Part IID, M 2004

GRG http://www.statslab.cam.ac.uk/~grg/teaching/probmeas.html

Probability and Measure 3

Note. Unless otherwise specified, $(\Omega, \mathcal{F}, \mu)$ denotes a measure space, and $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space.

1. Let $g : \mathbb{R} \to \mathbb{R}$ be convex in the sense that:

$$g(tx + (1-t)y) \le tg(x) + (1-t)g(y), \qquad x, y \in \mathbb{R}, \ 0 \le t \le 1.$$

Show that g has supporting tangents in the sense that: for $x \in \mathbb{R}$, there exists $\lambda \in \mathbb{R}$ such that $g(y) \ge g(x) + \lambda(y - x)$ for all y.

- **2.** Prove that the space $L^{\infty}(\Omega, \mathcal{F}, \mu)$ is complete.
- **3.** Let $p \ge 1$, and let f_n , f be measurable functions. Show that f_n converges to f in measure whenever $f_n \to f$ in L^p , but that the converse is not true.
- **4.** Let X be a random variable, $p \ge 1$, and write Y = |X|. Show that

$$\mathbb{E}(Y^p) = \int_0^\infty p x^{p-1} \mathbb{P}(Y \ge x) \, dx.$$

- (a) If $\mathbb{E}(Y^p) < \infty$, show that $\mathbb{P}(Y \ge x) = o(x^{-p})$ as $x \to \infty$.
- (b) If $\mathbb{P}(Y \ge x) = o(x^{-p})$, show that $\mathbb{E}(Y^q) < \infty$ for $1 \le q < p$.
- 5. Show that random variables X and Y on $(\Omega, \mathcal{F}, \mathbb{P})$ are independent if and only if, for all measurable $g, h : \mathbb{R} \to \mathbb{R}$ such that g(X), h(Y) are integrable,

$$\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X))\mathbb{E}(h(Y)).$$

6. Let X be a random variable whose moment generating function $M(t) = \mathbb{E}(e^{tX})$ is finite on some neighbourhood of the origin. Show that

$$\mathbb{P}(X > x) \leq \inf_{t \in \mathbb{R}} \big\{ e^{-tx} M(t) \big\}, \qquad x > \mathbb{E}(X).$$

7. (Continuation) Let X_1, X_2, \ldots be independent identically distributed random variables with moment generating function M(t) and mean value m. Assume that M is finite on some neighbourhood of the origin. Show that $S_n = \sum_{i=1}^n X_i$ satisfies

$$\mathbb{P}(S_n > na) \le \Lambda(a)^n, \qquad a > m,$$

where $\Lambda(a) = \inf_{t \in \mathbb{R}} \{e^{-ta} M(t)\}$. Compute $\Lambda(a)$ when the X_i have the exponential distribution with parameter 1, and a > 1.

8. Let $(X_n : n \ge 1)$ be a sequence of identically distributed random variables in $L^2(\mathbb{P})$. Let $\epsilon > 0$. Show that $\mathbb{P}(|X_1| \ge \epsilon \sqrt{n}) = o(n^{-1})$ as $n \to \infty$, and that

$$\frac{1}{\sqrt{n}} \max_{1 \le k \le n} |X_k| \to 0 \quad \text{in probability and in } L^1.$$

1 Probability and Measure

 ${\tt grg@statslab.cam.ac.uk}$

9. Let \mathcal{H} be a closed linear space of $L^2(\Omega, \mathcal{F}, \mu)$ with the L^2 norm $\|\cdot\| = \|\cdot\|_2$ and the inner product $\langle \cdot, \cdot \rangle$. Show the 'Pythagoras' and 'parallelogram rules',

$$||f + g||^{2} = ||f||^{2} + 2\langle f, g \rangle + ||g||^{2},$$

$$||f + g||^{2} + ||f - g||^{2} = 2(||f||^{2} + ||g||^{2}).$$

valid for $g, f \in \mathcal{H}$.

- 10. Let V_1, V_2, \ldots be an increasing sequence of closed subspaces of $L^2(\Omega, \mathcal{F}, \mu)$ such that $V_i \subseteq V_{i+1}$ for all *i*. For $f \in L^2$, write f_n for the orthogonal projection of f onto V_n . Show that f_n converges in L^2 .
- **11.** Let V, W be closed subspaces of $L^2(\Omega, \mathcal{F}, \mathbb{P})$ such that $V \subseteq W$. Show that $\mathbb{E}(\mathbb{E}(X \mid W) \mid V) = \mathbb{E}(X \mid V)$ for $X \in L^2$.
- **12.** Find a uniformly integrable sequence $(X_n : n \ge 1)$ such that $X_n \to 0$ a.s. and $\mathbb{E}(\sup_n |X_n|) = \infty$.
- **13.** Let $g: [0, \infty) \to [0, \infty)$ be an increasing function such that $g(x)/x \to \infty$ as $x \to \infty$. Show that $(X_n : n \ge 1)$ is uniformly integrable if $\sup_n \mathbb{E}(g(|X_n|)) < \infty$.
- 14. Show that the sum $X_n + Y_n$ of two uniformly integrable sequences forms a uniformly integrable sequence.
- **15.** (a) Suppose that $X_n \to X$ in L^r where $r \ge 1$. Show that $(|X_n|^r : n \ge 1)$ is uniformly integrable, and deduce that $\mathbb{E}(X_n^r) \to \mathbb{E}(X^r)$ if r is an integer.

(b) Conversely, suppose that $(|X_n|^r : n \ge 1)$ is uniformly integrable where $r \ge 1$, and show that $X_n \to X$ in L^r whenever $X_n \to X$ in probability.