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Probability and Measure 2

1. (For ‘revision’) Let (xn : n ≥ 1) be a sequence of reals, and define

lim sup
n→∞

xn = lim
n→∞

sup
m≥n

xm, lim inf
n→∞

xn = lim
n→∞

inf
m≥n

xm.

Show that xn → x (∈ R) if and only if lim infn→∞ xn = lim supn→∞ xn = x.

2. (For ‘review’) Check over the proofs of extension and uniqueness in Handout I.

3. Let µF be the Lebesgue–Stieltjes measure associated with the distribution func-
tion F . Show that F is continuous at x if and only if µF ({x}) = 0. What is
the corresponding condition on the so-called ‘joint distribution function’ F when
working in R

d with d ≥ 2?

4. Let Fn, n ≥ 1, be a sequence of distribution functions such that the limit F (x) =
limn→∞ Fn(x) exists for all x ∈ R. Show that F need not be a distribution
function.

5. (‘Skorohod representation theorem’) Let F , Fn (n ≥ 1) be distribution func-
tions such that F (x) = limn→∞ Fn(x) for all x ∈ R at which F is continuous.
Show that there exists a probability space (Ω,F , P) together with random vari-
ables X, Xn : Ω → R such that:
(i) X has distribution function F ,
(ii) Xn has distribution function Fn,
(iii) Xn → X almost surely as n → ∞.

6. Let i, j ≥ 1 and let f : R
i → R

j be continuous. Show that f is measurable. [You
may work with either the Borel or Lebesgue σ-fields, but should be specific about
your choice.]

7. Let (Ω,F) be a measurable pair, and let f : Ω → R
d be written in the form

f(ω) = (f1(ω), f2(ω), . . . , fd(ω)). Working with the Borel σ-fields of R
d and R,

show that f is measurable if and only if each fi : Ω → R is measurable.

8. (Continuation) Let (Ω,F) be a measurable pair, and let f, g be (Borel) measurable
functions from Ω to R. Show that f + g, fg, max{f, g}, min{f, g} are measurable
functions.

9. (Continuation) Show further that, if fn, n ≥ 1 are measurable functions, then so
are
(i) infn fn, supn fn,
(ii) lim infn fn, lim supn fn,
(iii) the set L of all ω ∈ Ω at which the limit f(ω) = limn fn(ω) exists,
(iv) the function

g(ω) =

{

f(ω) if ω ∈ L,

0 otherwise.

Note. If the above infima and/or suprema etc are infinite, it will be necessary to
extend the range to the extended real line [−∞,∞] with the extended σ-field.
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10. Let f : R → R
∗.

(a) Show that µ(f) = 0 if f = 0 µ-almost everywhere (µ-a.e., that is, µ{ω :
f(ω) 6= 0} = 0).

(b) If f ≥ 0 µ-a.e. and µ{ω : f(ω) > 0} > 0, show that µ(f) > 0.
(c) If |µ(f)| < ∞ show that |f | < ∞ µ-a.e.
(d) If f = g µ-a.e., show that µ(f) = µ(g) whenever one of these integrals is

defined.

11. Consider an alternative definition of the integral. Let f : R → [0,∞) be Borel-
measurable, and define

µ′(f,A) =
n

∑

i=1

{

sup
ω∈Ai

f(ω)

}

µ(Ai), µ′(f) = inf
A

µ′(f,A).

[Here, A denotes a finite partition of R into Borel sets.] Show that µ′(f) = ∞ if

either (i) µ{ω : f(ω) > 0} = ∞,

or (ii) µ{ω : f(ω) > x} > 0 for all x.

Would you regard this as a satisfactory definition?

12. Let X be a non-negative integer-valued random variable. Show that

E(X) =

∞
∑

n=1

P(X ≥ n).

Deduce that, if E(X) = ∞, and X, X1, X2, . . . is a sequence of iid random variables,
then lim supn→∞(Xn/n) ≥ 1 a.s., and indeed

lim sup
n→∞

(Xn/n) = ∞ a.s.

13. (Continuation) Suppose that Y1, Y2, . . . is a sequence of iid random variables with
E|Y1| = ∞. Show that lim supn→∞(|Yn|/n) = ∞ a.s., and indeed

lim sup
n→∞

1

n
|Y1 + Y2 + · · · + Yn| = ∞ a.s.

14. Let α ∈ (0,∞) and p ∈ [1,∞), and let fα(x) = x−α for x > 0. Show that

fα ∈ Lp((0, 1], dx) ⇔ αp < 1,

fα ∈ Lp([1,∞), dx) ⇔ αp > 1.

15. Show that, as n → ∞,

(a)

∫ ∞

0

sin ex

1 + nx2
dx → 0, (b)

∫

1

0

n cos x

1 + n2x3/2
dx → 0.

16. Show that the function f(x) = x−1 sin x is not Lebesgue integrable over the interval

[1,∞). By using Fubini’s theorem and the identity x−1 =

∫ ∞

0

e−xt dt, x > 0, (or

otherwise; you may use integration by parts) prove that

lim
y→∞

∫ y

0

sin x

x
dx =

π

2
.
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