Probability and Measure, Hand-out 2 Non-measurable subsets of \mathbb{R}

The Axiom of Choice states the following. Let S be a set, and let $\mathcal{A}=\left\{A_{\alpha}: \alpha \in\right.$ $\mathcal{I}\}$ be a collection of disjoint non-empty subsets of S. There exists a subset R of S containing exactly one element of each $A_{\alpha}, \alpha \in \mathcal{I}$.

Let $I=[0,1)$, and let \mathcal{L} be the σ-field of Lebesgue-measurable subsets of I. We shall show that there exists a subset R of I such that $R \notin \mathcal{L}$.

Define the equivalence relation \sim on I by $x \sim y$ if $x-y$ is rational. Let $\mathcal{A}=\left\{A_{\alpha}\right.$: $\alpha \in \mathcal{I}\}$ be the equivalence classes of this equivalence relation. By the Axiom of Choice, we may find a set of representatives, say $R=\left\{c_{\alpha}: \alpha \in \mathcal{I}\right\}$ where $c_{\alpha} \in A_{\alpha}$ for each α. We call c_{α} the representative of A_{α}. Assume R is measurable (in that $R \in \mathcal{L}$). Now,

$$
\begin{equation*}
I=\bigcup_{q \in \mathbb{Q} \cap[0,1)}(q+R) \tag{1}
\end{equation*}
$$

where \mathbb{Q} is the rationals and addition is done modulo 1 . We note two facts about the sets $q+R, q \in \mathbb{Q} \cap[0,1)$.

1. They are disjoint. If $x \in(q+R) \cap\left(q^{\prime}+R\right)$, then $x=q+c_{1}=q^{\prime}+c_{2}(\bmod$ 1) for representatives c_{1}, c_{2}. Therefore $c_{1}-c_{2}=q^{\prime}-q(\bmod 1)$ is rational, whence c_{1}, c_{2} lie in the same equivalence class. But R contains exactly one representative of each class, so $c_{1}=c_{2}$ and therefore $q=q^{\prime}(\bmod 1)$.
2. The $q+R$ are measurable (since each is a translation, modulo 1 , of the measurable R). They have the same measure, as follows. Let $q, q^{\prime} \in \mathbb{Q} \cap[0,1)$ satisfy $q<q^{\prime}$. Define the mapping $f: I \rightarrow I$ by $f(x)=x+q^{\prime}-q$ modulo 1 . Thus f is a translation modulo 1 . When restricted to the domain $q+R, f$ is a one-one correspondence between $q+R$ and $q^{\prime}+R$. Therefore, $\lambda(q+R)=\lambda\left(q^{\prime}+R\right)$.

It follows that (1) is a countably-infinite disjoint union of sets with the same measure. By the countable additivity of Lebesgue measure λ, and the fact that $\lambda(I)=1$, we can have neither $\lambda(R)=0$ nor $\lambda(R)>0$. This contradicts the assumption that $R \in \mathcal{L}$.

