $\lambda(I) = 1$, we can have neither $\lambda(R) = 0$ nor $\lambda(R) > 0$. This contradicts the assumption that $R \in \mathcal{L}$.