1. Ergodic Theory¹

1.1. **Bernoulli shifts.** Let m be a probability measure on \mathbb{R} . We may construct a (product) probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which there exists a sequence of independent random variables $(Y_n : n \in \mathbb{N})$, each having distribution m. Consider now the infinite product space

$$E = \mathbb{R}^{\mathbb{N}} = \left\{ x = (x_n : n \in \mathbb{N}) : x_n \in \mathbb{R} \text{ for all } n \right\}$$

and the σ -algebra \mathcal{E} on E generated by the coordinate maps $X_n(x) = x_n$,

$$\mathcal{E} = \sigma(X_n : n \in \mathbb{N}).$$

Note that \mathcal{E} is also generated by the π -system

$$\mathcal{R} = \left\{ \prod_{n \in \mathbb{N}} A_n : A_n \in \mathcal{B} \text{ for all } n, A_n = \mathbb{R} \text{ for all large } n \right\}.$$

Define the function $Y: \Omega \to E$ by $Y(\omega) = (Y_n(\omega) : n \in \mathbb{N})$. It is easily checked that Y is measurable, and the image measure $\mu = \mathbb{P} \circ Y^{-1}$ satisfies,

$$\mu(A) = \prod_{n \in \mathbb{N}} m(A_n)$$
 for $A = \prod_{n \in \mathbb{N}} A_n \in \mathcal{R}$.

By the uniqueness-of-extension theorem, μ is the unique measure on (E, \mathcal{E}) having this property. Under the probability measure μ , the coordinate maps $(X_n : n \in \mathbb{N})$ are themselves a sequence of independent random variables with law m. The probability space (E, \mathcal{E}, μ) is called the *canonical model* for such sequences.

Define the shift map $\theta: E \to E$ by

$$\theta(x) = (x_2, x_3, \dots)$$
 where $x = (x_1, x_2, \dots)$.

Theorem 1.1.1. The shift map θ is an ergodic measure-preserving transformation.

Proof. The details of showing that θ is measurable and measure-preserving are left as an exercise. To see that θ is ergodic, we recall the definition of the tail σ -fields,

$$\mathfrak{I}_n = \sigma(X_m : m \ge n+1), \quad \mathfrak{T} = \bigcap_n \mathfrak{I}_n.$$

For $A = \prod_{k \in \mathbb{N}} A_k \in \mathcal{R}$ we have

$$\theta^{-n}(A) = \{X_{n+k} \in A_k \text{ for all } k \ge 1\} \in \mathfrak{T}_n.$$

Since \mathfrak{T}_n is a σ -field, we have that $\theta^{-n}(A) \in \mathfrak{T}_n$ for all $A \in \mathcal{E}$. If A lies in the invariant σ -field \mathcal{E}_{θ} , then $A = \theta^{-n}(A) \in \mathfrak{T}_n$ for all n, whence $A \in \bigcap_n \mathfrak{T}_n = \mathfrak{T}$ and $\mathcal{E}_{\theta} \subseteq \mathfrak{T}$. By the Kolmogorov zero-one law, \mathfrak{T} is trivial in the sense that every member has probability either 0 or 1, and it follows that \mathcal{E}_{θ} is trivial also.

¹Notes in part by courtesy of James Norris

1.2. **Ergodic theorems.** Let $(\Omega, \mathcal{F}, \mu)$ be a σ -finite measure space, on which is given a measure-preserving transformation θ . Let $f: \Omega \to \mathbb{R}$ be integrable, and set $S_0 = 0$ and

$$S_n = S_n(f) = f + f \circ \theta + \dots + f \circ \theta^{n-1}, \qquad n \ge 1$$

Lemma 1.2.1 (Garsia's maximal ergodic lemma). Let $S^* = \sup_{n>0} S_n$. Then

$$\int_{\{S^*>0\}} f \, d\mu \ge 0.$$

Proof. Set $S_n^* = \max_{0 \le m \le n} S_m$ and $A_n = \{S_n^* > 0\}$. Then

$$S_m = f + S_{m-1} \circ \theta \le f + S_n^* \circ \theta, \qquad 1 \le m \le n.$$

On the event A_n we have $S_n^* = \max_{1 \le m \le n} S_m$, so

$$S_n^* \le f + S_n^* \circ \theta.$$

On the complement A_n^c we have $S_n^* = 0$, whence

$$S_n^* \le S_n^* \circ \theta.$$

So, integrating and adding, we obtain

$$\int_{\Omega} S_n^* d\mu \le \int_{A_n} f d\mu + \int_{\Omega} S_n^* \circ \theta d\mu.$$

But S_n^* is integrable and θ is measure-preserving, so

$$\int_{\Omega} S_n^* \circ \theta \, d\mu = \int_{\Omega} S_n^* \, d\mu < \infty$$

which implies that

$$\int_{A_n} f \, d\mu \ge 0.$$

The claim follows by taking the limit as $n \to \infty$ and appealing to monotone convergence.

Theorem 1.2.2 (Birkhoff's ergodic theorem). There exists an invariant function \bar{f} , with $\mu(|\bar{f}|) \leq \mu(|f|)$, such that $S_n/n \to \bar{f}$ a.e. as $n \to \infty$.

Proof. We claim first that the functions $\liminf_n (S_n/n)$ and $\limsup_n (S_n/n)$ are invariant. To see this in the first case, note that

$$\left(\liminf \frac{S_n}{n}\right) \circ \theta = \liminf \left(\frac{S_n \circ \theta}{n}\right) = \liminf \left(\frac{S_{n+1} - f}{n}\right)$$
$$= \liminf \left(\frac{S_{n+1}}{n}\right) = \liminf \left(\frac{S_{n+1}}{n}\right).$$

Let a < b. It follows from the above that

$$D = D(a, b) = \{ \liminf_{n} (S_n/n) < a < b < \limsup_{n} (S_n/n) \}$$

is an invariant event. We shall show that $\mu(D) = 0$. First, by invariance, if $\omega \in D$ then $\theta^n \omega \in D$ for all n, and we may therefore restrict ourselves to the universe D; thus we may assume that $\Omega = D$. Note that either b > 0 or a < 0. We can interchange the two cases

by replacing f by -f. Let us assume then that b > 0. Let $B \in \mathcal{F}$ with $\mu(B) < \infty$, then $g = f - b1_B$ is integrable and, for each $\omega \in D$, for some n,

$$S_n(g)(\omega) \ge S_n(f)(\omega) - nb > 0$$

Hence $S^*(g) > 0$ everywhere and, by the maximal ergodic lemma,

$$0 \le \int_D (f - b1_B) d\mu = \int_D f d\mu - b\mu(B).$$

Since μ is σ -finite, we can let $B \uparrow D$ to obtain

$$b\mu(D) \le \int_D f \, d\mu.$$

In particular, we see that $\mu(D) < \infty$. A similar argument applied to -f and -a, this time with B = D, shows that

$$(-a)\mu(D) \le \int_D (-f) \, d\mu.$$

Hence

$$b\mu(D) \le \int_D f \, d\mu \le a\mu(D).$$

Since a < b and the integral is finite, this forces $\mu(D) = 0$.

Back to general Ω . Set

$$\Delta = \{ \liminf_{n} (S_n/n) < \limsup_{n} (S_n/n) \}$$

and note that Δ is invariant. Also, $\Delta = \bigcup_{a,b \in \mathbb{Q}, a < b} D(a,b)$, so $\mu(\Delta) = 0$. On the complement of Δ , S_n/n converges in $[-\infty, \infty]$, so we can define an invariant function \bar{f} by

$$\bar{f} = \begin{cases} \lim_{n} (S_n/n) & \text{on } \Delta^{c}, \\ 0 & \text{on } \Delta. \end{cases}$$

Finally, we have $\mu(|f \circ \theta^n|) = \mu(|f|)$, so $\mu(|S_n|) \le n\mu(|f|)$ for all n. Hence, by Fatou's lemma,

$$\mu(|\bar{f}|) = \mu(\liminf_{n} |S_n/n|) \le \liminf_{n} \mu(|S_n/n|) \le \mu(|f|).$$

Theorem 1.2.3 (von Neumann's L^p ergodic theorem). Assume that $\mu(\Omega) < \infty$. Let $p \in [1, \infty)$. Then, for $f \in L^p$, $S_n/n \to \bar{f}$ in L^p .

Proof. We have

$$||f \circ \theta^n||_p = \left(\int_{\Omega} |f|^p \circ \theta^n \, d\mu\right)^{1/p} = ||f||_p.$$

So, by Minkowski's inequality,

$$||S_n(f)/n||_p \le ||f||_p.$$

Given $\varepsilon > 0$, choose $K < \infty$ such that $||f - g||_p < \varepsilon/3$, where

$$g = \begin{cases} f & \text{if } |f| \le K, \\ K & \text{if } f \ge K, \\ -K & \text{if } f \le -K. \end{cases}$$

By Birkhoff's theorem, $S_n(g)/n \to \bar{g}$ a.e. We have $|S_n(g)/n| \le K$ for all n so, by bounded convergence, there exists N such that, for $n \ge N$,

$$||S_n(g)/n - \bar{g}||_p < \varepsilon/3.$$

By Fatou's lemma,

$$\|\bar{f} - \bar{g}\|_p^p = \int_{\Omega} \liminf_n |S_n(f - g)/n|^p d\mu$$

$$\leq \liminf_n \int_{\Omega} |S_n(f - g)/n|^p d\mu$$

$$\leq \|f - g\|_p^p.$$

Hence, for $n \geq N$,

$$||S_n(f)/n - \bar{f}||_p \le ||S_n(f - g)/n||_p + ||S_n(g)/n - \bar{g}||_p + ||\bar{g} - \bar{f}||_p$$

 $< \varepsilon/3 + \varepsilon/3 + \varepsilon/3 = \varepsilon.$

1.3. Strong law of large numbers.

Theorem 1.3.1. Let m be a probability measure on \mathbb{R} , with

$$\int_{\mathbb{R}} |x| \, m(dx) < \infty, \quad \int_{\mathbb{R}} x \, m(dx) = \nu.$$

Let (E, \mathcal{E}, μ) be the canonical model for a sequence of independent random variables with law m. Then

$$\mu(\lbrace x: (x_1 + \dots + x_n)/n \to \nu \text{ as } n \to \infty \rbrace) = 1.$$

Proof. The shift map θ on E is measure-preserving and ergodic. The coordinate function $f = X_1$ is integrable and

$$S_n(f) = f + f \circ \theta + \dots + f \circ \theta^{n-1} = X_1 + \dots + X_n.$$

So $(X_1 + \cdots + X_n)/n \to \bar{f}$ a.e. and in L^1 , for some invariant function \bar{f} , by Birkhoff's ergodic theorem. Since θ is ergodic, $\bar{f} = c$ a.e., for some constant c and then

$$c = \mu(\bar{f}) = \lim_{n} \mu(S_n/n) = \nu.$$

Theorem 1.3.2 (Strong law of large numbers). Let $(Y_n : n \in \mathbb{N})$ be a sequence of independent, identically distributed, integrable random variables with mean ν . Set $S_n = Y_1 + Y_2 + \cdots + Y_n$. Then

$$S_n/n \to \nu$$
 a.s., as $n \to \infty$.

Proof. In the notation of Theorem 1.3.1, take m to be the law of the random variables Y_n . Then $\mu = \mathbb{P} \circ Y^{-1}$, where $Y : \Omega \to E$ is given by $Y(\omega) = (Y_n(\omega) : n \in \mathbb{N})$. Hence

$$\mathbb{P}(S_n/n \to \nu \text{ as } n \to \infty) = \mu(\{x : (x_1 + \dots + x_n)/n \to \nu \text{ as } n \to \infty\}) = 1.$$