
1. Extension and Uniqueness

1.1. Extension. A set R of subsets of Ω is a ring if ∅ ∈ R, and B \
A, A ∪ B ∈ R whenever A, B ∈ R.

Note that rings are closed under intersection, since

A ∩ B = C \ {(C \ A) ∪ (C \ B)} , C = A ∪ B.

Let R be a ring. The set function µ : R → R is called countably

subadditive if

µ

(

⋃

i

Ai

)

≤
∑

i

µ(Ai) whenever A1, A2, · · · ∈ R,
⋃

i

Ai ∈ R.

Lemma 1.1.1. The increasing set function µ is countably subadditive

on R if and only if

µ(A) ≤
∑

i

µ(Ai) whenever A, A1, A2, · · · ∈ R, A ⊆
⋃

i

Ai.

Proof. That the condition of the lemma implies countable subadditivity
is trivial, on taking A =

⋃

i
Ai. Assume then that µ is countably

subadditive on R. Let A, A1, A2, · · · ∈ R be such that A ⊆
⋃

i
Ai.

Then
A =

⋃

i

(Ai ∩ A) ∈ R.

Since R is a ring, Ai ∩ A ∈ R for all i. By subadditivity and mono-
tonicity,

µ(A) = µ

(

⋃

i

(Ai ∩ A)

)

≤
∑

i

µ(Ai ∩ A) ≤
∑

i

µ(Ai)

as required. �

Theorem 1.1.2 (Carathéodory extension theorem). Let R be a ring of

subsets of Ω and let µ : R → [0,∞] be a countably additive set function.

Then µ extends to a measure µ′ on the σ-field σ(R) generated by R.

Proof of Carathéodory extension theorem. For any B ⊆ Ω, define the
outer measure

µ∗(B) = inf
∑

n

µ(An)

where the infimum is taken over all sequences (An : n ∈ N) in R such
that B ⊆ ∪nAn and is taken to be ∞ if there is no such sequence.
Note that µ∗ is increasing and µ∗(∅) = 0. Let us say that A ⊆ Ω is
µ∗-measurable if, for all B ⊆ Ω,

µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac).
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Write M for the set of all µ∗-measurable sets. We shall show that M

is a σ-field containing R and that µ∗ is a measure on M, extending µ.

This will prove the theorem.

Step I. We show that µ∗ is countably subadditive. Suppose that B ⊆
∪nBn. If µ∗(Bn) < ∞ for all n, then, given ε > 0, there exist sequences
(Anm : m ∈ N) in R, with

Bn ⊆ ∪mAnm, µ∗(Bn) + ε/2n ≥
∑

m

µ(Anm).

Then
B ⊆ ∪n ∪m Anm

so
µ∗(B) ≤

∑

n

∑

m

µ(Anm) ≤
∑

n

µ∗(Bn) + ε.

Hence, in any case,

µ∗(B) ≤
∑

n

µ∗(Bn).

Step II. We show that µ∗ extends µ. Since R is a ring and µ is countably
additive, µ is countably subadditive. By Lemma 1.1.1, for A ∈ R and
any sequence (An : n ∈ N) in R with A ⊆ ∪nAn,

µ(A) ≤
∑

n

µ(An).

On taking the infimum over all such sequences, we see that µ(A) ≤
µ∗(A). On the other hand, it is obvious that µ∗(A) ≤ µ(A) for A ∈ R.
Step III. We show that M contains R. Let A ∈ R and B ⊆ Ω. We
have to show that

µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac).

By subadditivity of µ∗, it is enough to show that

µ∗(B) ≥ µ∗(B ∩ A) + µ∗(B ∩ Ac).

If µ∗(B) = ∞, this is trivial, so let us assume that µ∗(B) < ∞. Then,
given ε > 0, we can find a sequence (An : n ∈ N) in R such that

B ⊆ ∪nAn, µ∗(B) + ε ≥
∑

n

µ(An).

Then
B ∩ A ⊆ ∪n(An ∩ A), B ∩ Ac ⊆ ∪n(An ∩ Ac)

so

µ∗(B∩A)+µ∗(B∩Ac) ≤
∑

n

µ(An∩A)+
∑

n

µ(An∩Ac) =
∑

n

µ(An) ≤ µ∗(B)+ε.
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Since ε > 0 was arbitrary, we are done.
Step IV. We show that M is an field. Clearly Ω ∈ M and Ac ∈ M

whenever A ∈ M. Suppose that A1, A2 ∈ M and B ⊆ Ω. Then

µ∗(B) = µ∗(B ∩ A1) + µ∗(B ∩ Ac

1)

= µ∗(B ∩ A1 ∩ A2) + µ∗(B ∩ A1 ∩ Ac

2) + µ∗(B ∩ Ac

1)

= µ∗(B ∩ A1 ∩ A2) + µ∗(B ∩ (A1 ∩ A2)
c ∩ A1) + µ∗(B ∩ (A1 ∩ A2)

c ∩ Ac

1)

= µ∗(B ∩ (A1 ∩ A2)) + µ∗(B ∩ (A1 ∩ A2)
c).

Hence A1 ∩ A2 ∈ M.
Step V. We show that M is a σ-field and that µ∗ is a measure on M.

We already know that M is an field, so it suffices to show that, for any
sequence of disjoint sets (An : n ∈ N) in M, for A = ∪nAn we have

A ∈ M, µ∗(A) =
∑

n

µ∗(An).

So, take any B ⊆ Ω, then

µ∗(B) = µ∗(B ∩ A1) + µ∗(B ∩ Ac

1)

= µ∗(B ∩ A1) + µ∗(B ∩ A2) + µ∗(B ∩ Ac

1 ∩ Ac

2)

= · · · =
n
∑

i=1

µ∗(B ∩ Ai) + µ∗(B ∩ Ac

1 ∩ · · · ∩ Ac

n
).

Note that µ∗(B ∩ Ac

1 ∩ · · · ∩ Ac

n
) ≥ µ∗(B ∩ Ac) for all n. Hence, on

letting n → ∞ and using countable subadditivity, we get

µ∗(B) ≥
∞
∑

n=1

µ∗(B ∩ An) + µ∗(B ∩ Ac) ≥ µ∗(B ∩ A) + µ∗(B ∩ Ac).

The reverse inequality holds by subadditivity, so we have equality.
Hence A ∈ M and, setting B = A, we get

µ∗(A) =
∞
∑

n=1

µ∗(An).

�

1.2. Uniqueness. A set P of subsets of Ω is called a π-system if ∅ ∈ P,
and A ∩ B ∈ P whenever A, B ∈ P.

Theorem 1.2.1 (Uniqueness of extension). Let P be a π-system of

subsets of Ω and let E be the σ-field generated by P. Suppose that

µ1 : E → [0,∞], µ2 : E → [0,∞]

are measures on E with µ1(Ω) = µ2(Ω) < ∞. If µ1 = µ2 on P, then

µ1 = µ2 on E.
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In the proof, we shall make use of the following bit of nonsense. A
set L of subsets of Ω is called a d-system if

(i) Ω ∈ L,
(ii) B \ A ∈ L whenever A, B ∈ L and A ⊆ B,
(iii) if A1, A2, · · · ∈ L satisfy An ⊆ An+1 for all n, then

⋃

i
Ai ∈ L.

Lemma 1.2.2 (Dynkin π/d-system lemma). Let R be a π-system.

Then any d-system containing R contains also the σ-field generated

by R.

Proof of the uniqueness theorem. Consider D = {A ∈ E : µ1(A) =
µ2(A)}. By hypothesis, Ω ∈ D; for A, B ∈ E with A ⊆ B, we have

µ1(A) + µ1(B \ A) = µ1(B) < ∞, µ2(A) + µ2(B \ A) = µ2(B) < ∞

so, if A, B ∈ D, then also B \ A ∈ D; if An ∈ D, n ∈ N, with An ↑ A,
then

µ1(A) = lim
n

µ1(An) = lim
n

µ2(An) = µ2(A)

so A ∈ D. Thus D is a d-system containing the π-system R, so D = E

by Dynkin’s lemma. �

Proof of Dynkin π/d-system lemma. Denote by D the intersection of
all d-systems containing R. Then D is itself a d-system (easy). We
shall show that D is also a π-system and hence a σ-field, thus proving
the lemma. Consider

D
′ = {B ∈ D : B ∩ A ∈ D for all A ∈ R}.

Then R ⊆ D′ because R is a π-system. Let us check that D′ is a d-
system: clearly Ω ∈ D′; next, suppose B1, B2 ∈ D′ with B1 ⊆ B2, then
for A ∈ R we have

(B2 \ B1) ∩ A = (B2 ∩ A) \ (B1 ∩ A) ∈ D

because D is a d-system, so B2 \ B1 ∈ D′; finally, if Bn ∈ D′, n ∈ N,
and Bn ↑ B, then for A ∈ R we have

Bn ∩ A ↑ B ∩ A

so B ∩ A ∈ D and B ∈ D′. Hence D = D′.

Now consider

D
′′ = {B ∈ D : B ∩ A ∈ D for all A ∈ D}.

Then R ⊆ D′′ because D = D′. We can check that D′′ is a d-system,
just as we did for D′. Hence D′′ = D which shows that D is a π-system
as promised. �


