
1. Ergodic theory
1

1.1. Bernoulli shifts. Let m be a probability measure on R. We may construct a (prod-
uct) probability space (Ω, F, P) on which there exists a sequence of independent random
variables (Yn : n ∈ N), each having distribution m. Consider now the infinite product
space

E = R
�

=
{

x = (xn : n ∈ N) : xn ∈ R for all n
}

and the σ-algebra E on E generated by the coordinate maps Xn(x) = xn,

E = σ(Xn : n ∈ N).

Note that E is also generated by the π-system

R =

{

∏

n∈
�

An : An ∈ B for all n, An = R for all large n

}

.

Define the function Y : Ω → E by Y (ω) = (Yn(ω) : n ∈ N). It is easily checked that Y is
measurable, and the image measure µ = P ◦ Y −1 satisfies,

µ(A) =
∏

n∈
�

m(An) for A =
∏

n∈
�

An ∈ R.

By the uniqueness-of-extension theorem, µ is the unique measure on (E, E) having this
property. Under the probability measure µ, the coordinate maps (Xn : n ∈ N) are
themselves a sequence of independent random variables with law m. The probability
space (E, E, µ) is called the canonical model for such sequences.

Define the shift map θ : E → E by

θ(x) = (x2, x3, . . . ) where x = (x1, x2, . . . ).

Theorem 1.1.1. The shift map θ is an ergodic measure-preserving transformation.

Proof. The details of showing that θ is measurable and measure-preserving are left as an
exercise. To see that θ is ergodic, we recall the definition of the tail σ-fields,

Tn = σ(Xm : m ≥ n + 1), T =
⋂

n

Tn.

For A =
∏

k∈
� Ak ∈ R we have

θ−n(A) = {Xn+k ∈ Ak for all k ≥ 1} ∈ Tn.

Since Tn is a σ-field, we have that θ−n(A) ∈ Tn for all A ∈ E. If A lies in the invariant
σ-field Eθ, then A = θ−n(A) ∈ Tn for all n, whence A ∈

⋂

n Tn = T and Eθ ⊆ T. By
the Kolmogorov zero-one law, T is trivial in the sense that every member has probability
either 0 or 1, and it follows that Eθ is trivial also. �

1Notes in part by courtesy of James Norris
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1.2. Ergodic theorems. Let (Ω, F, µ) be a σ-finite measure space, on which is given a
measure-preserving transformation θ. Let f : Ω → R be integrable, and set S0 = 0 and

Sn = Sn(f) = f + f ◦ θ + · · ·+ f ◦ θn−1, n ≥ 1.

Lemma 1.2.1 (Garsia’s maximal ergodic lemma). Let S∗ = supn≥0 Sn. Then
∫

{S∗>0}

f dµ ≥ 0.

Proof. Set S∗
n = max0≤m≤n Sm and An = {S∗

n > 0}. Then

Sm = f + Sm−1 ◦ θ ≤ f + S∗
n ◦ θ, 1 ≤ m ≤ n.

On the event An we have S∗
n = max1≤m≤n Sm, so

S∗
n ≤ f + S∗

n ◦ θ.

On the complement Ac
n we have S∗

n = 0, whence

S∗
n ≤ S∗

n ◦ θ.

So, integrating and adding, we obtain
∫

Ω

S∗
n dµ ≤

∫

An

f dµ +

∫

Ω

S∗
n ◦ θ dµ.

But S∗
n is integrable and θ is measure-preserving, so

∫

Ω

S∗
n ◦ θ dµ =

∫

Ω

S∗
n dµ < ∞

which implies that
∫

An

f dµ ≥ 0.

The claim follows by taking the limit as n → ∞ and appealing to monotone convergence.
�

Theorem 1.2.2 (Birkhoff’s ergodic theorem). There exists an invariant function f̄ , with

µ(|f̄ |) ≤ µ(|f |), such that Sn/n → f̄ a.e. as n → ∞.

Proof. We claim first that the functions lim infn(Sn/n) and lim supn(Sn/n) are invariant.
To see this in the first case, note that

(

lim inf
Sn

n

)

◦ θ = lim inf

(

Sn ◦ θ

n

)

= lim inf

(

Sn+1 − f

n

)

= lim inf

(

Sn+1

n

)

= lim inf

(

Sn+1

n + 1

)

.

Let a < b. It follows from the above that

D = D(a, b) = {lim inf
n

(Sn/n) < a < b < lim sup
n

(Sn/n)}

is an invariant event. We shall show that µ(D) = 0. First, by invariance, if ω ∈ D then
θnω ∈ D for all n, and we may therefore restrict ourselves to the universe D; thus we may
assume that Ω = D. Note that either b > 0 or a < 0. We can interchange the two cases
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by replacing f by −f . Let us assume then that b > 0. Let B ∈ F with µ(B) < ∞, then
g = f − b1B is integrable and, for each ω ∈ D, for some n,

Sn(g)(ω) ≥ Sn(f)(ω) − nb > 0.

Hence S∗(g) > 0 everywhere and, by the maximal ergodic lemma,

0 ≤

∫

D

(f − b1B) dµ =

∫

D

f dµ − bµ(B).

Since µ is σ-finite, we can let B ↑ D to obtain

bµ(D) ≤

∫

D

f dµ.

In particular, we see that µ(D) < ∞. A similar argument applied to −f and −a, this
time with B = D, shows that

(−a)µ(D) ≤

∫

D

(−f) dµ.

Hence

bµ(D) ≤

∫

D

f dµ ≤ aµ(D).

Since a < b and the integral is finite, this forces µ(D) = 0.
Back to general Ω. Set

∆ = {lim inf
n

(Sn/n) < lim sup
n

(Sn/n)}

and note that ∆ is invariant. Also, ∆ = ∪a,b∈ � ,a<bD(a, b), so µ(∆) = 0. On the comple-
ment of ∆, Sn/n converges in [−∞,∞], so we can define an invariant function f̄ by

f̄ =
{

limn(Sn/n) on ∆c,
0 on ∆.

Finally, we have µ(|f ◦ θn|) = µ(|f |), so µ(|Sn|) ≤ nµ(|f |) for all n. Hence, by Fatou’s
lemma,

µ(|f̄ |) = µ(lim inf
n

|Sn/n|) ≤ lim inf
n

µ(|Sn/n|) ≤ µ(|f |).

�

Theorem 1.2.3 (von Neumann’s Lp ergodic theorem). Assume that µ(Ω) < ∞. Let

p ∈ [1,∞). Then, for f ∈ Lp, Sn/n → f̄ in Lp.

Proof. We have

‖f ◦ θn‖p =

(
∫

Ω

|f |p ◦ θn dµ

)1/p

= ‖f‖p.

So, by Minkowski’s inequality,

‖Sn(f)/n‖p ≤ ‖f‖p.

Given ε > 0, choose K < ∞ such that ‖f − g‖p < ε/3, where

g =

{

f if |f | ≤ K,
K if f ≥ K,
−K if f ≤ −K.
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By Birkhoff’s theorem, Sn(g)/n → ḡ a.e. We have |Sn(g)/n| ≤ K for all n so, by bounded
convergence, there exists N such that, for n ≥ N ,

‖Sn(g)/n − ḡ‖p < ε/3.

By Fatou’s lemma,

‖f̄ − ḡ‖p
p =

∫

Ω

lim inf
n

|Sn(f − g)/n|p dµ

≤ lim inf
n

∫

Ω

|Sn(f − g)/n|p dµ

≤ ‖f − g‖p
p.

Hence, for n ≥ N ,

‖Sn(f)/n − f̄‖p ≤ ‖Sn(f − g)/n‖p + ‖Sn(g)/n − ḡ‖p + ‖ḡ − f̄‖p

< ε/3 + ε/3 + ε/3 = ε.

�

1.3. Strong law of large numbers.

Theorem 1.3.1. Let m be a probability measure on R, with
∫

�
|x|m(dx) < ∞,

∫

�
x m(dx) = ν.

Let (E, E, µ) be the canonical model for a sequence of independent random variables with

law m. Then

µ
(

{x : (x1 + · · · + xn)/n → ν as n → ∞}
)

= 1.

Proof. The shift map θ on E is measure-preserving and ergodic. The coordinate function
f = X1 is integrable and

Sn(f) = f + f ◦ θ + · · ·+ f ◦ θn−1 = X1 + · · ·+ Xn.

So (X1 + · · · + Xn)/n → f̄ a.e. and in L1, for some invariant function f̄ , by Birkhoff’s
ergodic theorem. Since θ is ergodic, f̄ = c a.e., for some constant c and then

c = µ(f̄) = lim
n

µ(Sn/n) = ν.

�

Theorem 1.3.2 (Strong law of large numbers). Let (Yn : n ∈ N) be a sequence of

independent, identically distributed, integrable random variables with mean ν. Set Sn =
Y1 + Y2 + · · ·+ Yn. Then

Sn/n → ν a.s., as n → ∞.

Proof. In the notation of Theorem 1.3.1, take m to be the law of the random variables
Yn. Then µ = P ◦ Y −1, where Y : Ω → E is given by Y (ω) = (Yn(ω) : n ∈ N). Hence

P
(

Sn/n → ν as n → ∞
)

= µ
(

{x : (x1 + · · · + xn)/n → ν as n → ∞}
)

= 1.

�


