Probability and Measure I

1. Let Ω be a set.
(a) Let $\mathcal{F}_{i}, i \in I$, be σ-fields of subsets of Ω. Show that $\mathcal{F}=\bigcap_{i} \mathcal{F}_{i}$ is a σ-field also. Your should not assume that I is countable.
(b) Give an example of σ-fields \mathcal{F}, \mathcal{G} such that $\mathcal{F} \cup \mathcal{G}$ is not a σ-field.
2. Show that a countably additive non-negative set function on a ring is both increasing and countably subadditive.
3. Let \mathcal{F} be the set of all finite subsets of Ω, and let \mathcal{G} be the set of all cofinite subsets (a subset is cofinite if and only if its complement is finite). Show that $\mathcal{F} \cup \mathcal{G}$ is a σ-field if and only if Ω is finite.
4. Let \mathcal{F} be a class of subsets of Ω.
(a) Suppose that $\Omega \in \mathcal{F}$, and that $A \backslash B=A \cap B^{\mathrm{c}} \in \mathcal{F}$ for all $A, B \in \mathcal{F}$. Show that \mathcal{F} is a field.
(b) Suppose that $\Omega \in \mathcal{F}$ and that \mathcal{F} is closed under the operations of complementation and taking finite disjoint unions. Show that \mathcal{F} need not be a field.
5. Let \mathcal{F} be a π-system and a λ-system. Show that \mathcal{F} is a σ-field.
6. Show that the following families of subsets of \mathbb{R} generate the same σ-field \mathcal{B} :
(i) $\{(a, b): a<b\}$,
(ii) $\{(a, b]: a<b\}$,
(iii) $\{(-\infty, b]: b \in \mathbb{R}\}$.
7. A σ-field is called separable if it can be generated by a countable family of sets. Show that the Borel σ-field \mathcal{B} of \mathbb{R} is separable.
8. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $\left(A_{n}: n \geq 1\right)$ be a sequence of sets in \mathcal{F}, and define

$$
\liminf A_{n}=\bigcup_{n} \bigcap_{m \geq n} A_{m}, \quad \lim \sup A_{n}=\bigcap_{n} \bigcup_{m \geq n} A_{m}
$$

Show that $\mu\left(\liminf A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)$. Show that

$$
\mu\left(\lim \sup A_{n}\right) \geq \limsup _{n \rightarrow \infty} \mu\left(A_{n}\right) \quad \text { if } \mu(\Omega)<\infty
$$

Give an example with $\mu(\Omega)=\infty$ when this inequality fails.
9. (Completion) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. A subset N of Ω is called null if $N \subseteq B$ for some $B \in \mathcal{F}$ with $\mu(B)=0$. Write \mathcal{N} for the set of all null sets. Prove that the family of subsets

$$
\mathcal{C}=\{A \cup N: A \in \mathcal{F}, N \in \mathcal{N}\}
$$

is a σ-field. Show that the measure μ may be extended to a measure μ^{\prime} on \mathcal{C}. The σ-field \mathcal{C} is called the completion of \mathcal{F} with respect to μ.
The completion of the Borel σ-field of \mathbb{R} with respect to Borel measure λ is called the Lebesgue σ-field of \mathbb{R}, and the corresponding extension λ^{\prime} is called Lebesgue measure.
10. Let B be a Borel subset of \mathbb{R} and let λ be Lebesgue measure. Suppose $\lambda(B)<\infty$. Show that, for every $\epsilon>0$, there exists a finite union A of intervals such that $\lambda(A \triangle B)<\epsilon$.
11. (Cantor set) Let $C_{0}=[0,1]$, and let C_{1}, C_{2}, \ldots be constructed iteratively by deletion of middle-thirds. Thus,

$$
C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right], \quad C_{2}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right],
$$

and so on. The set $C=\lim _{n \rightarrow \infty} C_{n}=\bigcap_{n} C_{n}$ is called the Cantor set. Let F_{n} be the distribution function of a random variable uniformly distributed on C_{n}.
(i) Show that C is uncountable and has Lebesgue measure 0 .
(ii) Show that the limit $F(x)=\lim _{n \rightarrow \infty} F_{n}(x)$ exists for all $x \in[0,1]$.
(iii) Show that F is continuous on $[0,1]$ with $F(0)=0, F(1)=1$.
(iv) Show that F is differentiable except on a set of measure 0 , and that $F^{\prime}(x)=0$ wherever F is differentiable.
12. Let $\left(A_{n}: n \geq 1\right)$ be a sequence of events in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, i.e., $A_{n} \in \mathcal{F}$ for all n. Show that the $A_{n}, n \geq 1$, are independent if and only if the σ-fields which they generate, $\mathcal{F}_{n}=\left\{\varnothing, A_{n}, A_{n}^{\mathrm{c}}, \Omega\right\}$, are independent.
13. The Riemann zeta function is given by

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}, \quad s>1
$$

Let $s>1$ and let X, Y be independent random variables with $\mathbb{P}(X=n)=\mathbb{P}(Y=$ $n)=n^{-s} / \zeta(s)$. For $p \in\{1,2, \ldots\}$ let A_{p} be the event that p divides X. Show that the events $\left\{A_{p}: p\right.$ prime $\}$ are independent. Deduce Euler's formula

$$
\frac{1}{\zeta(s)}=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)
$$

Show that

$$
\begin{gathered}
\mathbb{P}(X \text { is square-free })=\frac{1}{\zeta(2 s)}, \\
\mathbb{P}(X, Y \text { have highest common factor } n)=\frac{n^{-2 s}}{\zeta(2 s)}
\end{gathered}
$$

14. Let X_{1}, X_{2}, \ldots be independent $N(0,1)$ random variables. Prove that

$$
\limsup _{n} \frac{X_{n}}{\sqrt{2 \log n}}=1 \quad \text { with probability } 1
$$

15. Let X_{1}, X_{2}, \ldots be independent random variables with the uniform distribution on $[0,1]$. Let A_{n} be the event that a record occurs at time n, i.e., that $X_{n}>X_{m}$ for all $m<n$. Show that infinitely many records occur with probability 1 .
