GRG http://www.statslab.cam.ac.uk/~grg/teaching/probmeas.html

Probability and Measure, Hand-out 3 Borel measure on $\mathbb R$

Theorem. There exists a unique measure μ on \mathbb{R} such that $\mu((a, b]) = b - a$ for all a < b. [This μ is called *Borel measure.*]

Proof. Let \mathcal{R} be the ring of all sets of the form $A = \bigcup_{i=1}^{n} (a_i, b_i]$, and define $\mu(A) = \sum_{i=1}^{n} (b_i - a_i)$. The presentation of such A is not unique, since $(a, b] \cup (b, c] = (a, c]$ whenever a < b < c. Nevertheless, it is easy to check that μ is well-defined and additive. We shall show that μ is countably additive on \mathcal{R} , and existence will follow by the extension theorem.

It suffices to show that: if $B \in \mathcal{R}$ and if $(B_n : n \ge 1)$ is an increasing sequence in \mathcal{R} with $B_n \uparrow B$, then $\mu(B_n) \to \mu(B)$.

Set $\widetilde{B}_n = B \setminus B_n$, so that $\widetilde{B}_n \in \mathcal{R}$ and $\widetilde{B}_n \downarrow \emptyset$. It suffices to show that $\mu(\widetilde{B}_n) \to 0$. Suppose that there exists $\epsilon > 0$ such that $\mu(\widetilde{B}_n) \ge 2\epsilon$ for all n. For each n we can find $C_n \in \mathcal{R}$ with $\overline{C}_n \subseteq \widetilde{B}_n$ and $\mu(\widetilde{B}_n \setminus C_n) \le \epsilon 2^{-n}$. Let $x \in \widetilde{B}_n \setminus (C_1 \cap \cdots \cap C_n)$. There exists $j \in \{1, 2, \ldots, n\}$ such that $x \notin C_j$, and evidently $x \in \widetilde{B}_j$ since $\widetilde{B}_j \supseteq \widetilde{B}_n$. Therefore $x \in \widetilde{B}_j \setminus C_j$, and hence

$$\mu(\widetilde{B}_n \setminus (C_1 \cap \dots \cap C_n)) \le \mu((\widetilde{B}_1 \setminus C_1) \cup \dots \cup (\widetilde{B}_n \setminus C_n)) \le \sum_n \epsilon 2^{-n} = \epsilon.$$

Since $\mu(\widetilde{B}_n) \geq 2\epsilon$, we must have $\mu(C_1 \cap \ldots \cap C_n) \geq \epsilon$, so $C_1 \cap \ldots \cap C_n \neq \emptyset$, and so $K_n = \overline{C}_1 \cap \ldots \cap \overline{C}_n \neq \emptyset$. Now $(K_n : n \geq 1)$ is a decreasing sequence of bounded non-empty closed sets in \mathbb{R} , whence

$$\emptyset \neq \bigcap_n K_n \subseteq \bigcap_n \widetilde{B}_n,$$

which is a contradiction.

Turning to the question of uniqueness, let μ' be a measure on \mathcal{B} with $\mu'((a, b]) = b - a$ for all a < b. Fix n and consider

$$\mu'_{n}(A) = \mu'((n, n+1] \cap A).$$

Then μ'_n is a probability measure on \mathcal{B} so, by the uniqueness theorem, μ'_n is uniquely determined by its values on the π -system $\mathcal{I} = \{(a, b] : a < b\}$ generating \mathcal{B} . Since

$$\mu'(A) = \sum_{n} \mu'_n(A),$$

it follows that μ' is also uniquely determined.

1 Probability and Measure