Probability and Measure, Hand-out 3 Borel measure on \mathbb{R}

Theorem. There exists a unique measure μ on \mathbb{R} such that $\mu((a, b])=b-a$ for all $a<b$. [This μ is called Borel measure.]

Proof. Let \mathcal{R} be the ring of all sets of the form $A=\bigcup_{i=1}^{n}\left(a_{i}, b_{i}\right]$, and define $\mu(A)=$ $\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)$. The presentation of such A is not unique, since $(a, b] \cup(b, c]=(a, c]$ whenever $a<b<c$. Nevertheless, it is easy to check that μ is well-defined and additive. We shall show that μ is countably additive on \mathcal{R}, and existence will follow by the extension theorem.

It suffices to show that: if $B \in \mathcal{R}$ and if ($B_{n}: n \geq 1$) is an increasing sequence in \mathcal{R} with $B_{n} \uparrow B$, then $\mu\left(B_{n}\right) \rightarrow \mu(B)$.

Set $\widetilde{B}_{n}=B \backslash B_{n}$, so that $\widetilde{B}_{n} \in \mathcal{R}$ and $\widetilde{B}_{n} \downarrow \varnothing$. It suffices to show that $\mu\left(\widetilde{B}_{n}\right) \rightarrow 0$. Suppose that there exists $\epsilon>0$ such that $\mu\left(\widetilde{B}_{n}\right) \geq 2 \epsilon$ for all n. For each n we can find $C_{n} \in \mathcal{R}$ with $\bar{C}_{n} \subseteq \widetilde{B}_{n}$ and $\mu\left(\widetilde{B}_{n} \backslash C_{n}\right) \leq \epsilon 2^{-n}$. Let $x \in \widetilde{B}_{n} \backslash\left(C_{1} \cap \cdots \cap C_{n}\right)$. There exists $j \in\{1,2, \ldots, n\}$ such that $x \notin C_{j}$, and evidently $x \in \widetilde{B}_{j}$ since $\widetilde{B}_{j} \supseteq \widetilde{B}_{n}$. Therefore $x \in \widetilde{B}_{j} \backslash C_{j}$, and hence

$$
\mu\left(\widetilde{B}_{n} \backslash\left(C_{1} \cap \cdots \cap C_{n}\right)\right) \leq \mu\left(\left(\widetilde{B}_{1} \backslash C_{1}\right) \cup \cdots \cup\left(\widetilde{B}_{n} \backslash C_{n}\right)\right) \leq \sum_{n} \epsilon 2^{-n}=\epsilon
$$

Since $\mu\left(\widetilde{B}_{n}\right) \geq 2 \epsilon$, we must have $\mu\left(C_{1} \cap \ldots \cap C_{n}\right) \geq \epsilon$, so $C_{1} \cap \ldots \cap C_{n} \neq \varnothing$, and so $K_{n}=\bar{C}_{1} \cap \ldots \cap \bar{C}_{n} \neq \varnothing$. Now ($K_{n}: n \geq 1$) is a decreasing sequence of bounded non-empty closed sets in \mathbb{R}, whence

$$
\varnothing \neq \bigcap_{n} K_{n} \subseteq \bigcap_{n} \widetilde{B}_{n},
$$

which is a contradiction.
Turning to the question of uniqueness, let μ^{\prime} be a measure on \mathcal{B} with $\mu^{\prime}((a, b])=$ $b-a$ for all $a<b$. Fix n and consider

$$
\mu_{n}^{\prime}(A)=\mu^{\prime}((n, n+1] \cap A) .
$$

Then μ_{n}^{\prime} is a probability measure on \mathcal{B} so, by the uniqueness theorem, μ_{n}^{\prime} is uniquely determined by its values on the π-system $\mathcal{I}=\{(a, b]: a<b\}$ generating \mathcal{B}. Since

$$
\mu^{\prime}(A)=\sum_{n} \mu_{n}^{\prime}(A)
$$

it follows that μ^{\prime} is also uniquely determined.

