

MATHEMATICAL TRIPOS Part III

Wednesday 7 June, 2006 1.30 to 4.30

PAPER 37

INTERACTING PARTICLE SYSTEMS

Attempt FOUR questions.

There are SIX questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

Cover sheet Treasury Tag Script paper $SPECIAL\ REQUIREMENTS$

None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 (a) Let G = (V, E) be a finite connected graph and let T be a spanning tree of G chosen uniformly at random. Let s, t be distinct vertices of G, and think of G as an electrical network with unit edge-resistances, and source s and sink t. Show that

$$i_{xy} = P(T \text{ has } \Pi(s, x, y, t)) - P(T \text{ has } \Pi(s, y, x, t)), \quad x, y \in V,$$

is a solution to the two Kirchhoff laws when a unit flow arrives at s and departs from t. Here, $\Pi(s,u,v,t)$ is the property of trees that the unique path from s to t passes along the edge $\langle u,v\rangle$ in the direction from u to v.

- (b) Let G = (V, E) be a subgraph of G', and let T (respectively, T') be a uniform spanning tree of G (respectively, G'). Show that $P(e \in T) \geqslant P(e \in T')$ for $e \in E$. [A clear statement should be given of any general principle used.]
- **2** (a) Let $(x_n : n \ge 1)$ and $(\alpha_n : n \ge 1)$ be real sequences satisfying $x_{m+n} \le x_m + x_n + \alpha_m$ for $m, n \ge 1$. Show that the limit $\lambda = \lim_{n \to \infty} \{n^{-1}x_n\}$ exists and satisfies $x_n \ge n\lambda \alpha_n$ for $n \ge 1$, under the assumption that $n^{-1}\alpha_n \to 0$ as $n \to \infty$.
- (b) Consider bond percolation on \mathbb{Z}^d with $d \geqslant 2$ and parameter $p \in (0,1)$. Let $\Lambda_n = [-n,n]^d$ and $\partial \Lambda_n = \Lambda_n \backslash \Lambda_{n-1}$. Show that $\beta_n = P_p(0 \leftrightarrow \partial \Lambda_n)$ satisfies

$$\beta_{m+n} \leqslant |\partial \Lambda_m| \beta_m \beta_n, \quad m, n \geqslant 1,$$

and deduce the existence of the limit $\gamma = \lim_{n\to\infty} \{n^{-1}\log\beta_n\}$. Show that $\beta_n \geqslant |\partial\Lambda_n|^{-1}e^{-n\gamma}$.

[A clear statement should be given of any general result to which you appeal.]

3 Write an essay on the uniqueness of the infinite open cluster for bond percolation on \mathbb{Z}^d for $d \ge 2$. Your essay should include the main steps in the proof of uniqueness, with emphasis on clear communication of the arguments used.

- 4 (a) Explain the existence of the lower invariant measure $\underline{\nu}$ and the upper invariant measure $\overline{\nu}$ for the contact model with parameter λ on \mathbb{Z}^d . Prove that $\underline{\nu} = \overline{\nu}$ if and only if $\theta(\lambda) = 0$, where $\theta(\lambda)$ is the probability that infection persists for all time, having begun at the origin only.
- (b) Let $p_c(\text{site})$ and $p_c(\text{bond})$ be the critical probabilities of oriented site percolation and oriented bond percolation on \mathbb{Z}^2 . Show that

$$p_c(\text{site}) \leq 1 - (1 - p_c(\text{bond}))^2$$
.

- (c) Show that the critical value λ_c of the contact model on \mathbb{Z} satisfies $\lambda_c < \infty$. [You may assume that $p_c(\text{bond}) < 1$.]
- **5** (a) Let E be a finite set and $\Omega = \{0,1\}^E$. Explain what is meant by saying that two probability measures μ_1 and μ_2 on Ω are stochastically ordered in that $\mu_1 \geqslant_{\rm st} \mu_2$. State the Holley condition for $\mu_1 \geqslant_{\rm st} \mu_2$ when μ_1 and μ_2 are strictly positive.

Let μ be a strictly positive probability measure on Ω . State the FKG lattice condition for μ . Show that μ is positively associated whenever it satisfies the FKG lattice condition. [You may appeal to the stochastic-ordering statement of the first part of the question.]

(b) Let G = (V, E) be a finite graph, and $\Sigma = \{-1, +1\}^V$. Let π be the probability measure on Σ given by

$$\pi(\sigma) \propto \exp \left(\sum_{e \in E} \sigma_x \sigma_y\right), \quad \sigma = (\sigma_x : x \in V) \in \Sigma,$$

where the summation is over all edges $e = \langle x, y \rangle \in E$. With Σ viewed as a partially ordered set, show that π is positively associated. [You may assume that the FKG lattice condition holds for all pairs $\sigma_1, \sigma_2 \in \Sigma$ if it holds for all pairs that agree at all vertices except two.]

- 6 (a) Explain what is meant by the exclusion process on the integers \mathbb{Z} .
- (b) Let η_t denote the exclusion process on \mathbb{Z} with initial configuration η_0 , and let A_t denote the set of occupied vertices of an exclusion process on \mathbb{Z} with a finite number $|A_0|$ of particles. Show that

$$P^{\eta}(\eta_t \equiv 1 \text{ on } A) = P^A(\eta \equiv 1 \text{ on } A_t), \quad \eta \in \{0, 1\}^{\mathbb{Z}}, \ A \subseteq \mathbb{Z}, \ |A| < \infty$$

where P^{ξ} denotes the probability measure governing the appropriate process with initial configuration ξ .

(c) A probability measure μ on $\{0,1\}^{\mathbb{Z}}$ is called *exchangeable* if the quantity $\mu(\{\eta:\eta\equiv 1\text{ on }A\})$, as A ranges over the finite subsets of \mathbb{Z} , depends only on the cardinality of A. Show that every exchangeable probability measure is invariant for the exclusion process.

END OF PAPER