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Markov chains

Summary. The chapter begins with an introduction to discrete-time

Markov chains, and to the use of matrix products and linear alge-

bra in their study. The concepts of recurrence and transience are in-

troduced, and a necessary and sufficient criterion for recurrence is

proved. This leads to Pólya’s theorem: symmetric random walk is re-

current in one and two dimensions, and transient in higher dimen-

sions. It is shown how to calculate hitting probabilities and hitting

times. Stopping times are introduced, and the strong Markov prop-

erty is stated and proved. After a section on the classification of states,

there is a discussion of invariant distributions. The ergodic theorem is

proved for positive recurrent chains. A criterion for time-reversibility

is presented, and applied in the special case of random walk on a finite

graph.

12.1 The Markov property

A stochastic process is said to have the ‘Markov property’ if, conditional on its present value,

its future is independent of its past. This is a very restrictive assumption, but it has two benefits.

First, many processes in nature may be thus modelled, and secondly, the mathematical theory

of such processes is strikingly beautiful and complete.

Let S be a countable set called the state space, and let X = (Xn : n ≥ 0) be a sequence

of random variables taking values in S. The Xn are functions on some common probability

space, but we shall not be specific about that. The following is an informal way of explaining

what it means to be a Markov chain: the sequence X is a Markov chain if, conditional on the

present value Xn , the future (Xr : r > n) is independent of the past (Xm : m < n).

Definition 12.1 The sequence X is called a Markov chain if it satisfies the Markov
property

P
(
Xn+1 = in+1

∣∣ X0 = i0, X1 = i1, . . . , Xn = in

)
= P

(
Xn+1 = in+1

∣∣ Xn = in

)

(12.2)

for all n ≥ 0 and all i0, i1, . . . , in+1 ∈ S. The chain is called homogeneousif, for all

i, j ∈ S, the conditional probability P(Xn+1 = j | Xn = i) does not depend on the

value of n.
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Here are some examples of Markov chains. Each has a coherent theory relying on an

assumption of independence tantamount to the Markov property.

(a) (Branching processes) The branching process of Chapter 9 is a simple model of the

growth of a population. Each member of the nth generation has a number of offspring

that is independent of the past.

(b) (Random walk) A particle performs a random walk on the line, as in Chapter 10. At

each epoch of time, it jumps a random distance that is independent of previous jumps.

(c) (Poisson process) The Poisson process of Section 11.2 is a Markov chain but in contin-

uous time. Arrivals after time t are independent of arrivals before t .

(d) (An example from finance) Here is an example of a Markov model in action. In an

idealized financial model, a ‘stock’ price Sn is such that log Sn performs a type of random

walk on R, while a ‘bond’ accumulates value at a constant interest rate. A so-called

‘European call option’ permits a buyer to purchase one unit of stock at a given future

time and price. The problem is to determine the correct value of this option at time 0.

The answer is known as the Black–Scholes formula. A key element of the theory is that

the stock satisfies the Markov property.

The basic theory of Markov chains is presented in this chapter. For simplicity, all Markov

chains here will be assumed to be homogeneous. In order to calculate probabilities associated

with such a chain, we need to know two quantities:

(a) the transition matrix P = (pi, j : i, j ∈ S) given by pi, j = P(X1 = j | X0 = i), and

(b) the initial distribution λ = (λi : i ∈ S) given by λi = P(X0 = i).

By the assumption of homogeneity,

P(Xn+1 = j | Xn = i) = pi, j for n ≥ 0.

The pair (λ, P) is characterized as follows.

Proposition 12.3

(a) The vector λ is a distribution in that λi ≥ 0 for i ∈ S, and
∑

i∈S λi = 1.

(b) The matrix P = (pi, j ) is a stochastic matrixin that

(i) pi, j ≥ 0 for i, j ∈ S, and

(ii)
∑

j∈S pi, j = 1 for i ∈ S, so that P has row sums 1.

Proof (a) Since λi is a probability, it is non-negative. Also,

∑

i∈S

λi =
∑

i∈S

P(X0 = i) = 1.

(b) Since pi, j is a probability, it is non-negative. Finally,

∑

j∈S

pi, j =
∑

j∈S

P(X1 = j | X0 = i)

= P(X1 ∈ S | X0 = i) = 1. 2
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Theorem 12.4 Let λ be a distribution and P a stochastic matrix. The random sequence X is

a Markov chain with initial distribution λ and transition matrix P if and only if

P
(
X0 = i0, X1 = i1, . . . , Xn = in

)
= λi0 pi0,i1 · · · pin−1,in (12.5)

for all n ≥ 0 and i0, i1, . . . , in ∈ S.

Proof Write Ak for the event {Xk = ik}, so that (12.5) may be written as

P(A0 ∩ A1 ∩ · · · ∩ An) = λi0 pi0,i1 · · · pin−1,in . (12.6)

Suppose X is a Markov chain with initial distribution λ and transition matrix P . We prove

(12.6) by induction on n. It holds trivially when n = 0. Suppose N (≥ 1) is such that (12.6)

holds for n < N . Then

P(A0 ∩ A1 ∩ · · · ∩ AN ) = P(A0 ∩ A1 ∩ · · · ∩ AN−1)P
(
AN

∣∣ A0 ∩ A1 ∩ · · · ∩ AN−1

)

= P(A0 ∩ A1 ∩ · · · ∩ AN−1)P(AN | AN−1)

by the Markov property. Now P(AN | AN−1) = piN−1,iN , and the induction step is complete.

Suppose conversely that (12.6) holds for all n and sequences (im). Setting n = 0 we obtain

the initial distribution P(X0 = i0) = λi0 . Now,

P
(

An+1

∣∣ A0 ∩ A1 ∩ · · · ∩ An

)
=

P(A0 ∩ A1 ∩ · · · ∩ An+1)

P(A0 ∩ A1 ∩ · · · ∩ An)

so that, by (12.6),

P
(
An+1

∣∣ A0 ∩ A1 ∩ · · · ∩ An

)
= pin,in+1

.

Therefore, X is a homogeneous Markov chain with transition matrix P . 2

The Markov property (12.2) asserts in essence that the past affects the future only via the

present. This is made formal in the next theorem, in which Xn is the present value, F is a

future event, and H is a historical event.

Theorem 12.7 (Extended Markov property) Let X be a Markov chain. For n ≥ 0, for any

event H given in terms of the past history X0, X1, . . . , Xn−1, and any event F given in terms

of the future Xn+1, Xn+2, . . . ,

P(F | Xn = i, H ) = P(F | Xn = i) for i ∈ S. (12.8)

Proof A slight complication arises from the fact that F may depend on the infinite future.

There is a general argument of probability theory that allows us to restrict ourselves to the

case when F depends on the values of the process at only finitely many times, and we do not

explain this here.
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By the definition of conditional probability and Theorem 12.4,

P(F | Xn = i, H ) =
P(H, Xn = i, F)

P(H, Xn = i)

=
∑
<n

∑
>n λi0 pi0,i1 · · · pin−1,i pi,in+1

· · ·∑
<n λi0 pi0,i1 · · · pin−1,i

=
∑

>n

pi,in+1
pin+1,in+2

· · ·

= P(F | Xn = i),

where
∑
<n sums over all sequences (i0, i1, . . . , in−1) corresponding to the event H , and∑

>n sums over all sequences (in+1, in+2, . . . ) corresponding to the event F . 2

Exercise 12.9 Let Xn be the greatest number shown in the first n throws of a fair six-sided die. Show
that X = (Xn : n ≥ 1) is a homogeneous Markov chain, and write down its transition probabilities.

Exercise 12.10 Let X and Y be symmetric random walks on the line Z. Is X + Y necessarily a Markov
chain? Explain.

Exercise 12.11 A square matrix with non-negative entries is called doubly stochastic if all its row-sums
and column-sums equal 1. If P is doubly stochastic, show that Pn is doubly stochastic for n ≥ 1.

12.2 Transition probabilities

Let X be a Markov chain with transition matrix P = (pi, j ). The elements pi, j are called the

one-step transition probabilities. More generally, the n-step transition probabilities are given

by

pi, j (n) = P(Xn = j | X0 = i),

and they form a matrix called the n-step transition matrix P(n) = (pi, j (n) : i, j ∈ S). The

matrices P(n) satisfy a collection of equations named after Chapman and Kolmogorov.

Theorem 12.12 (Chapman–Kolmogorov equations) We have that

pi, j (m + n) =
∑

k∈S

pi,k(m)pk, j (n)

for i, j ∈ S and m, n ≥ 0. That is to say, P(m + n) = P(m)P(n).

Proof By the definition of conditional probability,

pi, j (m + n) = P(Xm+n = j | X0 = i)

=
∑

k∈S

P
(
Xm+n = j

∣∣ Xm = k, X0 = i
)
P(Xm = k | X0 = i). (12.13)

By the extended Markov property, Theorem 12.7,

P
(
Xm+n = j

∣∣ Xm = k, X0 = i
)

= P(Xm+n = j | Xm = k),

and the claim follows. 2
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By the Chapman–Kolmogorov equations, Theorem 12.12, the n-step transition probabili-

ties form a matrix P(n) = (pi, j (n)) that satisfies P(n) = P(1)n = Pn . One way of calculat-

ing the probabilities pi, j (n) is therefore to find the nth power of the matrix P . When the state

space is finite, then so is P , and this calculation is usually done best by diagonalizing P . We

illustrate this with an example.

Example 12.14 (Two-state Markov chain) Suppose S = {1, 2} and

P =
(

1 − α α

β 1 − β

)

where α, β ∈ (0, 1). Find the n-step transition probabilities.

Solution A (by diagonalization)In order to calculate the n-step transition matrix Pn , we shall

diagonalize P . The eigenvalues κ of P are the roots of the equation det(P − κ I ) = 0, which

is to say that (1 − α − κ)(1 − β − κ)− αβ = 0, with solutions

κ1 = 1, κ2 = 1 − α − β.

Therefore,

P = U−1

(
1 0

0 1 − α − β

)
U

for some invertible matrix U . It follows that

Pn = U−1

(
1 0

0 (1 − α − β)n

)
U,

and so

p1,1(n) = A + B(1 − α − β)n, (12.15)

for some constants A, B which are found as follows. Since p1,1(0) = 1 and p1,1(1) = 1 − α,

we have that A + B = 1 and A + B(1 − α − β) = 1 − α. Therefore,

A =
β

α + β
, B =

α

α + β
.

Now, p1,2(n) = 1 − p1,1(n), and p2,2(n) is found by interchanging α and β. In summary,

Pn =
1

α + β

(
β + α(1 − α − β)n α − α(1 − α − β)n

β − β(1 − α − β)n α + β(1 − α − β)n

)
.

We note for future reference that

Pn →
1

α + β

(
β α

β α

)
as n → ∞,

which is to say that

pi,1(n) →
β

α + β
, pi,2(n) →

α

α + β
for i = 1, 2.

This conclusion may be stated as follows. The distribution of Xn settles down to a limiting

distribution (β, α)/(α + β), which does not depend on the choice of initial state i . This hints

at a general property of Markov chains to which we shall return in Sections 12.9–12.10.
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Solution B (by difference equations)By conditioning on Xn (or, alternatively, by the Chapman–

Kolmogorov equations),

p1,1(n + 1) = P(Xn+1 = 1 | X0 = 1)

= P(Xn+1 = 1 | Xn = 1)p1,1(n)+ P(Xn+1 = 1 | Xn = 2)p1,2(n)

= (1 − α)p1,1(n)+ βp1,2(n)

= (1 − α)p1,1(n)+ β(1 − p1,1(n)).

This is a difference equation with boundary condition p1,1(0) = 1. Solving it in the usual

way, we obtain (12.15). △

Finally, we summarize the matrix method illustrated in Example 12.14. Suppose the state

space is finite, |S| = N say, so that P is an N × N matrix. It is a general result for stochastic

matrices1 that κ1 = 1 is an eigenvalue of P , and no other eigenvalue has larger absolute

value. We write κ1 (= 1), κ2, . . . , κN for the (possibly complex) eigenvalues of P , arranged

in decreasing order of absolute value. We assume for simplicity that the κi are distinct, since

the diagonalization of P is more complicated otherwise. There exists an invertible matrix U

such that P = U−1 K U where K is the diagonal matrix with entries κ1, κ2, . . . , κN . Then

Pn = (U−1 K U)n = U−1 K nU = U−1




κn
1 0 · · · 0

0 κn
2 · · · 0

...
...
. . . 0

0 0 · · · κn
N




U, (12.16)

from which the individual probabilities pi, j (n) may in principle be found.

The situation is considerably simpler if the chain has two further properties that will be

encountered soon, namely ‘irreducibility’ (see Section 12.3) and ‘aperiodicity’ (see Definition

12.72 and Theorem 12.73). Under these conditions, by the Perron–Frobenius theorem, κ1 = 1

is the unique eigenvalue with absolute value 1, so that κn
k → 0 as n → ∞, for k ≥ 2. By

(12.16), the long-run transition probabilities of the chain satisfy

Pn → U−1




1 0 · · · 0

0 0 · · · 0

...
...
. . . 0

0 0 · · · 0




U as n → ∞. (12.17)

One may gain further information from (12.17) as follows. The rows of U are the normalized

left eigenvectors of P , and the columns of U−1 are the normalized right eigenvectors. Since

P is stochastic, P1′ = 1′, where 1′ is the column-vector of ones. Therefore, the first column

of U−1 is constant. By examining the product in (12.17), we find that pi, j (n) → π j for some

vector π = (π j : j ∈ S) that does not depend on the initial state i .

1This is part of the so-called Perron–Frobenius theorem, for which the reader is referred to
Grimmett and Stirzaker (2001, Sect. 6.6).
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Remark 12.18 (Markov chains and linear algebra) Much of the theory of Markov chains

involves the manipulation of vectors and matrices. The equations are usually linear, and thus

much of the subject can be phrased in the language of linear algebra. For example, if X0 has

distribution λ, interpreted as a row-vector (λi : i ∈ S), then

P(X1 = j) =
∑

i∈S

λi pi, j for j ∈ S,

so that X1 has as distribution the row-vector λP . By iteration, X2 has distribution λP2, and so

on. We therefore adopt the convention that probability distributions are by default row-vectors,

and they act on the left side of matrices. Thus, λ′ denotes the transpose of the row-vector λ,

and is itself a column-vector.

Exercise 12.19 Let X be a Markov chain with transition matrix P, and let d ≥ 1. Show that Yn = Xnd

defines a Markov chain with transition matrix Pd .

Exercise 12.20 A fair coin is tossed repeatedly. Show that the number Hn of heads after n tosses forms
a Markov chain.

Exercise 12.21 A flea hops randomly between the vertices of a triangle. Find the probability that it is
back at its starting point after n hops.

12.3 Class structure

An important element in the theory of Markov chains is the interaction between the state space

S and the transition mechanism P .

Let X be a homogeneous Markov chain with state space S and transition matrix P . For

i, j ∈ S, we say that i leads to j , written i → j , if pi, j (n) > 0 for some n ≥ 0. By setting

n = 0 we have that i → i for all i ∈ S. We write i ↔ j if i → j and j → i , and in this case

we say that i and j communicate.

Proposition 12.22 The relation ↔ is an equivalence relation.

Proof Since i → i , we have that i ↔ i . Suppose that i, j, k ∈ S satisfy i ↔ j and j ↔ k.

Since i → j and j → k, there exist m, n ≥ 0 such that pi, j (m) > 0 and p j,k(n) > 0. By the

Chapman–Kolmogorov equations, Theorem 12.12,

pi,k(m + n) =
∑

l∈S

pi,l(m)pl,k(n)

≥ pi, j (m)p j,k(n) > 0,

so that i → k. Similarly, k → i , and hence i ↔ k. 2

Since ↔ is an equivalence relation, it has equivalence classes, namely the subsets of S of

the form Ci = { j ∈ S : i ↔ j}. These classes are called communicating classes. The chain

X (or the state space S) is called irreducible if there is a single equivalence class, which is to

say that i ↔ j for all i, j ∈ S.
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A subset C ⊆ S is called closed if

i ∈ C, i → j ⇒ j ∈ C. (12.23)

If the chain ever hits a closed set C , then it remains in C forever afterwards. If a singleton set

{i} is closed, we call i an absorbing state.

Proposition 12.24 A subset C of states is closed if and only if

pi, j = 0 for i ∈ C, j /∈ C. (12.25)

Proof Let C ⊆ S. If (12.25) fails then so does (12.23), and C is not closed.

Suppose conversely that (12.25) holds. Let k ∈ C , l ∈ S be such that k → l. Since k → l,

there exists m ≥ 0 such that P(Xm = l | X0 = k) > 0, and so there exists a sequence

k0 (= k), k1, . . . , km (= l) with pkr ,kr+1
> 0 for r = 0, 1, . . . ,m − 1. By (12.25), kr ∈ C for

all r , so that l ∈ C . Statement (12.23) follows. 2

Example 12.26 Let S = {1, 2, 3, 4, 5, 6} and

P =




1
2

1
2

0 0 0 0

0 0 1 0 0 0

1
3

0 0 1
3

1
3

0

0 0 0 1
2

1
2

0

0 0 0 0 0 1

0 0 0 0 1 0




.

Possible transitions of the chain are illustrated in Figure 12.1. The equivalence classes are

C1 = {1, 2, 3}, C2 = {4}, and C3 = {5, 6}. The classes C1 and C2 are not closed, but C3 is

closed. △

Exercise 12.27 Find the communicating classes, and the closed communicating classes, when the tran-
sition matrix is

P =




1
2

0 0 0 1
2

0 1
2

0 1
2

0

0 0 1 0 0

0 1
4

1
4

1
4

1
4

1
2

0 0 0 1
2



.

It may be useful to draw a diagram.

Exercise 12.28 If the state space is finite, show that there must exist at least one closed communicating
class. Give an example of a transition matrix with no such class.
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1

2

3

4

5
6

C1

C2

C3

Fig. 12.1 The arrows indicate possible transitions of the chain of Example 12.26. The communi-
cating classes are circled.

12.4 Recurrence and transience

Let X be a homogeneous Markov chain with state space S and transition matrix P . The better

to economize on notation, we write henceforth Pi (A) for P(A | X0 = i), and similarly Ei (Z)

for the mean of a random variable Z conditional on the event X0 = i .

The passage-time to state j is defined as

T j = min{n ≥ 1 : Xn = j},

and the first-passage probabilities are given by

fi, j (n) = Pi (T j = n).

If a chain starts in state i , is it bound to return to i at some later time?

Definition 12.29 A state i is called recurrent2if Pi (Ti < ∞) = 1. A state is called

transient if it is not recurrent.

Here is a criterion for recurrence in terms of the transition matrix P and its powers.

Theorem 12.30 The state i is recurrent if and only if

∞∑

n=0

pi,i (n) = ∞.

2The word ‘persistent’ is also used in this context.
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In proving this, we shall make use of the following Theorem 12.33. It was proved in

Theorem 10.12 that simple random walk on the line is recurrent if and only it is unbiased. The

proof used generating functions, and this method may be extended to prove Theorem 12.30.

We introduce next the generating functions in this more general context. For i, j ∈ S, let

Pi, j (s) =
∞∑

n=0

pi, j (n)s
n, Fi, j (s) =

∞∑

n=0

fi, j (n)s
n,

with the conventions that fi, j (0) = 0 and pi, j (0) = δi, j , the Kronecker delta defined by

δi, j =

{
1 if i = j,

0 otherwise.
(12.31)

We let

fi, j = Fi, j (1) = Pi (T j < ∞). (12.32)

and note that i is recurrent if and only if fi,i = 1.

Theorem 12.33 For i, j ∈ S, we have that

Pi, j (s) = δi, j + Fi, j (s)Pj, j (s), s ∈ (−1, 1].

Proof Using conditional probability and the extended Markov property, Theorem 12.7, for

n ≥ 1,

pi, j (n) =
∞∑

m=1

Pi (Xn = j | T j = m)Pi (T j = m). (12.34)

The summand is 0 for m > n, since in this case the first passage to j has not taken place by

time n. For m ≤ n,

Pi (Xn = j | T j = m) = Pi (Xn = j | Xm = j, H ),

where H = {Xr 6= j for 1 ≤ r < m} is an event defined prior to time m. By the extended

Markov property,

Pi (Xn = j | T j = m) = P(Xn = j | Xm = j) = P j (Xn−m = j).

We substitute this into (12.34) to obtain

pi, j (n) =
n∑

m=1

p j, j(n − m) fi, j (m).

Multiply through this equation by sn and sum over n ≥ 1 to obtain

Pi, j (s)− pi, j (0) = Pj, j (s)Fi, j (s).

The claim follows since pi, j (0) = δi, j . 2
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Proof of Theorem12.30 By Theorem 12.33 with i = j ,

Pi,i (s) =
1

1 − Fi,i (s)
for |s| < 1. (12.35)

In the limit as s ↑ 1, we have by Abel’s lemma that

Fi,i (s) ↑ Fi,i (1) = fi,i , Pi,i (s) ↑
∞∑

n=0

pi,i (n).

By (12.35),
∞∑

n=0

pi,i (n) = ∞ if and only if fi,i = 1,

as claimed. 2

The property of recurrence is called a class property, in that any pair of communicating

states are either both recurrent or both transient.

Theorem 12.36 Let C be a communicating class.

(a) Either every state in C is recurrent or every state is transient.

(b) Suppose C contains some recurrent state. Then C is closed.

Proof (a) Let i ↔ j and i 6= j . By Theorem 12.30, it suffices to show that

∞∑

n=0

pi,i (n) = ∞ if and only if

∞∑

n=0

p j, j (n) = ∞. (12.37)

Since i ↔ j , there exist m, n ≥ 1 such that

α := pi, j (m)p j,i(n) > 0.

By the Chapman–Kolmogorov equations, Theorem 12.12,

pi,i (m + r + n) ≥ pi, j (m)p j, j(r)p j,i(n) = αp j, j (r) for r ≥ 0.

We sum over r to obtain

∞∑

r=0

pi,i (m + r + n) ≥ α

∞∑

r=0

p j, j (r).

Therefore,
∑

r pi,i (r) = ∞ whenever
∑

r p j, j(r) = ∞. The converse holds similarly, and

(12.37) is proved.

(b) Assume i ∈ C is recurrent, and C is not closed. By Proposition 12.24, there exist j ∈ C ,

k /∈ C such that p j,k > 0 and k 9 j . By part (a), j is recurrent. However,

P j (Xn 6= j for all n ≥ 1) ≥ P j (X1 = k) = p j,k > 0,

a contradiction. Therefore, C is closed. 2
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Theorem 12.38 Suppose that the state space S is finite.

(a) There exists at least one recurrent state.

(b) If the chain is irreducible, all states are recurrent.

Here is a preliminary result which will be useful later.

Proposition 12.39 Let i, j ∈ S. If j is transient, then pi, j (n) → 0 as n → ∞.

Proof of Proposition12.39 Let j be transient. By Theorem 12.30 and Abel’s lemma, Pj, j (1) <

∞. By Theorem 12.33, Pi, j (1) < ∞, and hence the nth term in this sum, pi, j (n), tends to

zero as n → ∞. 2

Proof of Theorem12.38 Suppose |S| < ∞.

(a) We have that

1 =
∑

j∈S

Pi (Xn = j) =
∑

j∈S

pi, j (n). (12.40)

Assume every state is transient. By Proposition 12.39, for all j ∈ S, pi, j (n) → 0 as n → ∞.

This contradicts (12.40).

(b) Suppose the chain is irreducible. By Theorem 12.36, either every state is recurrent or every

state is transient, and the claim follows by part (a). 2

Exercise 12.41 A Markov chain X has an absorbing state s to which all other states lead. Show that all
states except s are transient.

Exercise 12.42

(a) Let j be a recurrent state of a Markov chain. Show that
∑

n pi, j (n) = ∞ for all states i such that
i → j .

(b) Let j be a transient state of a Markov chain. Show that
∑

n pi, j (n) < ∞ for all states i .

12.5 Random walks in one, two, and three dimensions

One-dimensional random walks were explored in some detail in Chapter 10. The purpose of

the current section is to extend the theory to higher dimensions within the context of Markov

chains.

The graphs of this section are the d-dimensional lattices. Let Z = {. . . ,−1, 0, 1 . . . } de-

note the integers, and let Zd be the set of all d-vectors of integers, written x = (x1, x2, . . . , xd )

with each xi ∈ Z. The set Zd may be interpreted as a graph with vertex-set Zd , and with edges

joining any two vectors x , y which are separated by Euclidean distance 1. Two such vertices

are declared adjacent, and are said to be neighbours. We denote the ensuing graph by Zd also,

and note that each vertex has exactly 2d neighbours. The graphs Z and Z2 are drawn in Figure

12.2.
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Fig. 12.2 The line Z and the square lattice Z2.

Let d ≥ 1. The symmetric random walk on Zd is the Markov chain on the state space Zd

which, at each step, jumps to a uniformly chosen neighbour. The transition matrix is given by

px,y =





1

2d
if y is a neighbour of x,

0 otherwise.

It is clear that the chain is irreducible. By Theorem 12.36, either every state is recurrent or

every state is transient.

Theorem 12.43 (Pólya’s theorem) The symmetric random walk on Zd is recurrent if d =
1, 2 and transient if d ≥ 3.

The case d = 1 was proved at Theorem 10.12, and the cases d = 2, 3 featured in Exercise

10.11 and Problems 10.5.9 and 10.5.13.

Proof Let d = 1 and X0 = 0. The walker can return to 0 only after an even number of steps.

The probability of return after 2n steps is the probability that, of the first 2n steps, exactly n

are to the right. Therefore,

p0,0(2n) =
(

1

2

)2n (
2n

n

)
. (12.44)

By Stirling’s formula, Theorem A.4,

p0,0(2n) =
(

1

2

)2n
(2n)!
(n!)2

∼
1

√
πn
. (12.45)

In particular,
∑

n p0,0(2n) = ∞. By Theorem 12.30, the state 0 is recurrent.

Suppose that d = 2. There is a clever but special way to handle this case, which we defer

until after this proof. Instead we develop next a method that works also when d ≥ 3. The walk

is at the origin 0 at time 2n if and only if it has taken equal numbers of leftward and rightward

steps, and also equal numbers of upward and downward steps. Therefore,

p0,0(2n) =
(

1

4

)2n n∑

m=0

(2n)!
[m! (n − m)!]2

.
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Now,
n∑

m=0

(2n)!
[m! (n − m)!]2

=
(

2n

n

) n∑

m=0

(
n

m

)(
n

n − m

)
=
(

2n

n

)2

,

by (A.2). Therefore,

p0,0(2n) =
(

1

2

)4n (
2n

n

)2

. (12.46)

This is simply the square of the one-dimensional answer (12.44) (this is no coincidence), so

that

p0,0(2n) ∼
1

πn
. (12.47)

Therefore,
∑

n p0,0(2n) = ∞, and hence 0 is recurrent.

Suppose finally that d = 3, the general case d ≥ 3 is handled similarly. By the argument

that led to (12.46), and a little reorganization,

p0,0(2n) =
(

1

6

)2n ∑

i+ j+k=n

(2n)!
(i ! j ! k!)2

=
(

1

2

)2n (2n

n

) ∑

i+ j+k=n

(
n!

3ni ! j ! k!

)2

≤
(

1

2

)2n (2n

n

)
M

∑

i+ j+k=n

n!
3ni ! j ! k!

, (12.48)

where

M = max

{
n!

3ni ! j ! k!
: i, j, k ≥ 0, i + j + k = n

}
.

It is not difficult to see that the maximum M is attained when i , j , and k are all closest to 1
3

n,

so that

M ≤
n!

3n
(
⌊ 1

3
n⌋!
)3 .

Furthermore, the final summation in (12.48) equals 1, since the summand is the probability

that, in allocating n balls randomly to three urns, the urns contain respectively i , j , and k balls.

It follows that

p0,0(2n) ≤
(2n)!

12nn!
(
⌊ 1

3
n⌋!
)3

which, by Stirling’s formula, is no bigger than Cn− 3
2 for some constant C . Therefore,

∞∑

n=0

p0,0(2n) < ∞,

implying that the origin 0 is transient. 2
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This section closes with an account of the ‘neat’ way of studying the two-dimensional

random walk (see also Problem 10.5.10). It is the precisely ‘squared’ form of (12.46) that

suggests an explanation using independence. Write Xn = (An, Bn) for the position of the

walker at time n, and let Yn = (Un, Vn) where

Un = An − Bn, Vn = An + Bn.

Thus, Yn is derived from Xn by referring to a rotated and re-scaled coordinate system, as

illustrated in Figure 12.3.

(An, Bn)

Un/
√

2

Vn/
√

2

Fig. 12.3 The new coordinate system for the process Y = (Yn).

The key fact is that U = (Un) and V = (Vn) are independent, symmetric random walks

on the line Z. This is checked by a set of four calculations of the following type. First,

P
(
Yn+1 − Yn = (1, 1)

)
= P(An+1 − An = 1)

= P
(
Xn+1 − Xn = (1, 0)

)
= 1

4
,

and similarly for the other three possibilities for Yn+1 − Yn , namely (−1, 1), (1,−1), and

(−1,−1). It follows that U and V are symmetric random walks. Furthermore, they are inde-

pendent since

P
(
Yn+1 − Yn = (u, v)

)
= P(Un+1 − Un = u)P(Vn+1 − Vn = v) for u, v = ±1.

Finally, Xn = 0 if and only if Yn = 0, and this occurs if and only if both Un = 0 and

Vn = 0. Therefore, in agreement with (12.46),

p0,0(2n) = P0(Un = 0)P0(Vn = 0) =
[(

1

2

)2n (
2n

n

)]2

,
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by (12.44). This argument is invalid in three or more dimensions.

Exercise 12.49 The infinite binary tree T is the tree-graph in which every vertex has exactly three
neighbours. Show that a random walk on T is transient.

Exercise 12.50 Consider the asymmetric random walk on the line Z that moves one step rightwards
with probability p, or one step leftwards with probability q (= 1 − p). Show that the walk is recurrent

if and only if p = 1
2

.

Exercise 12.51 In a variant of Exercise 12.50, the walker moves two steps rightwards with probability

p, and otherwise one step leftwards. Show that the walk is recurrent if and only if p = 1
3

.

12.6 Hitting times and hitting probabilities

Let A ⊆ S. The hitting time of the subset A is the earliest epoch n of time at which Xn ∈ A:

H A = inf{n ≥ 0 : Xn ∈ A}. (12.52)

The infimum of an empty set is taken by convention to be ∞, so that H A takes values in the

extended integers {0, 1, 2, . . . } ∪ {∞}. Note that H A = 0 if X0 ∈ A.

In this section, we study the hitting probability

h A
i = Pi (H

A < ∞)

of ever hitting A starting from i , and also the mean value of HA. If A is closed, then h A
i is

called an absorption probability.

Theorem 12.53 The vector h A = (h A
i : i ∈ S) is the minimal non-negative solution to the

equations

h A
i =





1 for i ∈ A,
∑

j∈S

pi, j h
A
j for i /∈ A. (12.54)

The property of minimality is as follows. For any non-negative solution (xi : i ∈ S) of

(12.54), we have that h A
i ≤ xi for all i ∈ S. Since the vector h A = (h A

i ) multiplies P on its

right side, it is best considered as column vector.

Proof We show first that the hitting probabilities satisfy (12.54). Certainly h A
i = 1 for i ∈ A,

since H A = 0 in this case. For i /∈ A, we condition on the first step of the chain to obtain

h A
i =

∑

j∈S

pi, j Pi (H
A < ∞ | X1 = j) =

∑

j∈S

pi, j h
A
j

as required for (12.54).
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We show next that the h A
i are minimal. Let x = (xi : i ∈ S) be a non-negative solution to

(12.54). In particular, h A
i = xi = 1 for i ∈ A. Let i /∈ A. Since x satisfies (12.54),

xi =
∑

j∈S

pi, j x j =
∑

j∈A

pi, j x j +
∑

j /∈A

pi, j x j . (12.55)

Since x j = 1 for j ∈ A, and x is non-negative, we have that

xi ≥
∑

j∈A

pi, j

= Pi (X1 ∈ A) = Pi (H
A = 1).

We iterate this as follows. By expanding the final summation in (12.55),

xi = Pi (X1 ∈ A)+
∑

j /∈A

pi, j

(∑

k∈A

p j,kxk +
∑

k /∈A

p j,kxk

)

≥ Pi (X1 ∈ A)+ Pi (X1 /∈ A, X2 ∈ A)

= Pi (H
A ≤ 2).

By repeated substitution, we obtain xi ≥ Pi (H
A ≤ n) for all n ≥ 0. Take the limit as n → ∞

to deduce as required that xi ≥ Pi (H
A < ∞) = h A

i . 2

We turn now to the mean hitting times, and write

k A
i = Ei (H

A).

Theorem 12.56 The vector k A = (k A
i : i ∈ S) is the minimal non-negative solution to the

equations

k A
i =





0 for i ∈ A,

1 +
∑

j∈S

pi, j k
A
j for i /∈ A. (12.57)

Proof This is very similar to the last proof. We show first that the k A
i satisfy (12.57). Cer-

tainly k A
i = 0 for i ∈ A, since H A = 0 in this case. For i /∈ A, we condition on the first step

of the chain to obtain

k A
i =

∑

j∈S

pi, j [1 + E j (H
A)] = 1 +

∑

j∈S

pi, j k
A
j

as required for (12.57).

We show next that the k A
i are minimal. Let y = (yi : i ∈ S) be a non-negative solution to

(12.57). In particular, k A
i = yi = 0 for i ∈ A. Let i /∈ A. Since y satisfies (12.57),
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yi = 1 +
∑

j∈S

pi, j y j = 1 +
∑

j /∈A

pi, j y j

= 1 +
∑

j /∈A

pi, j

(
1 +

∑

k /∈A

p j,k yk

)

≥ Pi (H
A ≥ 1)+ Pi (H

A ≥ 2).

By iteration,

yi ≥
n∑

m=1

Pi (H
A ≥ m),

and we send n → ∞ to obtain

yi ≥
∞∑

m=1

Pi (H
A ≥ m) = k A

i ,

as required. We have used the elementary fact (see Problem 2.6.6) that EM =
∑∞

m=1 P(M ≥
m) for any random variable M taking non-negative integer values. 2

Example 12.58 (Gambler’s Ruin) Let S be the non-negative integers {0, 1, 2, . . . }, and p ∈
(0, 1). A random walk on S moves one unit rightwards with probability p and one unit left-

wards with probability q (= 1 − p), and has an absorbing barrier at 0. Find the probability of

ultimate absorption.

Solution Let hi be the probability of absorption starting at i . By Theorem 12.53, (hi ) is the

minimal non-negative solution to the equations

h0 = 1, hi = phi+1 + qhi−1 for i ≥ 1.

Suppose p 6= q . The difference equation has general solution

hi = A + B(q/p)i for i ≥ 0.

If p < q , the boundedness of the hi forces B = 0, and the fact h0 = 1 implies A = 1.

Therefore, hi = 1 for all i ≥ 0.

Suppose p > q . Since h0 = 1, we have A + B = 1, so that

hi = (q/p)i + A
(
1 − (q/p)i

)
.

Since hi ≥ 0, we have A ≥ 0. By the minimality of the hi , we have A = 0, and hence

hi = (q/p)i , in agreement with Theorem 10.32.

Suppose finally that p = q = 1
2
. The difference equation has solution

hi = A + Bi,

and the above arguments yield B = 0, A = 1, so that hi = 1. △
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Example 12.59 (Birth–death chain) Let (pi : i ≥ 1) be a sequence of numbers satisfying

pi = 1 − qi ∈ (0, 1). The Gambler’s Ruin example, above, may be extended as follows. Let

X be a Markov chain on {0, 1, 2, . . . } with transition probabilities

pi,i+1 = pi , pi,i−1 = qi for i ≥ 1,

and p0,0 = 1. What is the probability of ultimate absorption at 0, having started at i?

Solution As in Example 12.58, the required probabilities hi are the minimal non-negative

solutions of

h0 = 1, hi = pi hi+1 + qihi−1 for i ≥ 1.

Set ui = hi−1 − hi and reorganize this equation to find that

ui+1 = (qi/pi )ui ,

so that ui+1 = γi u1 where

γi =
q1q2 · · · qi

p1 p2 · · · pi

.

Now, u0 + u1 + · · · + ui = h0 − hi , so that

hi = 1 − u1(γ0 + γ1 + · · · + γi−1),

where γ0 = 1. It remains to determine the constant u1.

There are two situations. Suppose first that
∑

k γk = ∞. Since hi ≥ 0 for all i , we have

that u1 = 0, and therefore hi = 1. On the other hand, if
∑

k γk < ∞, the hi are minimized

when 1 − u1

∑
k γk = 0, which is to say that u1 =

(∑
k γk

)−1
and

hi =
∞∑

k=i

γk

/ ∞∑

k=0

γk for i ≥ 0.

Thus hi < 1 for i ≥ 1 if and only if
∑

k γk < ∞. △

Exercise 12.60 Let X be a Markov chain on the non-negative integers {0, 1, 2, . . . } with transition prob-
abilities satisfying

p0,1 = 1, pi,i+1 + pi,i−1 = 1, pi,i+1 = pi,i−1

(
i + 1

i

)2

for i ≥ 1.

Show that P0(Xn ≥ 1 for all n ≥ 1) = 6/π2. You may use the fact that
∑∞

k=1 k−2 = 1
6
π2.

Exercise 12.61 Consider Exercise 12.60 with the difference that

pi,i+1 = pi,i−1

(
i + 1

i

)α
for i ≥ 1,

where α > 0. Find the probability P0(Xn ≥ 1 for all n ≥ 1) in terms of α.
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12.7 Stopping times and the strong Markov property

The Markov property of Definition 12.2 requires that, conditional on the value of the chain

at a given time n, the future evolution of the chain is independent of its past. We frequently

require an extension of this property to a random time n. It is not hard to see that the Markov

property cannot be true for all random times, and it turns out that the appropriate times are

those satisfying the following definition.

Definition 12.62 A random variable T : � → {0, 1, 2, . . . } ∪ {∞} is called a stop-
ping time for the chain X if, for all n ≥ 0, the event {T = n} is given in terms of

X0, X1, . . . , Xn only.

That is to say, a random time T is a stopping time if you can tell whether it takes any given

value by examining only the present and past of the chain. Times that ‘look into the future’

are not stopping times.

The principal examples of stopping times are the so-called hitting times. Let A ⊆ S, and

consider the hitting time H A of A given in (12.52). Note that

{H A = n} = {Xn ∈ A} ∩


 ⋂

0≤m<n

{Xm /∈ A}


 ,

so that H A is indeed a stopping time: one can tell whether or not H A = n by examining

X0, X1, . . . , Xn only.

Two related examples: it is easily checked that T = H A + 1 is a stopping time, and that

T = H A − 1 is not. See Exercise 12.69 for a further example.

Theorem 12.63 (Strong Markov property) Let X be a Markov chain with transition matrix

P, and let T be a stopping time. Given that T < ∞ and XT = i , the sequence Y = (Yk : k ≥
0), given by Yk = XT +k , is a Markov chain with transition matrix P and initial state Y0 = i .

Furthermore, given that T < ∞ and XT = i , Y is independent of X0, X1, . . . , XT −1.

Proof Let H be an event given in terms of X0, X1, . . . , XT −1. It is required to show that

P
(
XT +1 = i1, XT +2 = i2, . . . , XT +n = in, H

∣∣ T < ∞, XT = i
)

= Pi (X1 = i1, X2 = i2, . . . , Xn = in)P(H | T < ∞, XT = i). (12.64)

The event H ∩ {T = m} is given in terms of X1, X2, . . . , Xm only. Furthermore, XT = Xm

when T = m. We condition on the event H ∩ {T = m} ∩ {Xm = i} and use the Markov

property (12.8) at time m to deduce that

P(XT +1 = i1, XT +2 = i2, . . . , XT +n = in, H, T = m, XT = i)

= Pi (X1 = i1, X2 = i2, . . . , Xn = in)P(H, T = m, XT = i).

Now sum over m = 0, 1, 2, . . . and divide by P(T < ∞, XT = i) to obtain (12.64). 2
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Example 12.65 Let S be the non-negative integers {0, 1, 2, . . . }, and p ∈ (0, 1). Consider a

random walk X on S which moves one step rightwards with probability p, one step leftwards

with probability q (= 1 − p), and with an absorbing barrier at 0. Let H be the time until

absorption at 0. Find the distribution (and mean) of H given X1 = 1.

Solution We shall work with the probability generating function of H . A problem arises since

it may be the case that P1(H = ∞) > 0. One may either work with the conditional generating

function E1(s
H | H < ∞), or, equivalently, we can use the fact that, when |s| < 1, sn → 0

as n → ∞. That is, we write

G(s) = E1(s
H ) =

∞∑

n=0

snP1(H = n) for |s| < 1,

valid regardless of whether or not P1(H = ∞) = 0. Henceforth, we assume that |s| < 1, and

later we shall use Abel’s lemma3 to take the limit as s ↑ 1.

By conditioning on the first step of the walk, we find that

G(s) = pE1(s
H | X1 = 2)+ qE1(s

H | X1 = 0).

By the strong Markov property,

E1(s
H | X1 = 2) = E(s1+H ′+H ′′

) = sE(s H ′+H ′′
),

where H ′ and H ′′ are independent copies of H . Therefore,

G(s) = psG(s)2 + qs. (12.66)

This is a quadratic in G(s) with solutions

G(s) =
1 ±

√
1 − 4 pqs2

2 ps
. (12.67)

Since G is continuous wherever it is finite, we must choose one of these solutions and stick

with it for all |s| < 1. Since G(0) ≤ 1 and the positive root diverges as s ↓ 0, we take the

negative root in (12.67) for all |s| < 1.

The mass function of H is obtained from the coefficients in the expansion of G(s) as a

power series:

P1(H = 2k − 1) =
(

1/2

k

)
(−1)k−1 (4 pq)k

2 p
=

(2k − 2)!
k! (k − 1)!

·
(pq)k

p
,

for k = 1, 2, . . . . This uses the extended binomial theorem, Theorem A.3.

3See the footnote on page 54 for a statement of Abel’s lemma.
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It is not certain that H < ∞. Since P1(H < ∞) = lims↑1 G(s), we have by (12.67) and

Abel’s lemma that

P1(H < ∞) =
1 −

√
1 − 4 pq

2 p
.

It is convenient to write

1 − 4 pq = 1 − 4 p + 4 p2 = (1 − 2 p)2 = |p − q|2,

so that

P1(H < ∞) =
1 − |p − q|

2 p
=
{

1 if p ≤ q,

q/p if q > p,

as in Theorem 10.32 and Example 12.58.

We turn to the mean value E1(H ). When q > p, P1(H = ∞) > 0, and so E1(H ) = ∞.

Suppose p ≤ q . By differentiating (12.66),

pG2 + 2 psGG′ − G′ + q = 0 for |s| < 1, (12.68)

which we solve for G′ to find that

G′ =
pG2 + q

1 − 2 psG
for |s| < 1.

By Abel’s lemma, E1(H ) = lims↑1 G′(s), so that

E1(H ) = lim
s↑1

(
pG2 + q

1 − 2 psG

)
=





∞ if p = q,

1

q − p
if p < q.

△

Exercise 12.69

(a) Let H A be the hitting time of the set A. Show that T = H A − 1 is not generally a stopping time.

(b) Let L A be the time of the last visit of a Markov chain to the set A, with the convention that L A = ∞
if infinitely many visits are made. Show that L A is not generally a stopping time.

12.8 Classification of states

We saw in Definition 12.29 that a state i is recurrent if, starting from i , the chain returns to i

with probability 1. The state is transient if it is not recurrent. If the starting state i is recurrent,

the chain is bound to return to it. Indeed, it is bound to return infinitely often.

Theorem 12.70 Suppose X0 = i , and let Vi = |{n ≥ 1 : Xn = i}| be the number of

subsequent visits by the Markov chain to i . Then

(a) Pi (Vi = ∞) = 1 if i is recurrent,

(b) Pi (Vi < ∞) = 1 if i is transient.
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We return in Theorem 12.101 to the more detailed question of the rate of divergence of

the number of visits to i in the recurrent case. The proof makes use of the recurrence time of

a state i . Let

Ti = inf{n ≥ 1 : Xn = i} (12.71)

be the first passage time to i . If X0 = i , then Ti is the recurrence time of i , with mean

µi = Ei (Ti ).

Proof Recall the first-passage probability fi,i = Pi (Ti < ∞), so that i is recurrent if fi,i = 1

and transient of fi,i < 1. Let T r
i be the epoch of the r th visit to i , with T r

i = ∞ if Vi < r .

Since the T r
i are increasing,

Pi (Vi ≥ r) = Pi (T
r
i < ∞)

= Pi (T
r
i < ∞ | T r−1

i < ∞)Pi (T
r−1
i < ∞)

= fi,i Pi (T
r−1
i < ∞) for r ≥ 1,

by the strong Markov property, Theorem 12.63. By iteration, Pi (Vi ≥ r) = f r
i,i . We send

r → ∞ to find that

Pi (Vi = ∞) =

{
1 if fi,i = 1,

0 if fi,i < 1.

and the theorem is proved. When i is transient, we have proved the stronger fact that Vi has a

geometric distribution. 2

Definition 12.72

(a) The mean recurrence timeµi of the state i is defined by

µi = Ei (Ti ) =





∞∑

n=1

n fi,i (n) if i is recurrent,

∞ if i is transient.

(b) If i is recurrent, we call it null if µi = ∞, and positive(or non-null) if µi < ∞.

(c) The perioddi of the state i is given by

di = gcd{n : pi,i (n) > 0}.

The state i is called aperiodicif di = 1, and periodicif di > 1.

(d) State i is called ergodicif it is aperiodic and positive recurrent.

It was proved in Theorem 12.36 that recurrence is a class property. This conclusion may

be extended as follows.

Theorem 12.73 If i ↔ j then

(a) i and j have the same period,
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(b) i is recurrent if and only if j is recurrent,

(c) i is positive recurrent if and only if j is positive recurrent,

(d) i is ergodic if and only if j is ergodic.

We may therefore speak of an communicating class C as being recurrent, transient, er-

godic, and so on. An irreducible chain has a single communicating class, and thus we may

attribute these adjectives (when appropriate) to the chain itself.

Proof We may assume i 6= j .

(a) Since i ↔ j , there exist m, n ≥ 1 such that

α := pi, j (m)p j,i(n) > 0.

By the Chapman–Kolmogorov equations, Theorem 12.12,

pi,i (m + r + n) ≥ pi, j (m)p j, j(r)p j,i(n) = αp j, j (r) for r ≥ 0. (12.74)

In particular, pi,i (m + n) ≥ α > 0, so that di | m + n. Therefore, if di ∤ r , then di ∤ m + r + n,

so that pi,i (m + n + r) = 0. In this case, by (12.74), p j, j (r) = 0, and hence d j ∤ r . Therefore,

di | d j . By the reverse argument, d j | di , and hence di = d j .

(b) This was proved at Theorem 12.36.

(c) For this proof we look forward slightly to Theorem 12.81. Suppose that i is positive re-

current, and let C be the communicating class of states containing i . Since i is recurrent, by

Theorem 12.36(b), C is closed. If X0 ∈ C , then Xn ∈ C for all n, and the chain is irreducible

on the state space C . By part (a) of Theorem 12.81, it possesses an invariant distribution, and

by part (b) every state (of C) is positive recurrent. If i ↔ j then j ∈ C , so j is positive

recurrent.

(d) This follows from (a), (b), and (c). 2

Finally in this section, we note that recurrent states will be visited regardless of the initial

distribution. This will be useful later.

Proposition 12.75 If the chain is irreducible and j ∈ S is recurrent, then

P(Xn = j for some n ≥ 1) = 1,

regardless of the distribution of X0.

Proof Let i , j be distinct states. Since the chain is assumed irreducible, there exists a least

(finite) integer m such that p j,i(m) > 0. Since m is least, it is the case that

p j,i(m) = P j (Xm = i, Xr 6= j for 1 ≤ r < m). (12.76)

Suppose X0 = j , Xm = i , and no return to j takes place after time m. By (12.76), with

probability 1 no return to j ever takes place. By the Markov property at time m,

p j,i(m)(1 − fi, j ) ≤ 1 − f j, j .

If j is recurrent, then f j, j = 1, so that fi, j = 1 for all i ∈ S.
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Let λi = P(X0 = i). With T j = inf{n ≥ 1 : Xn = j} as usual,

P(T j < ∞) =
∑

i∈S

λi fi, j = 1,

by conditioning on X0. 2

Exercise 12.77 Let X be an irreducible Markov chain with period d . Show that Yn = Xnd defines an
aperiodic Markov chain.

Exercise 12.78 Let 0 < p < 1. Classify the states of the Markov chains with transition matrices




0 p 0 1 − p
1 − p 0 p 0

0 1 − p 0 p
p 0 1 − p 0


 ,




1 − 2p 2p 0
p 1 − 2p p
0 2p 1 − 2p


 .

Exercise 12.79 Let i be an aperiodic state of a Markov chain. Show that there exists N ≥ 1 such that
pi,i (n) > 0 for all n ≥ N .

12.9 Invariant distributions

We turn now towards the study of the long-term behaviour of a Markov chain: what can be

said about Xn in the limit as n → ∞? Since the sequence (Xn : n ≥ 0) is subject to random

fluctuations, it does not (typically) converge to any given state. On the other hand, we will

see in the next section that its distribution settles into an equilibrium. In advance of stating

this limit theorem, we first explore the possible limits. Any distributional limit is necessarily

invariant under the evolution of the chain, and we led to the following definition.

Definition 12.80 Let X be a Markov chain with transition matrix P. The vector π =
(πi : i ∈ S) is called an invariant distribution4of the chain if:

(a) πi ≥ 0 for all i ∈ S, and
∑

i∈S πi = 1,

(b) π = πP.

An invariant distribution is invariant under the passage of time: if X0 has distribution π ,

then Xn has distribution πPn , and πPn = πP · Pn−1 = πPn−1 = · · · = π .

Theorem 12.81 Consider an irreducible Markov chain.

(a) There exists an invariant distribution π if and only if some state is positive recurrent.

(b) If there exists an invariant distribution π , then every state is positive recurrent, and πi =
1/µi where µi is the mean recurrence time of state i . In particular, π is the unique

invariant distribution.

4Also known as a stationary or equilibrium or steady-state distribution. An invariant distribution is sometimes
referred to as an invariant measure, but it is more normal to reserve this expression for a non-negative solution π of
the equation π = π P with no assumption of having sum 1, or indeed of even having finite sum.



228 Markov chains

We shall prove Theorem 12.81 by exhibiting an explicit solution of the vector equation

ρ = ρP . In looking for a solution, it is natural to consider a vector ρ with entries indicative

of the proportions of time spent in the various states. Towards this end, we fix a state k ∈ S

and start the chain from this state. Let Wi be the number of subsequent visits to state i before

the first return to the initial state k. Thus Wi may be expressed in either of the forms

Wi =
∞∑

m=1

1(Xm = i, Tk ≥ m) =
Tk∑

m=1

1(Xm = i), i ∈ S, (12.82)

where Tk = inf{n ≥ 1 : Xn = k} is the first return time to the starting state k, and 1(A) = 1A

is the indicator function of A. Note that Wk = 1 if Tk < ∞. Our candidate for the vector ρ is

given by

ρi = Ek(Wi ), i ∈ S. (12.83)

Recall that Ek(Z) denotes the mean of Z given that X0 = k.

Proposition 12.84 For an irreducible, recurrent chain, and any given k ∈ S, the vector ρ =
(ρi : i ∈ S) satisfies:

(a) ρk = 1,

(b)
∑

i∈S ρi = µk , whether or not µk < ∞,

(c) ρ = ρP,

(d) 0 < ρi < ∞ for i ∈ S.

One useful consequence of the above is the following. Consider an irreducible, positive

recurrent Markov chain, and fix a state k. By Theorem 12.81, there exists a unique invariant

distribution π , and πk = 1/µk . By Proposition 12.84(b), ν := πkρ satisfies ν = νP and∑
i∈S νi = 1. It follows that π = ν. Therefore, ρi = νi/πk = πi/πk . In summary, for given

k ∈ S, the mean number of visits to state i between two consecutive visits to k is πi/πk .

Proof of Proposition12.84 (a) Since the chain is assumed recurrent, Pk(Tk < ∞) = 1. By

(12.82), Wk = 1, so that ρk = Ek(1) = 1.

(b) Since the time between two visits to state k must be spent somewhere, we have that

Tk =
∑

i∈S

Wi ,

so that, by an interchange of expectation and summation,5

µk = Ek(Tk) =
∑

i∈S

Ek(Wi ) =
∑

i∈S

ρi .

(c) By (12.82) and a further interchange, for j ∈ S,

5Care is necessary when interchanging limits. This interchange is justified by the footnote on page 39. The forth-
coming interchange at (12.87) holds since the order of summation is irrelevant to the value of a double sum of
non-negative reals.
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ρ j =
∞∑

m=1

Pk(Xm = j, Tk ≥ m). (12.85)

The event {Tk ≥ m} depends only on X0, X1, . . . , Xm−1. By the extended Markov property,

Theorem 12.7, for m ≥ 1,

Pk(Xm = j, Tk ≥ m) =
∑

i∈S

Pk(Xm−1 = i, Xm = j, Tk ≥ m)

=
∑

i∈S

Pk

(
Xm = j

∣∣ Xm−1 = i, Tk ≥ m
)
Pk(Xm−1 = i, Tk ≥ m)

=
∑

i∈S

pi, j Pk(Xm−1 = i, Tk ≥ m). (12.86)

By (12.85)–(12.86) and another interchange of limits,

ρ j =
∑

i∈S

∞∑

m=1

pi, j Pk(Xm−1 = i, Tk ≥ m). (12.87)

We rewrite this with r = m − 1 to find that

ρ j =
∑

i∈S

pi, j

∞∑

r=0

Pk(Xr = i, Tk ≥ r + 1) =
∑

i∈S

pi, jρi ,

where the last equality holds by separate consideration of the two cases i = k and i 6= k. In

summary, ρ = ρP .

(d) Since the chain is irreducible, there exist m, n ≥ 0 such that pi,k(m), pk,i (n) > 0. Since

ρ = ρP and hence ρ = ρPk for k ≥ 1, we have that

ρk ≥ ρi pi,k(m), ρi ≥ ρk pk,i (n).

Since ρk = 1,

pk,i (m) ≤ ρi ≤
1

pi,k(n)
,

and the proof is complete. 2

Proof of Theorem12.81 (a) Suppose k ∈ S is positive recurrent, so that µk < ∞. Let ρ be

given by (12.83). By Proposition 12.84, π := (1/µk)ρ is an invariant distribution.

(b) Suppose that π is an invariant distribution of the chain. We show first that

πi > 0 for i ∈ S. (12.88)

Since
∑

i∈S πi = 1, there exists k ∈ S with πk > 0. Let i ∈ S. By irreducibility, there exists

m ≥ 1 such that pk,i (m) > 0. We have that π = πP , so that π = πPm . Therefore,

πi =
∑

j∈S

π j p j,i(m) ≥ πk pk,i (m) > 0,

and (12.88) follows.
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By irreducibility and Theorem 12.36, either all states are transient or all are recurrent. If

all states are transient then pi, j (n) → 0 as n → ∞ by Proposition 12.39. Since π = πPn ,

π j =
∑

i

πi pi, j (n) → 0 as n → ∞, for i, j ∈ S, (12.89)

which contradicts (12.88). Therefore, all states are recurrent. A small argument is needed to

justify the limit in (12.89), and this is deferred to Lemma 12.91.

We show next that the existence of π implies that all states are positive, and that πi = µ−1
i

for i ∈ S. Suppose that X0 has distribution π . Then

π jµ j = P(X0 = j)

∞∑

n=1

P j (T j ≥ n) =
∞∑

n=1

P(T j ≥ n, X0 = j).

However, P(T j ≥ 1, X0 = j) = P(X0 = j), and for n ≥ 2,

P(T j ≥ n, X0 = j) = P(X0 = j, Xm 6= j for 1 ≤ m ≤ n − 1)

= P(Xm 6= j for 1 ≤ m ≤ n − 1)− P(Xm 6= j for 0 ≤ m ≤ n − 1)

= P(Xm 6= j for 0 ≤ m ≤ n − 2)− P(Xm 6= j for 0 ≤ m ≤ n − 1)

= an−2 − an−1

where

ar = P(Xm 6= j for 0 ≤ m ≤ r),

and we have used the invariance of π . We sum over n to obtain

π jµ j = P(X0 = j)+ a0 − lim
n→∞

an = 1 − lim
n→∞

an.

However, an → P(Xm 6= j for all m) = 0 as n → ∞, by the recurrence of j and Proposition

12.75.

We have shown that

π jµ j = 1, (12.90)

so that µ j = π−1
j < ∞ by (12.88). Hence µ j < ∞ and all states of the chain are positive.

Furthermore, (12.90) specifies π j uniquely as µ−1
j . 2

Here is the little lemma used to establish the limit in (12.89). It is a form of the so-called

bounded convergence theorem.

Lemma 12.91 Let λ = (λi : i ∈ S) be a distribution on the countable set S, and let αi (n)

satisfy

|αi (n)| ≤ M, lim
n→∞

αi (n) = 0 for i ∈ S,

where M < ∞. Then ∑

i∈S

λiαi (n) → 0 as n → ∞.
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Proof Let F be a finite subset of S, and write

∑

i∈S

|λiαi (n)| ≤
∑

i∈F

λi |αi (n)| + M
∑

i /∈F

λi

→ M
∑

i /∈F

λi as n → ∞, since F is finite

→ 0 as F ↑ S, since
∑

i

λi < ∞. 2

A B C

D

Fig. 12.4 Find the mean number of visits to B before returning to the starting state A.

Exercise 12.92 A particle starts at A and executes a symmetric random walk on the graph of Figure
12.4. Find the invariant distribution of the chain. Using the remark after Proposition 12.84 or otherwise,
find the expected number of visits to B before the particle returns to A.

Exercise 12.93 Consider the symmetric random walk on the line Z. Show that any invariant distribution

π satisfies πn = 1
2
(πn−1 + πn+1), and deduce that the walk is null recurrent.

12.10 Convergence to equilibrium

The principal result for discrete-time Markov chains is that, subject to weak conditions, its

distribution converges to the unique invariant distribution.

Theorem 12.94 (Ergodic theorem for Markov chains) Consider an aperiodic, irreducible,

positive recurrent Markov chain. For i, j ∈ S,

pi, j (n) → π j as n → ∞,

where π is the unique invariant distribution of the chain.

Proof The proof uses an important technique known as ‘coupling’. Construct an ordered

pair Z = (X,Y) of independent Markov chains X = (Xn : n ≥ 0), Y = (Yn : n ≥ 0)

each of which has state space S and transition matrix P . Then Z = (Zn : n ≥ 0) is given by
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Zn = (Xn,Yn), and it is easy to check that Z is a Markov chain with state space S × S and

transition probabilities

pi j,kl = P
(
Zn+1 = (k, l)

∣∣ Zn = (i, j)
)

= P(Xn+1 = k | Xn = i)P(Yn+1 = l | Yn = j) by independence

= pi,k p j,l .

Since X is irreducible and aperiodic, for i, j, k, l ∈ S there exists N = N(i, j, k, l) such that

pi,k(n)p j,l(n) > 0 for all n ≥ N (see Exercise 12.79). Therefore, Z is irreducible. Only here

is the aperiodicity used.

Suppose that X is positive recurrent. By Theorem 12.81, X has a unique stationary distri-

bution π , and it is follows that Z has the stationary distribution ν = (νi, j : i, j ∈ S) given

by νi, j = πiπ j . Therefore, Z is also positive recurrent, by Theorem 12.81. Let X0 = i and

Y0 = j , so that Z0 = (i, j). Fix s ∈ S and let

T = min{n ≥ 1 : Zn = (s, s)}

be the first passage time of Z to (s, s). By the recurrence of Z and Proposition 12.75,

Pi j (T < ∞) = 1, (12.95)

where Pi j denotes the probablity measure conditional on Z0 = (i, j).

The central idea of the proof is the following observation. Suppose Xm = Ym = s. Since

T is a stopping time, by the strong Markov property Xn and Yn have the same conditional

distributions given the event {T ≤ n}. We shall use this fact, together with the finiteness of T ,

to show that the limiting distributions of X and Y are independent of their starting points.

More precisely,

pi,k(n) = Pi j (Xn = k)

= Pi j (Xn = k, T ≤ n)+ Pi j (Xn = k, T > n)

= Pi j (Yn = k, T ≤ n)+ Pi j (Xn = k, T > n)

since, given that T ≤ n, Xn and Yn are identically distributed

≤ Pi j (Yn = k)+ Pi j (T > n)

= p j,k(n)+ Pi j (T > n).

This, and the related inequality with i and j interchanged, yields
∣∣pi,k(n)− p j,k(n)

∣∣ ≤ Pi j (T > n) → 0 as n → ∞

by (12.95). Therefore,

pi,k(n)− p j,k(n) → 0 as n → ∞, for i, j, k ∈ S. (12.96)

Thus, if the limit limn→∞ pik(n) exists, then it does not depend on i . To show that it exists,

write

πk − p j,k(n) =
∑

i∈S

πi

[
pi,k(n)− p j,k(n)

]
→ 0 as n → ∞, (12.97)

by Lemma 12.91. The proof is complete. 2
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Example 12.98 Here is an elementary example which highlights the necessity of aperiodicity

in the ergodic theorem, Theorem 12.94. Let X be a Markov chain with state space S = {1, 2}
and transition matrix

P =

(
0 1

1 0

)
.

Thus, X alternates deterministically between the two states. It is immediate that P2n = I and

P2n+1 = P for n ≥ 0, and, in particular, the limit limk→∞ pi, j (k) exists for no i, j ∈ S.

The proof of Theorem 12.94 fails since the paired chain Z is not irreducible: for example,

if Z0 = (0, 1) then Zn 6= (0, 0) for all n. △

Example 12.99 (Coupling game) A pack of cards is shuffled, and the cards dealt (face up)

one by one. A friend is asked to select some card, secretly, from amongst the first six or seven

cards, say. If the face value of this card is m (aces count 1 and court cards count 10), the next

m −1 cards are allowed to pass, and your friend is asked to note the face value of the mth card.

Continuing according to this rule, there arrives a last card in this sequence, with face value X

say, and with fewer than X cards remaining. We call X your friend’s ‘score’.

With high probability, you are able to guess accurately your friend’s score, as follows. You

follow the same rules as the friend, starting for simplicity at the first card. You obtain thereby

a score Y , say. There is a high probability that X = Y .

Why is this the case? Suppose your friend picks the m1th card, m2th card, and so on, and

you pick the n1 (= 1)th, n2th, . . . . If mi = n j for some i , j , the two of you are ‘stuck together’

forever after. When this occurs first, we say that ‘coupling’ has occurred. Prior to coupling,

each time you read the value of a card, there is a positive probability that you will arrive at

the next stage on exactly the same card as the other person. If the pack of cards were infinitely

large, then coupling would take place sooner or later. It turns out that there is a reasonable

chance that coupling takes place before the last card of a regular pack has been dealt. △

A criterion for transience or recurrence was presented at Theorem 12.30. We now have a

criterion for null recurrence.

Theorem 12.100 Let X be an irreducible, recurrent Markov chain. The following are equiv-

alent.

(a) There exists a state i such that pi,i (n) → 0 as n → ∞.

(b) Every state is null recurrent.

As an application, consider symmetric random walk on the graphs Z or Z2 of Section 12.5.

By (12.45) or (12.47) as appropriate, p0,0(n) → 0 as n → ∞, from which we deduce that the

one- and two-dimensional random walks are null recurrent. This may be compared with the

method of Exercise 12.93.

Proof We shall prove only that (a) implies (b). See Grimmett and Stirzaker (2001, Thm

(6.2.9)) for the other part. If the chain X is positive recurrent and in addition aperiodic, then

pi,i (n) →
1

µi

> 0,
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by Theorems 12.81 and 12.94. Therefore, (a) does not hold. The same argument may be

applied in the periodic case by considering the chain Yn = Xnd where d is the period of

the chain. Thus (a) implies (b). 2

This section closes with a discussion of the rate at which a Markov chain visits a given

state. Let i ∈ S and let

Vi (n) =
n∑

k=1

1(Xk = i)

denote the number of visits to i up to time n.

Theorem 12.101 Let i ∈ S. If the chain is irreducible and positive recurrent,

1

n
Vi (n) ⇒

1

µi

as n → ∞,

irrespective of the initial distribution of the chain.

There are various modes of convergence of random variables, of which we have chosen

convergence in distribution for the sake of simplicity. (It is equivalent to convergence in prob-

ability in this case, see Theorem 8.47.) A more powerful result is valid, but it relies on the

so-called strong law of large numbers which is beyond the range of this volume.

Proof The law of large numbers tells us about the asymptotic behaviour of the sum of inde-

pendent, identically distributed random variables, and the key to the current proof is to write

Vi (n) in terms of such a sum. Let

U1 = inf{n ≥ 1 : Xn = i},

be the time until the first visit to i , and for m ≥ 1 let Um be the time between the mth and

(m + 1)th visits. Since the chain is assumed positive recurrent, we have that P(Um < ∞) = 1

and µi = Ei (U1) < ∞. The first passage time U1 may have a different distribution from the

remaining Um if X0 6= i .

By the strong Markov property, the random variables U1,U2, . . . are independent, and

U2,U3, . . . are identically distributed. Moreover,

Vi (n) ≥ x if and only if S⌈x⌉ ≤ n,

where ⌈x⌉ is the least integer not less than x , and

Sm =
m∑

r=1

Ur .

is the time of the mth visit to i . Therefore,

P

(
1

n
Vi (n) ≥

1 + ǫ

µi

)
= P (SN ≤ n) , (12.102)

where N = ⌈(1 + ǫ)n/µi⌉. By the weak law of large numbers, Theorem 8.17,
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1

N
SN =

1

N
U1 +

1

N

N∑

r=2

Ur

⇒ µi as n → ∞, (12.103)

where we have used the fact that U1/N → 0 in probability (see Theorem 8.47 and Problem

8.6.9). By (12.102)–(12.103),

P

(
1

n
Vi (n) ≥

1 + ǫ

µi

)
→
{

0 if ǫ > 0,

1 if ǫ < 0.

There is a gap in this proof, since Theorem 8.17 assumed that a typical summand, U2 say,

has finite variance. If that is not known, then it is necessary to appeal to the more powerful

conclusion of Example 8.52 whose proof uses the method of characteristic functions. 2

Exercise 12.104 Let π be the unique invariant distribution of an aperiodic, irreducible Markov chain X.
Show that P(Xn = j)→ π j as n → ∞, regardless of the initial distribution of X0.

12.11 Time reversal

An important observation of physics is that many equations are valid irrespective of whether

time flows forwards or backwards. Invariance under time-reversal is an important property of

certain Markov chains.

Let X = (Xn : 0 ≤ n ≤ N) be an irreducible, positive recurrent Markov chain, with

transition matrix P and invariant distribution π . Suppose further that X0 has distribution π ,

so that Xn has distribution π for every n. The ‘reversed chain’ Y = (Yn : 0 ≤ n ≤ N) is given

by reversing time: Yn = X N−n for 0 ≤ n ≤ N . Recall from Theorem 12.81(b) that πi > 0 for

i ∈ S.

Theorem 12.105 The sequence Y is an irreducible Markov chain with transition matrix P̂ =
( p̂i, j : i, j ∈ S) given by

p̂i, j = (π j/πi )p j,i for i, j ∈ S, (12.106)

and with invariant distribution π .

Proof We check first that P̂ is a stochastic matrix. Certainly its entries are non-negative, and

also ∑

j∈S

p̂i, j =
1

πi

∑

j∈S

π j p j,i =
1

πi

πi = 1,

since π is invariant for P .

Next we show that π is invariant for P̂ . By (12.106),

∑

i∈S

πi p̂i, j =
∑

i∈S

π j p j,i = π j ,

since P has row-sums 1.
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Finally, by Theorem 12.4,

P
(
Y0 = i0, Y1 = i1, . . . , Yn = in

)
= P

(
X N−n = in, X N−n+1 = in−1, . . . , X N = i0

)

= πin pin,in−1
· · · pi1,i0

= πi0 p̂i0,i1 · · · p̂in−1,in by (12.106).

By Theorem 12.4 again, Y has transition matrix P̂ and initial distribution π . 2

We call the chain Y the time-reversal of the chain X, and we say that X is reversible if X

and its time-reversal have the same transition probabilities.

Definition 12.107 Let X = (Xn : 0 ≤ n ≤ N) be an irreducible Markov chain such that

X0 has the invariant distribution π . The chain is reversibleif X and its time-reversal Y

have the same transition matrices, which is to say that

πi pi, j = π j p j,i for i, j ∈ S. (12.108)

Equations (12.108) are called the detailed balance equations, and they are pivotal to the

study of reversible chains. More generally we say that a transition matrix P and a distribution

λ are in detailed balance if

λi pi, j = λ j p j,i for i, j ∈ S.

An irreducible chain X with invariant distribution π is said to be reversible in equilibrium if

its transition matrix P is in detailed balance with π .

It turns out that, for an irreducible chain, P is in detailed balance with a distribution λ

if and only if λ is the unique invariant distribution. This provides a good way of finding the

invariant distribution of a reversible chain.

Theorem 12.109 Let P be the transition matrix of an irreducible chain X, and suppose that

π is a distribution satisfying

πi pi, j = π j p j,i for i, j ∈ S. (12.110)

Then π is the unique invariant distribution of the chain. Furthermore, X is reversible in equi-

librium.

Proof Suppose that π is a distribution that satisfies (12.110). Then

∑

i∈S

πi pi, j =
∑

i∈S

π j p j,i = π j

∑

i∈S

p j,i = π j ,

since P has row-sums 1. Therefore, π = πP , whence π is invariant. The reversibility in

equilibrium of X follows by checking Definition 12.107. 2

The above discussion of reversibility is restricted to a Markov chain with only finitely

many time-points 0, 1, 2, . . . , N . It is easily extended to the infinite time set 0, 1, 2, . . . . It
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may even be extended to the doubly-infinite time set . . . ,−2,−1, 0, 1, 2, . . . , subject to the

assumption that Xn has the invariant distribution π for all n.

Time-reversibility is a very useful concept in the theory of random networks. There is a

valuable analogy using the language of flows. Let X be a Markov chain with state space S

and invariant distribution π . To this chain there corresponds the following directed network

(or graph). The vertices of the network are the states of the chain, and an arrow is placed from

vertex i to vertex j if pi, j > 0. One unit of a notional material (‘probability’) is distributed

about the vertices and allowed to flow along the arrows. A proportion πi of the material is

placed initially at vertex i . At each epoch of time, a proportion pi, j of the amount of material

at each vertex i is transported to each vertex j .

It is immediate that the amount of material at vertex i after one epoch is
∑

j π j p j,i , which

equals πi since π = πP . That is to say, the deterministic flow of probability is in equilibrium:

there is ‘global balance’ in the sense that the total quantity leaving each vertex is balanced by

an equal quantity arriving there. There may or may not be ‘local balance’, in the sense that,

for each i, j ∈ S, the amount flowing from i to j equals the amount flowing from j to i . Local

balance occurs if and only if πi pi, j = π j p j,i for i, j ∈ S, which is to say that P and π are in

detailed balance.

Example 12.111 (Birth–death chain with retaining barrier) Consider a random walk X =
(Xn : n ≥ 0) on the non-negative integers {0, 1, 2, . . . } which, when at i ≥ 1, moves one step

rightwards with probability pi , or one step leftwards with probability qi (= 1 − pi ). When at

i = 0, it stays at 0 with probability q0 and otherwise moves to 1. We assume for simplicity

that 0 < pi < 1 for all i . This process differs from the birth–death chain of Example 12.59 in

its behaviour at 0.

Under what conditions on the pi is the Markov chain X reversible in equilibrium? If this

holds, find the invariant distribution.

Solution We look for a solution to the detailed balance equations (12.110), which may be

written as

πi−1 pi−1 = πi qi for i ≥ 1.

By iteration, the solution is

πi = ρiπ0 for i ≥ 1, (12.112)

where

ρi =
pi−1 pi−2 · · · p0

qi qi−1 · · · q1
.

The vector π is a distribution if and only if
∑

i πi = 1. By (12.112),

∑

i∈S

πi = π0

∑

i∈S

ρi .

We may choose π0 appropriately if and only if S =
∑

i ρi satisfies S < ∞, in which case we

set π0 = 1/S.

By Theorem 12.109, X is reversible in equilibrium if and only if S < ∞, in which case

the invariant distribution is given by πi = ρi/S. △
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Example 12.113 (Ehrenfest dog–flea model) Two dogs, Albert and Beatrice, are infested

by a total of m fleas that jump from one dog to the other at random. We assume that at each

epoch of time one flea, picked uniformly at random from the m available, passes from its

current host to the other dog. Let Xn be the number of fleas on Albert after n units of time has

passed. Thus, X = (Xn : n ≥ 0) is an irreducible Markov chain with transition matrix

pi,i+1 = 1 −
i

m
, pi,i−1 =

i

m
for 0 ≤ i ≤ m.

Rather than solve the equation π = πP to find the invariant distribution, we look for solutions

of the detailed balance equations πi pi, j = π j p j,i . These equations amount to

πi−1

(
m − i + 1

m

)
= πi ·

i

m
for 1 ≤ i ≤ m.

By iteration,

πi =
(

m

i

)
π0,

and we choose π0 = 2−m so that π is a distribution. By Theorem 12.109, π is the unique

invariant distribution. △

Exercise 12.114 Consider a random walk on a triangle, illustrated in Figure 12.5. The state space is
S = {1, 2, 3}, and the transition matrix is

P =




0 α 1 − α

1 − α 0 α

α 1 − α 0


 ,

where 0 < α < 1. Show that the detailed balance equations possess a solution if and only if α = 1
2

.

1

2

3
α

α

α 1 − α

1 − α

1 − α

Fig. 12.5 Transition probabilities for a random walk on a triangle.

Exercise 12.115 Can a reversible Markov chain be periodic? Explain.
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Exercise 12.116 A random walk moves on the finite set {0, 1, 2, . . . , N}. When in the interior of the
interval, it moves one step rightwards with probability p, or one step leftwards with probability q (=
1 − p). When it is at either endpoint, 0 or N , and tries to leave the interval, it is retained at its current
position. Assume 0 < p < 1, and use the detailed balance equations to find the invariant distribution.

12.12 Random walk on a graph

A graph G = (V , E) is a set V of vertices, pairs of which are joined by edges. That is, the

edge-set E is a set of distinct unordered pairs 〈u, v〉 of distinct elements of V . A graph is

usually represented in the manner illustrated in Figure 12.6. The lattice-graphs Zd of Section

12.5 are examples of infinite graphs.

1

2

3

4

5

6

7
8

Fig. 12.6 A graph G with 8 vertices. A random walk on G moves around the vertex-set. At each
step, it moves to a uniformly random neighbour of its current position.

Here is some language and notation concerning graphs. A graph is connected if, for distinct

u, v ∈ V , there exists a path of edges from u to v. We write u ∼ v if 〈u, v〉 ∈ E , in which

case we say that u and v are neighbours. The degree d(v) of vertex v is the number of edges

containing v, that is, d(v) = |{u ∈ V : v ∼ u}|.
There is a rich theory of random walks on finite and infinite graphs. Let G = (V , E) be

a connected graph with d(v) < ∞ for all v ∈ V . A particle moves about the vertices of G,

taking steps along the edges. Let Xn be the position of the particle at time n. At time n + 1, it

moves to a uniformly random neighbour of Xn . More precisely, a random walk is the Markov

chain X = (Xn : n ≥ 0) with state space V and transition matrix

pu,v =





1

d(u)
if v ∼ u,

0 otherwise.

(12.117)

When G is infinite, the main question is to understand the long-run behaviour of the walk,

such as whether or not it is transient or recurrent. This was the question addressed in Section

12.5 for the lattice-graphs Zd . In this section, we consider a finite connected graph G, and we

prove the following main result. It will be useful to note that
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∑

v∈V

d(v) = 2|E |, (12.118)

since each edge contributes 2 to the summation.

Theorem 12.119 Random walk on the finite connected graph G = (V , E) is an irreducible,

Markov chain with unique invariant distribution

πv =
d(v)

2|E |
for v ∈ V .

The chain is reversible in equilibrium.

Proof Since G is connected, the chain is irreducible. The vector π is certainly a distribution

since πv ≥ 0 for v ∈ V , and
∑
v∈V πv = 1 by (12.118). By Theorem 12.109, it suffices to

check the detailed balance equations (12.110), namely

d(u)

2|E |
pu,v =

d(v)

2|E |
pv,u, for u, v ∈ V .

This holds by the definition (12.117) of the transition probabilities. 2

Example 12.120 (Erratic knights) A knight is the sole inhabitant of a chess board, and it

performs random moves. Each move is chosen at random from the set of currently permissible

moves, as illustrated in Figure 12.7. What is the invariant distribution of the Markov chain

describing the knight’s motion?

2

3

34

4

4

4

4

6

6

6

6

88

88

Fig. 12.7 A map for the erratic knight. The arrows indicate permissible moves. If the knight is
at a square from which there are m permissible moves, then it selects one of these with equal
probability 1/m. The numbers are the degrees of the corresponding graph vertices.
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Solution Let G = (V , E) be the graph given as follows. The vertex-set V is the set of squares

of the chess board, and the edge-set E is given by: two vertices u, v are joined by an edge if and

only if the move between u and v is a legal knight-move. The knight performs a random walk

on G. In order to find the invariant distribution we must count the vertex-degrees. The four

corners have degree 2, and so on, as indicated in Figure 12.7. The sum of the vertex-degrees

is ∑

v∈V

d(v) = 4 · 2 + 8 · 3 + 20 · 4 + 16 · 6 + 16 · 8 = 336,

and the invariant distribution is given by Theorem 12.119 as πv = d(v)/336. △

Exercise 12.121 An erratic king performs random (but legal) moves on a chess board. Find his invariant
distribution.

12.13 Problems

1. A transition matrix is called doubly stochastic if its column-sums equal 1, that is, if
∑

i∈S pi, j =
1 for j ∈ S.

Suppose an irreducible chain with N (< ∞) states has a doubly stochastic transition matrix.
Find its invariant distribution. Deduce that all states are positive recurrent and that, if the chain
is aperiodic, then pi, j (n) → 1/N as n → ∞.

2. Let X be a discrete-time Markov chain with state space S = {1, 2}, and transition matrix

P =
(

1 − α α

β 1 − β

)
.

Classify the states of the chain. Suppose that 0 < αβ < 1. Find the n-step transition probabil-
ities and show directly that they converge to the unique invariant distribution. For what values
of α and β is the chain reversible in equilibrium?

3. We distribute N black balls and N white balls in two urns in such a way that each contains
N balls. At each epoch of time, one ball is selected at random from each urn, and these two
balls are interchanged. Let Xn be the number of black balls in the first urn after time n. Write
down the transition matrix of this Markov chain, and find the unique invariant distribution. Is
the chain reversible in equilibrium?

4. Consider a Markov chain on the set S = {0, 1, 2, . . . } with transition probabilities

pi,i+1 = ai , pi,0 = 1 − ai ,

where (ai : i ≥ 0) is a sequence of constants satisfying 0 < ai < 1 for all i . Let b0 = 1 and
bi = a0a1 · · · ai−1 for i ≥ 1. Show that the chain is

(a) recurrent if and only if bi → 0 as i → ∞,
(b) positive recurrent if and only if

∑
i bi < ∞,

and write down the invariant distribution when the last condition holds.

5. At each time n, a random number Sn of students enter the lecture room, where (Sn : n ≥ 0)
are independent and Poisson distributed with parameter λ. Each student remains in the room
for a geometrically distributed time with parameter p, different times being independent. Let
Xn be the number of students present at time n. Show that X is a Markov chain, and find its
invariant distribution.
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6. Each morning, a student takes one of three books (labelled 1, 2, and 3) from her shelf. She
chooses book i with probability αi , and choices on successive days are independent. In the
evening, she replaces the book at the left-hand end of the shelf. If pn denotes the probability
that on day n she finds the books in the order 1, 2, 3 from the left to right, show that pn

converges as n → ∞, and find the limit.

7. Let X be an irreducible, positive recurrent, aperiodic Markov chain. Show that X is reversible
in equilibrium if and only if

pi1,i2 pi2,i3 · · · pin−1,in pin ,i1 = pi1,in pin ,in−1
· · · pi2,i1 ,

for all finite sequences i1, i2, . . . , in ∈ S.

8. A special die is thrown repeatedly. Its special property is that, at each throw, the outcome is
equally likely to be any of the five numbers that are different from the immediately previous
number. If the first score is 1, find the probability that the (n + 1)th score is 1.

9. A particle performs a random walk about the eight vertices of a cube. Find

(a) the mean number of steps before it returns to its starting vertex S,
(b) the mean number of visits to the opposite vertex T to S before its first return to S,
(c) the mean number of steps before its first visit to T .

10. Markov chain Monte Carlo. We wish to simulate a discrete random variable Z with mass
function satisfying P(Z = i) ∝ πi , for i ∈ S and S countable. Let X be an irreducible Markov
chain with state space S and transition matrix P = (pi, j ). Let Q = (qi, j ) be given by

qi, j =





min
{

pi, j , (π j/πi )p j,i

}
if i 6= j,

1 −
∑

j : j 6=i

qi, j if i = j.

Show that Q is the transition matrix of a Markov chain which is reversible in equilibrium, and
has invariant distribution equal to the mass function of Z .

11. Let i be a state of an irreducible, positive recurrent Markov chain X, and let Vn be the number

of visits to i between times 1 and n. Let µ = Ei (Ti ) and σ 2 = Ei ([Ti −µ]2) be the mean and

variance of the first return time to the starting state i , and assume 0 < σ 2 < ∞.

Suppose X0 = i . Show that

Un =
Vn − (n/µ)√

nσ 2/µ3

converges in distribution to the normal distribution N(0, 1) as n → ∞.

12. Consider a pack of cards labelled 1, 2, . . . , 52. We repeatedly take the top card and insert it
uniformly at random in one of the 52 possible places, that is, either on the top or on the bottom
or in one of the 50 places inside the pack. How long on average will it take for the bottom card
to reach the top?

Let pn denote the probability that after n iterations the cards are found to be in increasing
order from the top. Show that, irrespective of the initial ordering, pn converges as n → ∞,
and determine the limit p. You should give precise statements of any general results to which
you appeal.

Show that, at least until the bottom card reaches the top, the ordering of the cards inserted
beneath it is uniformly random. Hence or otherwise show that, for all n,

|pn − p| ≤
52(1 + log 51)

n
.

(Cambridge 2003)
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13. Consider a collection of N books arranged in a line along a bookshelf. At successive units of
time, a book is selected randomly from the collection. After the book has been consulted, it
is replaced on the shelf one position to the left of its original position, with the book in that
position moved to the right by one. That is, the selected book and its neighbour to the left swap
positions. If the selected book is already in the leftmost position it is returned there. All but one
of the books have plain covers and are equally likely to be selected. The other book has a red
cover. At each time unit, the red book will be selected with probability p, where 0 < p < 1.
Each other book will be selected with probability (1− p)/(N −1). Successive choices of book
are independent.

Number the positions on the shelf from 1 (at the left) to N (at the right). Write Xn for the
position of the red book after n units of time. Show that X is a Markov chain, with non-zero
transition probabilities given by:

pi,i−1 = p for i = 2, 3, . . . , N,

pi,i+1 =
1 − p

N − 1
for i = 1, 2, . . . , N − 1,

pi,i = 1 − p −
1 − p

N − 1
for i = 2, 3, . . . , N − 1,

p1,1 = 1 −
1 − p

N − 1
,

pN,N = 1 − p.

If (πi : i = 1, 2, . . . , N) is the invariant distribution of the Markov chain X, show that

π2 =
1 − p

p(N − 1)
π1, π3 =

1 − p

p(N − 1)
π2.

Deduce the invariant distribution. (Oxford 2005)

* 14. Consider a Markov chain with state space S = {0, 1, 2, . . . } and transition matrix given by

pi, j =

{
qp j−i+1 for i ≥ 1 and j ≥ i − 1,

qp j for i = 0 and j ≥ 0,

and pi, j = 0 otherwise, where 0 < p = 1 − q < 1.

For each p ∈ (0, 1), determine whether the chain is transient, null recurrent, or positive recur-
rent, and in the last case find the invariant distribution. (Cambridge 2007)

15. Let (Xn : n ≥ 0) be a simple random walk on the integers: the random variables ξn :=
Xn − Xn−1 are independent, with distribution

P(ξ = 1) = p, P(ξ = −1) = q,

where 0 < p < 1 and q = 1 − p. Consider the hitting time τ = inf{n : Xn = 0 or Xn = N},
where N > 1 is a given integer. For fixed s ∈ (0, 1) define

Hk = E
(
sτ 1(Xτ = 0)

∣∣ X0 = k
)

for k = 0, 1, . . . , N .

Show that the Hk satisfy a second-order difference equation, and hence find them. (Cambridge
2009)

16. An erratic bishop starts at the bottom left of a chess board and performs random moves. At
each stage, she picks one of the available legal moves with equal probability, independently of
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earlier moves. Let Xn be her position after n moves. Show that (Xn : n ≥ 0) is a reversible
Markov chain, and find its invariant distribution.

What is the mean number of moves before she returns to her starting square?

17. A frog inhabits a pond with an infinite number of lily pads, numbered 1, 2, 3 . . . . She hops
from pad to pad in the following manner: if she happen to be on pad i at a given time, she hops
to one of the pads (1, 2, . . . , i, i + 1) with equal probability.

(a) Find the equilibrium distribution of the corresponding Markov chain.
(b) Suppose the frog starts on pad k and stops when she returns to it. Show that the expected

number of times the frog hops is e(k − 1)! where e = 2.718 . . . . What is the expected
number of times she will visit the lily pad k + 1?

(Cambridge 2010)

18. Let (Xn : n ≥ 0) be a simple, symmetric random walk on the integers {. . . ,−1, 0, 1, . . . },
with X0 = 0 and

P
(
Xn+1 = i ± 1

∣∣ Xn = i
)

= 1
2
.

For each integer a ≥ 1, let Ta = inf{n ≥ 0 : Xn = a}. Show that Ta is a stopping time.

Define a random variable Yn by the rule

Yn =
{

Xn if n < Ta ,

2a − Xn if n ≥ Ta .

Show that (Yn : n ≥ 0) is also a simple, symmetric random walk.

Let Mn = max{X i : 0 ≤ i ≤ n}. Explain why {Mn ≥ a} = {Ta ≤ n} for a ≥ 1. By using the
process (Yn : n ≥ 0) constructed above, show that, for a ≥ 1,

P
(
Mn ≥ a, Xn ≤ a − 1

)
= P(Xn ≥ a + 1),

and thus
P(Mn ≥ a) = P(Xn ≥ a)+ P(Xn ≥ a + 1).

Hence compute P(Mn = a) where a and n are positive integers with n ≥ a. [Hint: if n is even,
then Xn must be even, and if n is odd, then Xn must be odd.] (Cambridge 2010)


