1. EXTENSION AND UNIQUENESS

1.1. **Extension.** A set \mathcal{R} of subsets of Ω is a *ring* if $\emptyset \in \mathcal{R}$, and $B \setminus A, A \cup B \in \mathcal{R}$ whenever $A, B \in \mathcal{R}$.

Note that rings are closed under intersection, since

 $A \cap B = C \setminus \left\{ (C \setminus A) \cup (C \setminus B) \right\}, \quad C = A \cup B.$

Let \mathcal{R} be a ring. The set function $\mu : \mathcal{R} \to \mathbb{R}$ is called *countably subadditive* if

$$\mu\left(\bigcup_{i} A_{i}\right) \leq \sum_{i} \mu(A_{i}) \quad \text{whenever} \quad A_{1}, A_{2}, \dots \in \mathcal{R}, \ \bigcup_{i} A_{i} \in \mathcal{R}.$$

Lemma 1.1.1. The increasing set function μ is countably subadditive on \mathcal{R} if and only if

$$\mu(A) \leq \sum_{i} \mu(A_{i}) \quad whenever \quad A, A_{1}, A_{2}, \dots \in \mathbb{R}, \ A \subseteq \bigcup_{i} A_{i}.$$

Proof. That the condition of the lemma implies countable subadditivity is trivial, on taking $A = \bigcup_i A_i$. Assume then that μ is countably subadditive on \mathcal{R} . Let $A, A_1, A_2, \dots \in \mathcal{R}$ be such that $A \subseteq \bigcup_i A_i$. Then

$$A = \bigcup_{i} (A_i \cap A) \in \mathcal{R}.$$

Since \mathcal{R} is a ring, $A_i \cap A \in \mathcal{R}$ for all *i*. By subadditivity and monotonicity,

$$\mu(A) = \mu\left(\bigcup_{i} (A_i \cap A)\right) \le \sum_{i} \mu(A_i \cap A) \le \sum_{i} \mu(A_i)$$

as required.

Theorem 1.1.2 (Carathéodory extension theorem). Let \mathcal{R} be a ring of subsets of Ω and let $\mu : \mathcal{R} \to [0, \infty]$ be a countably additive set function. Then μ extends to a measure μ' on the σ -field $\sigma(\mathcal{R})$ generated by \mathcal{R} .

Proof of Carathéodory extension theorem. For any $B \subseteq \Omega$, define the outer measure

$$\mu^*(B) = \inf \sum_n \mu(A_n)$$

where the infimum is taken over all sequences $(A_n : n \in \mathbb{N})$ in \mathcal{R} such that $B \subseteq \bigcup_n A_n$ and is taken to be ∞ if there is no such sequence. Note that μ^* is increasing and $\mu^*(\emptyset) = 0$. Let us say that $A \subseteq \Omega$ is μ^* -measurable if, for all $B \subseteq \Omega$,

$$\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

Step I. We show that μ^* is countably subadditive. Suppose that $B \subseteq \bigcup_n B_n$. If $\mu^*(B_n) < \infty$ for all n, then, given $\varepsilon > 0$, there exist sequences $(A_{nm} : m \in \mathbb{N})$ in \mathfrak{R} , with

$$B_n \subseteq \bigcup_m A_{nm}, \quad \mu^*(B_n) + \varepsilon/2^n \ge \sum_m \mu(A_{nm}).$$

Then

$$B \subseteq \bigcup_n \bigcup_m A_{nm}$$

 \mathbf{SO}

$$\mu^*(B) \le \sum_n \sum_m \mu(A_{nm}) \le \sum_n \mu^*(B_n) + \varepsilon.$$

Hence, in any case,

$$\mu^*(B) \le \sum_n \mu^*(B_n).$$

Step II. We show that μ^* extends μ . Since \mathcal{R} is a ring and μ is countably additive, μ is countably subadditive. By Lemma 1.1.1, for $A \in \mathcal{R}$ and any sequence $(A_n : n \in \mathbb{N})$ in \mathcal{R} with $A \subseteq \bigcup_n A_n$,

$$\mu(A) \le \sum_n \mu(A_n).$$

On taking the infimum over all such sequences, we see that $\mu(A) \leq \mu^*(A)$. On the other hand, it is obvious that $\mu^*(A) \leq \mu(A)$ for $A \in \mathbb{R}$. Step III. We show that \mathcal{M} contains \mathcal{R} . Let $A \in \mathcal{R}$ and $B \subseteq \Omega$. We have to show that

$$\mu^*(B)=\mu^*(B\cap A)+\mu^*(B\cap A^c)$$

By subadditivity of μ^* , it is enough to show that

$$\mu^*(B) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

If $\mu^*(B) = \infty$, this is trivial, so let us assume that $\mu^*(B) < \infty$. Then, given $\varepsilon > 0$, we can find a sequence $(A_n : n \in \mathbb{N})$ in \mathcal{R} such that

$$B \subseteq \bigcup_n A_n, \quad \mu^*(B) + \varepsilon \ge \sum_n \mu(A_n).$$

Then

$$B \cap A \subseteq \bigcup_n (A_n \cap A), \quad B \cap A^c \subseteq \bigcup_n (A_n \cap A^c)$$

 \mathbf{SO}

$$\mu^*(B \cap A) + \mu^*(B \cap A^c) \le \sum_n \mu(A_n \cap A) + \sum_n \mu(A_n \cap A^c) = \sum_n \mu(A_n) \le \mu^*(B) + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrary, we are done.

Step IV. We show that \mathfrak{M} is an field. Clearly $\Omega \in \mathfrak{M}$ and $A^c \in \mathfrak{M}$ whenever $A \in \mathfrak{M}$. Suppose that $A_1, A_2 \in \mathfrak{M}$ and $B \subseteq \Omega$. Then

$$\mu^*(B) = \mu^*(B \cap A_1) + \mu^*(B \cap A_1^c)$$

= $\mu^*(B \cap A_1 \cap A_2) + \mu^*(B \cap A_1 \cap A_2^c) + \mu^*(B \cap A_1^c)$
= $\mu^*(B \cap A_1 \cap A_2) + \mu^*(B \cap (A_1 \cap A_2)^c \cap A_1) + \mu^*(B \cap (A_1 \cap A_2)^c \cap A_1^c)$
= $\mu^*(B \cap (A_1 \cap A_2)) + \mu^*(B \cap (A_1 \cap A_2)^c).$

Hence $A_1 \cap A_2 \in \mathcal{M}$.

Step V. We show that \mathfrak{M} is a σ -field and that μ^* is a measure on \mathfrak{M} . We already know that \mathfrak{M} is an field, so it suffices to show that, for any sequence of disjoint sets $(A_n : n \in \mathbb{N})$ in \mathfrak{M} , for $A = \bigcup_n A_n$ we have

$$A \in \mathfrak{M}, \quad \mu^*(A) = \sum_n \mu^*(A_n).$$

So, take any $B \subseteq \Omega$, then

$$\mu^{*}(B) = \mu^{*}(B \cap A_{1}) + \mu^{*}(B \cap A_{1}^{c})$$

= $\mu^{*}(B \cap A_{1}) + \mu^{*}(B \cap A_{2}) + \mu^{*}(B \cap A_{1}^{c} \cap A_{2}^{c})$
= $\dots = \sum_{i=1}^{n} \mu^{*}(B \cap A_{i}) + \mu^{*}(B \cap A_{1}^{c} \cap \dots \cap A_{n}^{c})$

Note that $\mu^*(B \cap A_1^c \cap \cdots \cap A_n^c) \ge \mu^*(B \cap A^c)$ for all *n*. Hence, on letting $n \to \infty$ and using countable subadditivity, we get

$$\mu^*(B) \ge \sum_{n=1}^{\infty} \mu^*(B \cap A_n) + \mu^*(B \cap A^c) \ge \mu^*(B \cap A) + \mu^*(B \cap A^c).$$

The reverse inequality holds by subadditivity, so we have equality. Hence $A \in \mathcal{M}$ and, setting B = A, we get

$$\mu^*(A) = \sum_{n=1}^{\infty} \mu^*(A_n).$$

1.2. **Uniqueness.** A set \mathcal{P} of subsets of Ω is called a π -system if $\emptyset \in \mathcal{P}$, and $A \cap B \in \mathcal{P}$ whenever $A, B \in \mathcal{P}$.

Theorem 1.2.1 (Uniqueness of extension). Let \mathcal{P} be a π -system of subsets of Ω and let \mathcal{E} be the σ -field generated by \mathcal{P} . Suppose that

$$\mu_1: \mathcal{E} \to [0, \infty], \quad \mu_2: \mathcal{E} \to [0, \infty]$$

are measures on \mathcal{E} with $\mu_1(\Omega) = \mu_2(\Omega) < \infty$. If $\mu_1 = \mu_2$ on \mathcal{P} , then $\mu_1 = \mu_2$ on \mathcal{E} .

In the proof, we shall make use of the following bit of nonsense. A set \mathcal{L} of subsets of Ω is called a *d*-system if

- (i) $\Omega \in \mathcal{L}$,
- (ii) $B \setminus A \in \mathcal{L}$ whenever $A, B \in \mathcal{L}$ and $A \subseteq B$,
- (iii) if $A_1, A_2, \dots \in \mathcal{L}$ satisfy $A_n \subseteq A_{n+1}$ for all n, then $\bigcup_i A_i \in \mathcal{L}$.

Lemma 1.2.2 (Dynkin π/d -system lemma). Let \mathcal{R} be a π -system. Then any d-system containing \mathcal{R} contains also the σ -field generated by \mathcal{R} .

Proof of the uniqueness theorem. Consider $\mathcal{D} = \{A \in \mathcal{E} : \mu_1(A) = \mu_2(A)\}$. By hypothesis, $\Omega \in \mathcal{D}$; for $A, B \in \mathcal{E}$ with $A \subseteq B$, we have

 $\mu_1(A) + \mu_1(B \setminus A) = \mu_1(B) < \infty, \quad \mu_2(A) + \mu_2(B \setminus A) = \mu_2(B) < \infty$

so, if $A, B \in \mathcal{D}$, then also $B \setminus A \in \mathcal{D}$; if $A_n \in \mathcal{D}, n \in \mathbb{N}$, with $A_n \uparrow A$, then

$$\mu_1(A) = \lim_n \mu_1(A_n) = \lim_n \mu_2(A_n) = \mu_2(A)$$

so $A \in \mathcal{D}$. Thus \mathcal{D} is a *d*-system containing the π -system \mathcal{R} , so $\mathcal{D} = \mathcal{E}$ by Dynkin's lemma.

Proof of Dynkin π/d -system lemma. Denote by \mathcal{D} the intersection of all d-systems containing \mathcal{R} . Then \mathcal{D} is itself a d-system (easy). We shall show that \mathcal{D} is also a π -system and hence a σ -field, thus proving the lemma. Consider

$$\mathcal{D}' = \{ B \in \mathcal{D} : B \cap A \in \mathcal{D} \text{ for all } A \in \mathcal{R} \}$$

Then $\mathcal{R} \subseteq \mathcal{D}'$ because \mathcal{R} is a π -system. Let us check that \mathcal{D}' is a *d*-system: clearly $\Omega \in \mathcal{D}'$; next, suppose $B_1, B_2 \in \mathcal{D}'$ with $B_1 \subseteq B_2$, then for $A \in \mathcal{R}$ we have

$$(B_2 \setminus B_1) \cap A = (B_2 \cap A) \setminus (B_1 \cap A) \in \mathcal{D}$$

because \mathcal{D} is a *d*-system, so $B_2 \setminus B_1 \in \mathcal{D}'$; finally, if $B_n \in \mathcal{D}', n \in \mathbb{N}$, and $B_n \uparrow B$, then for $A \in \mathcal{R}$ we have

$$B_n \cap A \uparrow B \cap A$$

so $B \cap A \in \mathcal{D}$ and $B \in \mathcal{D}'$. Hence $\mathcal{D} = \mathcal{D}'$.

Now consider

$$\mathcal{D}'' = \{ B \in \mathcal{D} : B \cap A \in \mathcal{D} \text{ for all } A \in \mathcal{D} \}$$

Then $\mathcal{R} \subseteq \mathcal{D}''$ because $\mathcal{D} = \mathcal{D}'$. We can check that \mathcal{D}'' is a *d*-system, just as we did for \mathcal{D}' . Hence $\mathcal{D}'' = \mathcal{D}$ which shows that \mathcal{D} is a π -system as promised.

4