1. Ergodic theory ${ }^{1}$

1.1. Bernoulli shifts. Let m be a probability measure on \mathbb{R}. We may construct a (product) probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which there exists a sequence of independent random variables $\left(Y_{n}: n \in \mathbb{N}\right)$, each having distribution m. Consider now the infinite product space

$$
E=\mathbb{R}^{\mathbb{N}}=\left\{x=\left(x_{n}: n \in \mathbb{N}\right): x_{n} \in \mathbb{R} \text { for all } n\right\}
$$

and the σ-algebra \mathcal{E} on E generated by the coordinate maps $X_{n}(x)=x_{n}$,

$$
\mathcal{E}=\sigma\left(X_{n}: n \in \mathbb{N}\right) .
$$

Note that \mathcal{E} is also generated by the π-system

$$
\mathcal{R}=\left\{\prod_{n \in \mathbb{N}} A_{n}: A_{n} \in \mathcal{B} \text { for all } n, A_{n}=\mathbb{R} \text { for all large } n\right\} .
$$

Define the function $Y: \Omega \rightarrow E$ by $Y(\omega)=\left(Y_{n}(\omega): n \in \mathbb{N}\right)$. It is easily checked that Y is measurable, and the image measure $\mu=\mathbb{P} \circ Y^{-1}$ satisfies,

$$
\mu(A)=\prod_{n \in \mathbb{N}} m\left(A_{n}\right) \quad \text { for } \quad A=\prod_{n \in \mathbb{N}} A_{n} \in \mathcal{R} .
$$

By the uniqueness-of-extension theorem, μ is the unique measure on (E, ε) having this property. Under the probability measure μ, the coordinate maps ($X_{n}: n \in \mathbb{N}$) are themselves a sequence of independent random variables with law m. The probability space (E, \mathcal{E}, μ) is called the canonical model for such sequences.

Define the shift map $\theta: E \rightarrow E$ by

$$
\theta(x)=\left(x_{2}, x_{3}, \ldots\right) \quad \text { where } x=\left(x_{1}, x_{2}, \ldots\right)
$$

Theorem 1.1.1. The shift map θ is an ergodic measure-preserving transformation.
Proof. The details of showing that θ is measurable and measure-preserving are left as an exercise. To see that θ is ergodic, we recall the definition of the tail σ-fields,

$$
\mathcal{T}_{n}=\sigma\left(X_{m}: m \geq n+1\right), \quad \mathcal{T}=\bigcap_{n} \mathcal{T}_{n}
$$

For $A=\prod_{k \in \mathbb{N}} A_{k} \in \mathcal{R}$ we have

$$
\theta^{-n}(A)=\left\{X_{n+k} \in A_{k} \text { for all } k \geq 1\right\} \in \mathcal{T}_{n}
$$

Since \mathcal{T}_{n} is a σ-field, we have that $\theta^{-n}(A) \in \mathcal{T}_{n}$ for all $A \in \mathcal{E}$. If A lies in the invariant σ-field \mathcal{E}_{θ}, then $A=\theta^{-n}(A) \in \mathcal{T}_{n}$ for all n, whence $A \in \bigcap_{n} \mathcal{T}_{n}=\mathcal{T}$ and $\mathcal{E}_{\theta} \subseteq \mathcal{T}$. By the Kolmogorov zero-one law, \mathcal{T} is trivial in the sense that every member has probability either 0 or 1 , and it follows that \mathcal{E}_{θ} is trivial also.

[^0]1.2. Ergodic theorems. Let $(\Omega, \mathcal{F}, \mu)$ be a σ-finite measure space, on which is given a measure-preserving transformation θ. Let $f: \Omega \rightarrow \mathbb{R}$ be integrable, and set $S_{0}=0$ and
$$
S_{n}=S_{n}(f)=f+f \circ \theta+\cdots+f \circ \theta^{n-1}, \quad n \geq 1
$$

Lemma 1.2.1 (Garsia's maximal ergodic lemma). Let $S^{*}=\sup _{n \geq 0} S_{n}$. Then

$$
\int_{\left\{S^{*}>0\right\}} f d \mu \geq 0 .
$$

Proof. Set $S_{n}^{*}=\max _{0 \leq m \leq n} S_{m}$ and $A_{n}=\left\{S_{n}^{*}>0\right\}$. Then

$$
S_{m}=f+S_{m-1} \circ \theta \leq f+S_{n}^{*} \circ \theta, \quad 1 \leq m \leq n .
$$

On the event A_{n} we have $S_{n}^{*}=\max _{1 \leq m \leq n} S_{m}$, so

$$
S_{n}^{*} \leq f+S_{n}^{*} \circ \theta
$$

On the complement A_{n}^{c} we have $S_{n}^{*}=0$, whence

$$
S_{n}^{*} \leq S_{n}^{*} \circ \theta
$$

So, integrating and adding, we obtain

$$
\int_{\Omega} S_{n}^{*} d \mu \leq \int_{A_{n}} f d \mu+\int_{\Omega} S_{n}^{*} \circ \theta d \mu
$$

But S_{n}^{*} is integrable and θ is measure-preserving, so

$$
\int_{\Omega} S_{n}^{*} \circ \theta d \mu=\int_{\Omega} S_{n}^{*} d \mu<\infty
$$

which implies that

$$
\int_{A_{n}} f d \mu \geq 0
$$

The claim follows by taking the limit as $n \rightarrow \infty$ and appealing to monotone convergence.

Theorem 1.2.2 (Birkhoff's ergodic theorem). There exists an invariant function \bar{f}, with $\mu(|\bar{f}|) \leq \mu(|f|)$, such that $S_{n} / n \rightarrow \bar{f}$ a.e. as $n \rightarrow \infty$.

Proof. We claim first that the functions $\liminf _{n}\left(S_{n} / n\right)$ and $\lim _{\sup _{n}}\left(S_{n} / n\right)$ are invariant. To see this in the first case, note that

$$
\begin{aligned}
\left(\lim \inf \frac{S_{n}}{n}\right) \circ \theta & =\liminf \left(\frac{S_{n} \circ \theta}{n}\right)=\lim \inf \left(\frac{S_{n+1}-f}{n}\right) \\
& =\liminf \left(\frac{S_{n+1}}{n}\right)=\liminf \left(\frac{S_{n+1}}{n+1}\right)
\end{aligned}
$$

Let $a<b$. It follows from the above that

$$
D=D(a, b)=\left\{\liminf _{n}\left(S_{n} / n\right)<a<b<\lim _{n} \sup \left(S_{n} / n\right)\right\}
$$

is an invariant event. We shall show that $\mu(D)=0$. First, by invariance, if $\omega \in D$ then $\theta^{n} \omega \in D$ for all n, and we may therefore restrict ourselves to the universe D; thus we may assume that $\Omega=D$. Note that either $b>0$ or $a<0$. We can interchange the two cases
by replacing f by $-f$. Let us assume then that $b>0$. Let $B \in \mathcal{F}$ with $\mu(B)<\infty$, then $g=f-b 1_{B}$ is integrable and, for each $\omega \in D$, for some n,

$$
S_{n}(g)(\omega) \geq S_{n}(f)(\omega)-n b>0
$$

Hence $S^{*}(g)>0$ everywhere and, by the maximal ergodic lemma,

$$
0 \leq \int_{D}\left(f-b 1_{B}\right) d \mu=\int_{D} f d \mu-b \mu(B) .
$$

Since μ is σ-finite, we can let $B \uparrow D$ to obtain

$$
b \mu(D) \leq \int_{D} f d \mu
$$

In particular, we see that $\mu(D)<\infty$. A similar argument applied to $-f$ and $-a$, this time with $B=D$, shows that

$$
(-a) \mu(D) \leq \int_{D}(-f) d \mu
$$

Hence

$$
b \mu(D) \leq \int_{D} f d \mu \leq a \mu(D)
$$

Since $a<b$ and the integral is finite, this forces $\mu(D)=0$.
Back to general Ω. Set

$$
\Delta=\left\{\liminf _{n}\left(S_{n} / n\right)<\limsup _{n}\left(S_{n} / n\right)\right\}
$$

and note that Δ is invariant. Also, $\Delta=\cup_{a, b \in \mathbb{Q}, a<b} D(a, b)$, so $\mu(\Delta)=0$. On the complement of $\Delta, S_{n} / n$ converges in $[-\infty, \infty]$, so we can define an invariant function \bar{f} by

$$
\bar{f}= \begin{cases}\lim _{n}\left(S_{n} / n\right) & \text { on } \Delta^{\mathrm{c}}, \\ 0 & \text { on } \Delta\end{cases}
$$

Finally, we have $\mu\left(\left|f \circ \theta^{n}\right|\right)=\mu(|f|)$, so $\mu\left(\left|S_{n}\right|\right) \leq n \mu(|f|)$ for all n. Hence, by Fatou's lemma,

$$
\mu(|\bar{f}|)=\mu\left(\liminf _{n}\left|S_{n} / n\right|\right) \leq \liminf _{n} \mu\left(\left|S_{n} / n\right|\right) \leq \mu(|f|)
$$

Theorem 1.2.3 (von Neumann's L^{p} ergodic theorem). Assume that $\mu(\Omega)<\infty$. Let $p \in[1, \infty)$. Then, for $f \in L^{p}, S_{n} / n \rightarrow \bar{f}$ in L^{p}.
Proof. We have

$$
\left\|f \circ \theta^{n}\right\|_{p}=\left(\int_{\Omega}|f|^{p} \circ \theta^{n} d \mu\right)^{1 / p}=\|f\|_{p}
$$

So, by Minkowski's inequality,

$$
\left\|S_{n}(f) / n\right\|_{p} \leq\|f\|_{p}
$$

Given $\varepsilon>0$, choose $K<\infty$ such that $\|f-g\|_{p}<\varepsilon / 3$, where

$$
g= \begin{cases}f & \text { if }|f| \leq K, \\ K & \text { if } f \geq K, \\ -K & \text { if } f \leq-K .\end{cases}
$$

By Birkhoff's theorem, $S_{n}(g) / n \rightarrow \bar{g}$ a.e. We have $\left|S_{n}(g) / n\right| \leq K$ for all n so, by bounded convergence, there exists N such that, for $n \geq N$,

$$
\left\|S_{n}(g) / n-\bar{g}\right\|_{p}<\varepsilon / 3
$$

By Fatou's lemma,

$$
\begin{aligned}
\|\bar{f}-\bar{g}\|_{p}^{p} & =\int_{\Omega} \liminf _{n}\left|S_{n}(f-g) / n\right|^{p} d \mu \\
& \leq \liminf _{n} \int_{\Omega}\left|S_{n}(f-g) / n\right|^{p} d \mu \\
& \leq\|f-g\|_{p}^{p} .
\end{aligned}
$$

Hence, for $n \geq N$,

$$
\begin{aligned}
\left\|S_{n}(f) / n-\bar{f}\right\|_{p} & \leq\left\|S_{n}(f-g) / n\right\|_{p}+\left\|S_{n}(g) / n-\bar{g}\right\|_{p}+\|\bar{g}-\bar{f}\|_{p} \\
& <\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon
\end{aligned}
$$

1.3. Strong law of large numbers.

Theorem 1.3.1. Let m be a probability measure on \mathbb{R}, with

$$
\int_{\mathbb{R}}|x| m(d x)<\infty, \quad \int_{\mathbb{R}} x m(d x)=\nu
$$

Let (E, \mathcal{E}, μ) be the canonical model for a sequence of independent random variables with law m. Then

$$
\mu\left(\left\{x:\left(x_{1}+\cdots+x_{n}\right) / n \rightarrow \nu \text { as } n \rightarrow \infty\right\}\right)=1 .
$$

Proof. The shift map θ on E is measure-preserving and ergodic. The coordinate function $f=X_{1}$ is integrable and

$$
S_{n}(f)=f+f \circ \theta+\cdots+f \circ \theta^{n-1}=X_{1}+\cdots+X_{n} .
$$

So $\left(X_{1}+\cdots+X_{n}\right) / n \rightarrow \bar{f}$ a.e. and in L^{1}, for some invariant function \bar{f}, by Birkhoff's ergodic theorem. Since θ is ergodic, $\bar{f}=c$ a.e., for some constant c and then

$$
c=\mu(\bar{f})=\lim _{n} \mu\left(S_{n} / n\right)=\nu
$$

Theorem 1.3.2 (Strong law of large numbers). Let $\left(Y_{n}: n \in \mathbb{N}\right)$ be a sequence of independent, identically distributed, integrable random variables with mean ν. Set $S_{n}=$ $Y_{1}+Y_{2}+\cdots+Y_{n}$. Then

$$
S_{n} / n \rightarrow \nu \quad \text { a.s., as } n \rightarrow \infty .
$$

Proof. In the notation of Theorem 1.3.1, take m to be the law of the random variables Y_{n}. Then $\mu=\mathbb{P} \circ Y^{-1}$, where $Y: \Omega \rightarrow E$ is given by $Y(\omega)=\left(Y_{n}(\omega): n \in \mathbb{N}\right)$. Hence

$$
\mathbb{P}\left(S_{n} / n \rightarrow \nu \text { as } n \rightarrow \infty\right)=\mu\left(\left\{x:\left(x_{1}+\cdots+x_{n}\right) / n \rightarrow \nu \text { as } n \rightarrow \infty\right\}\right)=1
$$

[^0]: ${ }^{1}$ Notes in part by courtesy of James Norris

