Part IID, M 2004

http://www.statslab.cam.ac.uk/~grg/teaching/probmeas.html

Probability and Measure I

- **1.** Let Ω be a set.
 - (a) Let \mathcal{F}_i , $i \in I$, be σ -fields of subsets of Ω . Show that $\mathcal{F} = \bigcap_i \mathcal{F}_i$ is a σ -field also. Your should not assume that I is countable.
 - (b) Give an example of σ -fields \mathcal{F}, \mathcal{G} such that $\mathcal{F} \cup \mathcal{G}$ is not a σ -field.
- 2. Show that a countably additive non-negative set function on a ring is both increasing and countably subadditive.
- **3.** Let \mathcal{F} be the set of all finite subsets of Ω , and let \mathcal{G} be the set of all cofinite subsets (a subset is *cofinite* if and only if its complement is finite). Show that $\mathcal{F} \cup \mathcal{G}$ is a σ -field if and only if Ω is finite.
- 4. Let \mathcal{F} be a class of subsets of Ω .
 - (a) Suppose that $\Omega \in \mathcal{F}$, and that $A \setminus B = A \cap B^{c} \in \mathcal{F}$ for all $A, B \in \mathcal{F}$. Show that \mathcal{F} is a field.
 - (b) Suppose that $\Omega \in \mathcal{F}$ and that \mathcal{F} is closed under the operations of complementtation and taking finite disjoint unions. Show that \mathcal{F} need not be a field.
- 5. Let \mathcal{F} be a π -system and a λ -system. Show that \mathcal{F} is a σ -field.
- 6. Show that the following families of subsets of \mathbb{R} generate the same σ -field \mathcal{B} : (ii) $\{(a, b] : a < b\},$ (iii) $\{(-\infty, b] : b \in \mathbb{R}\}.$ (i) $\{(a, b) : a < b\},\$
- 7. A σ -field is called *separable* if it can be generated by a countable family of sets. Show that the Borel σ -field \mathcal{B} of \mathbb{R} is separable.
- 8. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $(A_n : n \ge 1)$ be a sequence of sets in \mathcal{F} , and define

$$\liminf A_n = \bigcup_n \bigcap_{m \ge n} A_m, \quad \limsup A_n = \bigcap_n \bigcup_{m \ge n} A_m.$$

Show that $\mu(\liminf A_n) \leq \liminf_{n \to \infty} \mu(A_n)$. Show that

$$\mu(\limsup A_n) \ge \limsup_{n \to \infty} \mu(A_n) \quad \text{if } \mu(\Omega) < \infty.$$

Give an example with $\mu(\Omega) = \infty$ when this inequality fails.

9. (Completion) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. A subset N of Ω is called *null* if $N \subseteq B$ for some $B \in \mathcal{F}$ with $\mu(B) = 0$. Write \mathcal{N} for the set of all null sets. Prove that the family of subsets

$$\mathcal{C} = \{ A \cup N : A \in \mathcal{F}, \ N \in \mathcal{N} \}$$

is a σ -field. Show that the measure μ may be extended to a measure μ' on \mathcal{C} . The σ -field \mathcal{C} is called the *completion* of \mathcal{F} with respect to μ .

The completion of the Borel σ -field of \mathbb{R} with respect to Borel measure λ is called the Lebesgue σ -field of \mathbb{R} , and the corresponding extension λ' is called Lebesgue measure.

Probability and Measure 1

GRG

- 10. Let B be a Borel subset of \mathbb{R} and let λ be Lebesgue measure. Suppose $\lambda(B) < \infty$. Show that, for every $\epsilon > 0$, there exists a finite union A of intervals such that $\lambda(A \bigtriangleup B) < \epsilon$.
- 11. (Cantor set) Let $C_0 = [0, 1]$, and let C_1, C_2, \ldots be constructed iteratively by deletion of middle-thirds. Thus,

$$C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1], \quad C_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1],$$

and so on. The set $C = \lim_{n \to \infty} C_n = \bigcap_n C_n$ is called the *Cantor set*. Let F_n be the distribution function of a random variable uniformly distributed on C_n .

- (i) Show that C is uncountable and has Lebesgue measure 0.
- (ii) Show that the limit $F(x) = \lim_{n \to \infty} F_n(x)$ exists for all $x \in [0, 1]$.
- (iii) Show that F is continuous on [0,1] with F(0) = 0, F(1) = 1.
- (iv) Show that F is differentiable except on a set of measure 0, and that F'(x) = 0 wherever F is differentiable.
- 12. Let $(A_n : n \ge 1)$ be a sequence of events in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, i.e., $A_n \in \mathcal{F}$ for all n. Show that the $A_n, n \ge 1$, are independent if and only if the σ -fields which they generate, $\mathcal{F}_n = \{\emptyset, A_n, A_n^c, \Omega\}$, are independent.
- **13.** The Riemann zeta function is given by

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \quad s > 1$$

Let s > 1 and let X, Y be independent random variables with $\mathbb{P}(X = n) = \mathbb{P}(Y = n) = n^{-s}/\zeta(s)$. For $p \in \{1, 2, ...\}$ let A_p be the event that p divides X. Show that the events $\{A_p : p \text{ prime}\}$ are independent. Deduce Euler's formula

$$\frac{1}{\zeta(s)} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s} \right).$$

Show that

$$\mathbb{P}(X \text{ is square-free}) = \frac{1}{\zeta(2s)},$$
$$\mathbb{P}(X, Y \text{ have highest common factor } n) = \frac{n^{-2s}}{\zeta(2s)}$$

14. Let X_1, X_2, \ldots be independent N(0, 1) random variables. Prove that

$$\limsup_{n} \frac{X_n}{\sqrt{2\log n}} = 1 \quad \text{with probability 1.}$$

15. Let X_1, X_2, \ldots be independent random variables with the uniform distribution on [0, 1]. Let A_n be the event that a record occurs at time n, i.e., that $X_n > X_m$ for all m < n. Show that infinitely many records occur with probability 1.

2 Probability and Measure