Probability and Measure 4

1. Let \mathcal{R} be a family of random variables on the space $(\Omega, \mathcal{F}, \mathbb{P})$ such that

$$
\sup _{X \in \mathcal{R}} \mathbb{E}\left(|X| I_{\{|X|>K\}}\right) \rightarrow 0 \quad \text { as } K \rightarrow \infty
$$

Show that \mathcal{R} is uniformly integrable.
2. Let μ_{1}, μ_{2} be finite measures on $(\mathbb{R}, \mathcal{B})$ such that $\mu_{1}(g)=\mu_{2}(g)$ for all bounded continuous $g: \mathbb{R} \rightarrow \mathbb{R}$. Show that $\mu_{1}=\mu_{2}$.
3. Show that the Fourier transform of a finite Borel measure on \mathbb{R} is bounded and continuous.
4. Let X be a random variable and let $a, b \in \mathbb{R}$, Show that $Y=a X+b$ has characteristic function $\phi_{Y}(t)=e^{i t b} \phi_{X}(a t)$.
5. Show that there do not exist independent identically distributed random variables X, Y such that $X-Y$ has the uniform distribution on the interval $[-1,1]$.
6. (a) Show that the characteristic function of the Cauchy density function, $f(x)=$ $1 /\left\{\pi\left(1+x^{2}\right)\right\}, x \in \mathbb{R}$, is

$$
\phi(t)=e^{-|t|}, \quad t \in \mathbb{R}
$$

(b) Let X_{1}, X_{2}, \ldots be independent random variables with the Cauchy distribution. Find the distribution of $n^{-1}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$, and comment on your conclusion in the light of the law of large numbers and the central limit theorem.
7. Let μ be a finite Borel measure on \mathbb{R}, and suppose that its Fourier transform $\widehat{\mu}$ is Lebesgue integrable. Show that μ has a continuous density function f, in that

$$
\mu(A)=\int_{A} f(x) d x, \quad A \in \mathcal{B}
$$

8. Let μ be a finite Borel measure on \mathbb{R}, and suppose that $\int_{\mathbb{R}}|x|^{k} \mu(d x)<\infty$ for some $k \in\{1,2, \ldots\}$. Show that the Fourier transform $\widehat{\mu}$ has continuous k th derivative $\widehat{\mu}^{(k)}$, which at 0 is given by

$$
\widehat{\mu}^{(k)}(0)=i^{k} \int_{\mathbb{R}} x^{k} \mu(d x)
$$

9. Let $X_{1}, X_{2}, \ldots, X_{n}$ be jointly Gaussian with

$$
\mathbb{E}\left(X_{i}\right)=\mu_{i}, \quad \operatorname{cov}\left(X_{i}, X_{j}\right)=\Sigma_{i, j}
$$

(a) Suppose the matrix $\Sigma=\left(\Sigma_{i, j}\right)$ is invertible, and set $Y=\Sigma^{-\frac{1}{2}}(X-\mu)$. [Recall that, for a non-negative definite matrix V there exists a 'square-root' matrix W,
written $V^{\frac{1}{2}}$, such that $W^{2}=V$.] Show that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent $N(0,1)$ random variables.
(b) Show that we can write X_{2} in the form $X_{2}=a X_{1}+Z$ where Z is independent of X_{1}, and determine the distribution of Z.
10. Let X_{1}, X_{2}, \ldots be independent $N(0,1)$ random varables. Show that the vectors

$$
\left(\bar{X}, \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}\right), \quad\left(\frac{X_{n}}{\sqrt{n}}, \sum_{k=1}^{n-1} X_{k}^{2}\right)
$$

have the same distribution, where $\bar{X}=n^{-1}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$.
11. Entropy. The interval $[0,1]$ is partitioned into n disjoint sub-intervals with lengths $p_{1}, p_{2}, \ldots, p_{n}$, and the entropy of this partition is defined to be $h=-\sum_{i=1}^{n} p_{i} \log p_{i}$. Let X_{1}, X_{2}, \ldots be independent random variables having the uniform distribution on $[0,1]$, and let $Z_{m}(i)$ be the number of the $X_{1}, X_{2}, \ldots, X_{m}$ which lie in the i th interval of the partition above. Show that

$$
R_{m}=\prod_{i=1}^{n} p_{i}^{Z_{m}(i)}
$$

satisfies $m^{-1} \log R_{m} \rightarrow-h$ a.s. as $m \rightarrow \infty$.
12. Prove that

$$
\sum_{\substack{k: \\ k-n \mid \leq x \sqrt{n}}} \frac{n^{k}}{k!} e^{-n} \rightarrow \int_{-x}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} u^{2}} d u \quad \text { as } n \rightarrow \infty
$$

13. Suppose $(\Omega, \mathcal{F}, \mu)$ is a finite measure space.
(a) Let $f: \Omega \rightarrow \mathbb{R}$ be integrable and $\theta: \Omega \rightarrow \Omega$ be measure-preserving. Show that $f \circ \theta$ is integrable with $\mu(f \circ \theta)=\mu(f)$.
(b) Let $\theta: \Omega \rightarrow \Omega$ be ergodic and $f: \Omega \rightarrow \mathbb{R}$ be invariant. Show that f is constant almost everywhere.
14. Let $\Omega=[0,1)$ with Lebesgue measure μ. Let $\alpha \in \Omega$, and consider the mapping $\tau(x)=x+\alpha$, with addition modulo 1 .
(a) Show that τ is not ergodic when α is rational.
(b) Show that τ is ergodic when α is irrational. You may find it useful to prove first that the set $\{n \alpha: n \geq 1\}$ is dense in Ω.
(c) For each α and any integrable f, determine the value of the limit function

$$
g=\lim _{n \rightarrow \infty} n^{-1}\left(f+f \circ \tau+\cdots+f \circ \tau^{n-1}\right)
$$

15. (Continuation) Show that $\rho(x)=2 x$ (modulo 1) defines a measure-preserving and ergodic mapping on $[0,1)$. Determine the limit function g given in the previous example with τ replaced by ρ.
16. Let X_{1}, X_{2}, \ldots be a sequence of random variables such that, for each $k \geq 1$, the vector ($X_{n+1}, X_{n+2}, \ldots, X_{n+k}$) has a distribution which does not depend on the value of n. (Such a sequence is called strongly stationary.) Assume that $X_{1} \in L^{p}$ where $1 \leq p<\infty$. Show that $n^{-1} \sum_{k=1}^{n} X_{k}$ converges a.s. and in L^{p} as $n \rightarrow \infty$.
