1. EXTENSION AND UNIQUENESS

1.1. Extension. A set R of subsets of Q is a ring if ) € R, and B\
A, AU B € R whenever A, B € R.
Note that rings are closed under intersection, since

ANB=C\{(C\A)U(C\B)}, C=AUB.

Let R be a ring. The set function g : R — R is called countably
subadditive if

] (U Ai> < Z,u(Ai) whenever A, Ay, --- € R, UAi e R.

Lemma 1.1.1. The increasing set function p is countably subadditive
on R if and only if

A) < Z,u(Ai) whenever A, A, Ay,---€R, AC UAZ"

Proof. That the condition of the lemma implies countable subadditivity
is trivial, on taking A = |J; A;. Assume then that p is countably
subadditive on R. Let A, A;, Ay,--- € R be such that A C |J, A,.
Then

A=JAnA) e

Since R is a ring, A; N A € R for all 7. By subadditivity and mono-
tonicity,

as required. O

Theorem 1.1.2 (Carathéodory extension theorem). Let R be a ring of
subsets of Q and let p : R — [0, 00] be a countably additive set function.
Then p extends to a measure ' on the o-field o(R) generated by R.

Proof of Carathéodory extension theorem. For any B C (), define the
outer measure
= inf Z w(Ay)

where the infimum is taken over all sequences (A, : n € N) in R such
that B C U,A, and is taken to be oo if there is no such sequence.
Note that p* is increasing and p*(()) = 0. Let us say that A C Q is
w*-measurable if, for all B C €,

p(B) = p (B ﬂlA) + p (BN A).
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Write M for the set of all pu*-measurable sets. We shall show that M
is a o-field containing R and that p* is a measure on M, extending .
This will prove the theorem.

Step 1. We show that p* is countably subadditive. Suppose that B C
UnBy. If p*(B,,) < oo for all n, then, given £ > 0, there exist sequences
(Apm :m € N) in R, with

Then

SO

p'(B) < ZZN(Anm) < ZM*(Bn) +e.

n m
Hence, in any case,

p(B) < 30w (Ba).

Step II. We show that u* extends p. Since R is a ring and p is countably
additive, p is countably subadditive. By Lemma 1.1.1, for A € R and
any sequence (A4, :n € N) in R with A C U, A,,

n(A) <Y u(A,).

On taking the infimum over all such sequences, we see that pu(A) <
p*(A). On the other hand, it is obvious that ©*(A) < p(A) for A € R.
Step III. We show that M contains R. Let A € R and B C ). We
have to show that

p(B) = p(BNA)+p" (BN AY).
By subadditivity of p*, it is enough to show that
pr(B) z pi (BN A) +p"(BNAY).

If *(B) = oo, this is trivial, so let us assume that p*(B) < co. Then,
given € > 0, we can find a sequence (A, : n € N) in R such that

BCUA,, p'(B)+e>) u(Ay).

Then
BNACU,(A,NA), BNA CU,(A,N A%

SO

p(BOAy+ (BNAT) < 30 p( A4+ plANA%) = 37 u(An) < i (B) =,



Since € > (0 was arbitrary, we are done.
Step IV. We show that M is an field. Clearly 2 € M and A¢ € M
whenever A € M. Suppose that Ay, Ay € M and B C 2. Then

pH(B) = " (BN Ay) + (BN AS)

=p (BNA; NAy)+ p (BNA NAS) + p (BN AS)

=p (BNA NA)+p (BN (AN A) N A+ p* (BN (AN Ay)° N AT
= (BN (A1 NAy)) + p* (BN (AN Ay)°).

Hence A; N Ay € M.

Step V. We show that M is a o-field and that u* is a measure on M.
We already know that M is an field, so it suffices to show that, for any
sequence of disjoint sets (A, : n € N) in M, for A = U, A, we have

AeM, wi(A) =Y i (A,

So, take any B C €2, then
pr(B) = p* (BN Ay +p (BN A])
(B OAY) 4 (B0 Ay) 4 (B A 0 AS)

==Y P (BNA)+p (BNASN---NA).
i=1
Note that p*(BNA{N---NAS) > p*(B N A°) for all n. Hence, on
letting n — oo and using countable subadditivity, we get

p'(B) = p(BNA,)+p (BN AY) > p'(BNA) + p*(BNAY).
n=1
The reverse inequality holds by subadditivity, so we have equality.
Hence A € M and, setting B = A, we get

wA) = (Ay).

O

1.2. Uniqueness. A set P of subsets of €2 is called a w-system if ) € P,
and AN B € P whenever A, B € P.

Theorem 1.2.1 (Uniqueness of extension). Let P be a m-system of
subsets of 2 and let € be the o-field generated by P. Suppose that

M1Z8—>[0,00], M218—>[0,00]

are measures on € with u1(Q) = ua(Q) < co. If g = pg on P, then
1 = g on &.



In the proof, we shall make use of the following bit of nonsense. A
set L of subsets of Q2 is called a d-system if

(i) Qe L,
(i) B\ A € L whenever A,B € L and A C B,
(iii) if Ay, Ay, - - € L satisfy A, C A, for all n, then |J; A; € L.

Lemma 1.2.2 (Dynkin 7/d-system lemma). Let R be a m-system.
Then any d-system containing R contains also the o-field generated
by R.

Proof of the uniqueness theorem. Consider D = {A € € : 1 (A) =
p2(A)}. By hypothesis, Q € D; for A, B € € with A C B, we have
pi(A) + (BN A) = pi(B) <00, pa(A) + p2(B\ A) = p2(B) < o0
so, if A, B € D, then also B\ A € D;if A, € D,n € N, with 4,, T A,
then

pa(A) = lim g1y (A) = lim o (An) = pa(A)

so A € D. Thus D is a d-system containing the m-system R, so D = €
by Dynkin’s lemma. O

Proof of Dynkin 7 /d-system lemma. Denote by D the intersection of
all d-systems containing R. Then D is itself a d-system (easy). We
shall show that D is also a 7-system and hence a o-field, thus proving
the lemma. Consider

D'={BeD:BNAeD forall Aec R}

Then R C D’ because R is a w-system. Let us check that D’ is a d-
system: clearly Q € D’; next, suppose By, B, € D’ with B; C By, then
for A € R we have

(B,\B))NA=(B,NA)\ (BiNA) €D

because D is a d-system, so By \ By € D’; finally, if B, € D',n € N,
and B, T B, then for A € R we have

B,NATBNA
so BNA€Dand BeD'. Hence D =D'.
Now consider
D"={BeD:BNAeD forall Ae D}.

Then R C D" because D = D’. We can check that D” is a d-system,
just as we did for D’. Hence D” = D which shows that D is a 7w-system
as promised. O



