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Abstract. The connective constant µ(G) of an infinite transitive graph G is the
exponential growth rate of the number of self-avoiding walks from a given origin.
In earlier work of Grimmett and Li, a locality theorem was proved for connective
constants, namely, that the connective constants of two graphs are close in value
whenever the graphs agree on a large ball around the origin. A condition of the
theorem was that the graphs support so-called ‘graph height functions’. When the
graphs are Cayley graphs of infinite, finitely generated groups, there is a special
type of graph height function termed here a ‘group height function’. A necessary
and sufficient condition for the existence of a group height function is presented,
and may be applied in the context of the bridge constant, and of the locality of
connective constants for Cayley graphs. Locality may thereby be established for a
variety of infinite groups including those with strictly positive deficiency.

It is proved that a large class of transitive graphs (and hence Cayley graphs)
support graph height functions that are in addition harmonic on the graph. This
extends an earlier constructive proof of Grimmett and Li, but subject to an addi-
tional condition of unimodularity which is benign in the context of Cayley graphs.
It implies the existence of graph height functions for finitely generated solvable
groups. The case of non-unimodular graphs may be handled similarly, but the
resulting graph height functions need not be harmonic.

Group height functions, as well as the graph height functions of the previous
paragraph, are non-constant harmonic functions with linear growth and an ad-
ditional property of having periodic differences. The existence of such functions
on Cayley graphs is a topic of interest beyond their applications in the theory of
self-avoiding walks.

1. Introduction, and summary of results

The main purpose of this article is to study aspects of ‘locality’ for the connective
constants of Cayley graphs of finitely presented groups. The locality question may
be posed as follows: if two Cayley graphs are locally isomorphic in the sense that
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they agree on a large ball centred at the identity, then are their connective constants
close in value? The current work may be viewed as a continuation of the study of
locality for connective constants of transitive graphs reported in [11]. The locality
of critical points is a well developed topic in the theory of disordered systems, and
the reader is referred, for example, to [4, 28, 30] for related work about percolation
on Cayley graphs.

The self-avoiding walk (SAW) problem was introduced to mathematicians in 1954
by Hammersley and Morton [17]. Let G be an infinite, connected, transitive graph.
The number of n-step SAWs onG from a given origin grows in the manner of µn(1+o(1))

for some growth rate µ = µ(G) called the connective constant of the graph G. The
value of µ(G) is not generally known, and a substantial part of the literature on
SAWs is targeted at properties of connective constants. The current paper may be
viewed in this light, as a continuation of the series of papers [9, 10, 13, 11, 12].

The principal result of [11] is as follows. LetG, G′ be infinite, transitive graphs, and
write SK(v,G) for the K-ball around the vertex v in G. If SK(v,G) and SK(v′, G′)
are isomorphic as rooted graphs, then

(1.1) |µ(G)− µ(G′)| ≤ εK(G),

where εK(G) → 0 as K → ∞. This is proved subject to a condition on G and G′,
namely that they support so-called ‘graph height functions’.

Cayley graphs of finitely generated groups provide a category of transitive graphs
of special interest. They possess an algebraic structure in addition to their graphical
structure, and this algebraic structure provides a mechanism for the study of their
graph height functions. A necessary and sufficient condition is given in Theorem 4.1
for the existence of a so-called ‘group height function’, and it is pointed out there
that a group height function is a graph height function (in the earlier sense), but not
vice versa. The class of Cayley groups that possess group height functions includes
all infinite, finitely generated, free solvable groups and free nilpotent groups, and to
groups with fewer relators than generators; see Theorem 4.1.

There exist Cayley graphs having no group height function, but which possess a
graph height function. A criterion is presented for a Cayley graph to have a graph
height function, in terms of the projections of its relators. This may be applied, for
example, to SL2(Z), even though its Cayley graph has no group height function; see
Theorem 6.1.

We turn briefly to the topic of harmonic functions. The study of the existence
and structure of non-constant harmonic functions on Cayley graphs has acquired
prominence in geometric group theory through the work of Kleiner and others, see
[22, 32]. The group height functions of Section 4, and also the graph height functions
of Theorem 3.3, are harmonic with linear growth. Thus, one aspect of the work
reported in this paper is the construction, on certain classes of finitely generated
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groups, of linear-growth harmonic functions with the additional property of having
differences that are invariant under the action of a subgroup of automorphisms. For
recent articles on this aspect of geometric group theory, the reader is referred to
[29, 34].

This paper is organized as follows. Graphs, self-avoiding walks, and Cayley graphs
are introduced in Section 2. Graph height functions and the locality theorem of [11]
are reviewed in Section 3, and a further condition is presented in Theorem 3.3 for a
transitive graph to support a graph height function. This theorem is a partner of [11,
Thm 3.4]; it assumes an additional condition of unimodularity, and it yields a graph
height function that has the further property of being harmonic. It may applied
to finitely generated, virtually solvable groups; see Theorem 5.1. Non-unimodular
graphs may be handled by similar means (see Theorem 3.4), but the resulting graph
height functions need not be harmonic.

Group height functions are the subject of Section 4, and a necessary and sufficient
condition is presented in Theorem 4.1 for the existence of a group height function.
Section 5 is devoted to existence conditions for height functions, leading to existence
theorems for virtually solvable groups. Cayley graphs whose cycles project onto a
finite quotient graph are the subject of Section 6. In Section 7 is presented a the-
orem for the convergence of connective constants subject to the addition of further
relators. This parallels the Grimmett–Marstrand theorem [14] for the critical perco-
lation probabilities of slabs of Zd (see also [12, Thm 5.2]). Sections 8–10 contain the
proofs of Theorems 3.3–3.5.

2. Graphs, self-avoiding walks, and groups

The graphs G = (V,E) considered here are infinite, connected, and usually simple.
An undirected edge e with endpoints u, v is written as e = 〈u, v〉, and if directed
from u to v as [u, v〉. If 〈u, v〉 ∈ E, we call u and v adjacent and write u ∼ v. The set
of neighbours of v ∈ V is denoted ∂v. In the context of directed graphs, the words
directed and oriented are synonymous.

The degree deg(v) of vertex v is the number of edges incident to v, and G is called
locally finite is every vertex-degree is finite. The graph-distance between two vertices
u, v is the number of edges in the shortest path from u to v, denoted dG(u, v).

The automorphism group of the graph G = (V,E) is denoted Aut(G). A subgroup
Γ ≤ Aut(G) is said to act transitively on G if, for v, w ∈ V , there exists γ ∈ Γ with
γv = w. It is said to act quasi-transitively if there is a finite set W of vertices
such that, for v ∈ V , there exist w ∈ W and γ ∈ Γ with γv = w. The graph is
called (vertex-)transitive (respectively, quasi-transitive) if Aut(G) acts transitively
(respectively, quasi-transitively). For Γ ≤ Aut(G) and a vertex v ∈ V , the orbit of v
under Γ is written Γv.
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A walk w on G is an alternating sequence w0e0w1e1 · · · en−1wn of vertices wi and
edges ei = 〈wi, wi+1〉, and its length |w| is the number of its edges. The walk w
is called closed if w0 = wn, and it is called a trail if no edge is repeated (in either
direction). A cycle is a closed walk w satisfying wi 6= wj for 1 ≤ i < j ≤ n.

An n-step self-avoiding walk (SAW) on G is a walk containing n edges no vertex
of which appears more than once. Let Σn(v) be the set of n-step SAWs starting at
v, with cardinality σn(v) := |Σn(v)|. Assume that G is transitive, and select a vertex
of G which we call the identity or origin, denoted 1 = 1G, and let σn = σn(1). It is
standard (see [17, 27]) that

(2.1) σm+n ≤ σmσn,

whence, by the subadditive limit theorem, the connective constant

µ = µ(G) := lim
n→∞

σ1/n
n

exists. See [2, 27] for recent accounts of the theory of SAWs.
We turn now to finitely generated groups and their Cayley graphs. Let Γ be a

group with generator set S satisfying |S| < ∞ and 1 /∈ S, where 1 = 1Γ is the
identity element. We write Γ = 〈S | R〉 with R a set of relators, and our convention
for the inverses of generators is as follows. For the sake of concreteness, we consider
S as a set of symbols, and any information concerning inverses is encoded in the
relator set; it will always be the case that, using this information, we may identify
the inverse of s ∈ S as another generator s′ ∈ S. For example, the free abelian group
of rank 2 has presentation 〈x, y,X, Y | xX, yY, xyXY 〉, and the infinite dihedral
group 〈s1, s2 | s2

1, s
2
2〉. Such a group is called finitely generated, and finitely presented

if, in addition, |R| <∞.
The Cayley graph of Γ = 〈S | R〉 is the simple graph G = G(S,R) with vertex-set

Γ, and an (undirected) edge 〈γ1, γ2〉 if and only if γ2 = γ1s for some s ∈ S. Further
properties of Cayley graphs are presented as needed in Section 4. See [1] for an
account of Cayley graphs, and [26] for a short account. The books [19] and [23, 31]
are devoted to geometric group theory, and general group theory, respectively.

The set of integers is written Z, the natural numbers as N, and the rationals as Q.

3. Graph height functions

We recall from [11] the definition of a graph height function, and then we review
the locality theorem (the proof of which may be found in [11]). This is followed by
Theorem 3.3 which presents conditions under which a transitive graph has a graph
height function that is, in addition harmonic.

Let G be the set of all infinite, connected, transitive, locally finite, simple graphs,
and let G = (V,E) ∈ G. Let H be a subgroup of Aut(G). A function F : V → R is
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said to be H-difference-invariant if

(3.1) F (v)− F (w) = F (γv)− F (γw), v, w ∈ V, γ ∈ H.

Definition 3.1. A graph height function on G is a pair (h,H), where H ≤ Aut(G)
acts quasi-transitively on G and h : V → Z, such that:

(a) h(1) = 0,
(b) h is H-difference-invariant,
(c) for v ∈ V , there exist u,w ∈ ∂v such that h(u) < h(v) < h(w).

We sometimes omit the reference to H and refer to such h as a graph height
function. In Section 4 is defined the related concept of a group height function for
the Cayley graph of a finitely presented group. We shall see that every group height
function is a graph height function, but not vice versa.

Associated with the graph height function (h,H) is the integer d given by

(3.2) d = d(h) = max
{
|h(u)− h(v)| : u, v ∈ V, u ∼ v

}
.

We state next the locality theorem for transitive graphs. The sphere Sk = Sk(G),
with centre 1 = 1G and radius k, is the subgraph of G induced by the set of its
vertices within graph-distance k of 1. For G,G′ ∈ G, we write Sk(G) ' Sk(G

′) if
there exists a graph-isomorphism from Sk(G) to Sk(G

′) that maps 1G to 1G′ , and we
let

K(G,G′) = max
{
k : Sk(1G, G) ' Sk(1G′ , G′)

}
, G,G′ ∈ G.

For D ∈ N, let GD be the set of all G ∈ G which possess a graph height function h
satisfying d(h) ≤ D.

For G ∈ G with a given graph height function (h,H), there is a subset of SAWs
called bridges which are useful in the study of the geometry of SAWs on G. The
SAW π = (π0, π1, . . . , πn) ∈ Σn(v) is called a bridge if

(3.3) h(π0) < h(πi) ≤ h(πn), 1 ≤ i ≤ n,

and the total number of such bridges is denoted bn(v). It is easily seen (as in [18])
that bn := bn(1) satisfies

(3.4) bm+n ≥ bmbn,

from which we deduce the existence of the bridge constant

(3.5) β = β(G) = lim
n→∞

b1/n
n .

Theorem 3.2 (Bridges and locality for transitive graphs, [11]).

(a) If G ∈ G supports a graph height function (h,H), then β(G) = µ(G).
(b) Let D ≥ 1, and let G ∈ G and Gm ∈ GD for m ≥ 1 be such that K(G,Gm)→
∞ as m→∞. Then µ(Gm)→ µ(G).
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Since Cayley graphs are transitive, the question of locality for Cayley graphs may
be reduced to the existence of graph height functions for such graphs, and much of
the current paper is devoted to this question.

A sufficient condition for the existence of a graph height function is provided in
the forthcoming Theorem 3.3. The cycle space C = C(G) of G is the vector space
over the field Z2 generated by the cycles (see, for example, [6]). Let H ≤ Aut(G)
act quasi-transitively on G. The cycle space is said to be finitely generated (with
respect to H) if there is a finite set B = B(C) of independent cycles which, taken
together with their images under H, form a basis for C(G). It is elementary that the
Cayley graph of any finitely presented group Γ has this property with H = Γ, since
its cycle space is generated by the cycles derived from the action of the group on the
conjugates of the relators.

Let H ≤ Aut(G). We denote by ~G = (V , ~E) the (directed) quotient graph G/H
constructed as follows. The vertex-set V comprises the orbits v := Hv as v ranges
over V . For v, w ∈ V , we place |∂v ∩ w| directed edges from v to w, and we write
v ∼ w if |∂v ∩ w| ≥ 1 and v 6= w. If v = w, an edge from v to w is a directed
‘loop’, and the word ‘loop’ is used only in this context here. By [12, Lemma 3.6], the
number |∂v ∩ w| is independent of the choice of v ∈ v. We write N = |G/H| = |V |
for the number of vertices of ~G, that is, the number of orbits of V under H.

We call H symmetric if

(3.6) |∂v ∩ w| = |∂w ∩ v|, v, w ∈ V.

Sufficient conditions for symmetry may be found in [12, Lemma 3.10]. When H is
symmetric, we define the undirected graph G = (V ,E) by placing |∂v ∩ w| edges in
parallel between v and w, and |∂v ∩ v| loops at v.

Any (directed) walk π on G induces a (directed) walk ~π on ~G, and we say that π

projects onto ~π. For a walk ~π on ~G, there exists a walk π on G that projects onto
~π, and we say that ~π lifts to π. There may be many choices for such π. Note that
a cycle of G projects onto a closed walk of ~G, which may or may not be a cycle.
Similarly, a cycle of ~G may lift to either a cycle or a SAW of G, or indeed, in certain
circumstances, to both.

Theorem 3.3. Let G = (V,E) ∈ G. Suppose there exist a subgroup Γ ≤ Aut(G)
acting transitively on V , and a normal subgroup H E Γ satisfying [Γ : H] <∞, such
that:

(a) H is unimodular and symmetric,
(b) C(G) is finitely generated (with respect to H) by a (finite) set B of cycles,

(c) every directed B ∈ B projects onto a cycle of ~G.
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Then G has a graph height function (h,H), and furthermore h may be chosen to be
harmonic on G.

We have by inspection of the proof (which is given in Section 9) that: (i) there
exists a harmonic, graph height function h satisfying d(h) ≤ D, for someD depending

only on | ~E|, and (ii) there exists a finite-dimensional vector space of linear-growth
harmonic functions on G which are H-difference-invariant.

The assumption of unimodularity is as follows. The (H-)stabilizer Stabv (= StabHv )
of a vertex v is the set of all γ ∈ H for which γv = v. As shown in [35] (see also [3, 33]),
when viewed as a topological group with the topology of pointwise convergence, H
is unimodular if and only if

(3.7) |Stabuv| = |Stabvu|, u, v ∈ V, u ∈ Hv.
Since all groups considered here are subgroups of Aut(G), we may follow [26, Chap. 8]
by defining H to be unimodular (on G) if (3.7) holds. The symmetry of assumption
(a) holds automatically if the equality of (3.7) holds for all u, v ∈ V (see [12, Lemma
3.10]).

Theorem 3.3 is less general than [11, Thm 3.4] in that it makes an additional
assumption of unimodularity. It is, however, more extensive in that the resulting
graph height function is, in addition, harmonic. The theorem is included here since its
proof highlights the relationship between graph height functions, harmonic functions,
and random walk. Furthermore, the unimodularity assumption is benign in the
context of a Cayley graph G since subgroups of Γ act on G (by left-multiplication)
without non-trivial fixed points, and are therefore unimodular. The proof of Theorem
3.3 may be applied also in the non-unimodular context, but with the loss of the
harmonic property. The proof of the following is found in Section 10.

Theorem 3.4. Let G = (V,E) ∈ G. Suppose there exist a subgroup Γ ≤ Aut(G)
acting transitively on V , and a normal subgroup H E Γ satisfying [Γ : H] <∞, such
that H is non-unimodular. Then G has a graph height function (h,H), which is not
generally harmonic.

The proofs of Theorems 3.3 and 3.4 are inspired in part by the proofs of [24,
Sect. 3] where, inter alia, it is explained that some graphs support harmonic maps,
taking values in a function space, with a property of equivariance in norm. In this
paper, we study H-difference-invariant, rational-valued harmonic functions. From
the proofs of the above theorems, we extract an intermediate step of independent
interest, which will be applied also in the context of virtually solvable groups (and
beyond) in Theorem 5.1. The proof is given in Section 8.

Theorem 3.5. Let G = (V,E) ∈ G. Suppose there exist:

(a) a subgroup Γ ≤ Aut(G) acting transitively on V ,
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(b) a normal subgroup H E Γ with finite index, [Γ : H] <∞, which is unimodular
and symmetric,

(c) a function F : H1→ Z that is H-difference-invariant and non-constant.

Then:

(i) there exists a unique harmonic, H-difference-invariant function ψ on G that
agrees with F on H1.

(ii) there exists a harmonic, H-difference-invariant function ψ′ that increases ev-
erywhere, in that every v ∈ V has neighbours u, w such that ψ′(u) < ψ′(v) <
ψ′(w),

(iii) the function ψ of part (i) takes rational values, and the ψ′ of part (ii) may
be taken to be rational also; therefore, there exists a harmonic graph height
function of the form (h,H).

The first part of condition (c) is to be interpreted as saying that (3.1) holds for
v, w ∈ H1 and γ ∈ H. Since G is transitive, the choice of origin 1 is arbitrary, and
hence the orbit H1 may be replaced by any orbit of H.

4. Group height functions

We consider Cayley graphs of finitely generated groups next, and a type of graph
height function called a ‘group height function’. Let Γ be a finitely generated group
with presentation 〈S | R〉, as in Section 2. Each relator ρ ∈ R is a word of the form
ρ = t1t2 · · · tr with ti ∈ S and r ≥ 1, and we define the vector u(ρ) = (us(ρ) : s ∈ S)
by

us(ρ) = |{i : ti = s}|, s ∈ S.
Let C be the |R| × |S| matrix with row vectors u(ρ), ρ ∈ R, called the coefficient
matrix of the presentation 〈S | R〉. Its null space N (C) is the set of column vectors
γ = (γs : s ∈ S) such that Cγ = 0. Since C has integer entries, N (C) is non-trivial
if and only if it contains a non-zero vector of integers (that is, an integer vector other
than the zero vector 0). If γ ∈ ZS is a non-zero element of N (C), then γ gives rise
to a function h : V → Z defined as follows. Any v ∈ V may be expressed as a word
in the alphabet S, which is to say that v = s1s2 · · · sm for some si ∈ S and m ≥ 0.
We set

(4.1) h(v) =
m∑
i=1

γsi
.

Any function h arising in this way is called a group height function of the presentation
(or of the Cayley graph). We see next that a group height function is well defined by
(4.1), and is indeed a graph height function in the sense of Definition 3.1. Example
(d), following, indicates that a graph height function need not be a group height
function.



LOCALITY OF CONNECTIVE CONSTANTS, II 9

Theorem 4.1. Let G be the Cayley graph of the finitely generated group Γ = 〈S | R〉,
with coefficient matrix C.

(a) Let γ = (γs : s ∈ S) ∈ N (C) satisfy γ ∈ ZS, γ 6= 0. The group height
function h given by (4.1) is well defined, and gives rise to a graph height
function (h,Γ) on G.

(b) The Cayley graph G(S,R) of the presentation 〈S | R〉 has a group height
function if and only if rank(C) < |S|.

(c) A group height function is a group invariant in the sense that, if h is a group
height function of G, then it is also a group height function for the Cayley
graph of any other presentation of Γ.

Since the group height function h of (4.1) is a graph height function, and Γ acts
transitively,

(4.2) d(h) = max{γs : s ∈ S},
in agreement with (3.2). In the light of part (c) above, we may speak of a group
possessing a group height function.

Remark 4.2. The quantity b(Γ) := |S| − rank(C) is in fact an invariant of Γ,
and may be called the first Betti number since it is equals the power of Z in the
abelianization Γ/[Γ,Γ]. Group height functions are a standard tool of group theorists,
since they are (when the non-zero γs are coprime) surjective homomorphisms from
Γ to Z.

Although some of the arguments of the current paper are standard within group
theory, we prefer to include sufficient details to aid readers with other backgrounds.

It follows in particular from Theorem 4.1 that G has a group height function if
|R| < |S|, which is to say that the presentation Γ = 〈S | R〉 has strictly positive
deficiency (see [31, p. 419]). Free groups provide examples of such groups.

Consider for illustration the examples of [11, Sect. 3].

(a) The hypercubic lattice Zn is the Cayley group of an abelian group with |S| =
2n, |R| = n+

(
n
2

)
, and rank(C) = n. It has a set of group height functions.

(b) The 3-regular tree is the Cayley graph of the group with S = {s1, s2, t} and
R = {s1t, s

2
2}. It has a group height function.

(c) The discrete Heisenberg group has |S| = |R| = 6 and rank(C) = 4. It has a
set of group height functions.

(d) The square/octagon lattice is the Cayley graph of a finitely presented group
with |S| = 3 and |R| = 5, and this does not satisfy the hypothesis of Theorem
4.1(b). This presentation has no group height function. Neither does the
lattice have a graph height function with automorphism subgroup that acts
transitively, but nevertheless it possesses a graph height function in the sense
of Definition 3.1, as explained in [11, Sect. 3].
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(e) The hexagonal lattice is the Cayley graph of the finitely presented group
with S = {s1, s2, s3} and R = {s2

1, s2s3, s1s
2
2s1s

2
3}. Thus, |R| = |S| = 3,

rank(C) = 2, and the graph has a group height function.

A discussion is presented in Section 5 of certain types of infinite groups whose Cay-
ley graphs have group or graph height functions. We present next some illustrative
examples and a question. The next proposition is extended in Theorem 5.2.

Proposition 4.3. Any finitely generated group which is infinite and abelian has a
group height function h with d(h) = 1.

Example 4.4. The infinite dihedral group Dih∞ = 〈s1, s2 | s2
1, s

2
2〉 is an example

of an infinite, finitely generated group Γ which has no group height function and yet
its Cayley graph has a graph height function (h,H) with H acting transitively. The
Cayley graph of Γ is the line Z. This example of a solvable group is extended in
Theorem 5.1.

Question 4.5. Does there exist an infinite, finitely presented group whose Cayley
graph has no graph height function?

It may be the case that the Cayley graph of the Higman group of Example 6.3 has
no graph height function. Question 4.5 is a sub-question of [11, Qn 3.3]. We note
one further property of a group height function.

Proposition 4.6. Let Γ be an infinite, finitely generated group with group height
function h. Then h is a harmonic function on the Cayley graph G = (V,E), in that

h(v) =
1

deg(v)

∑
u∼v

h(u), v ∈ V.

Proof of Theorem 4.1. (a) Let γ be as given. To check that h is well defined by (4.1),
we must show that h(v) is independent of the chosen representation of v as a word.
Suppose that v = s1 · · · sm = u1 · · ·un with si, uj ∈ S, and extend the definition of γ
to the directed edge-set of G by

(4.3) γ([g, gs〉) = γs, g ∈ Γ, s ∈ S.

The walk (1, s1, s1s2, . . . , v) is denoted as π1, and (1, u1, u1u2, . . . , v) as π2, and the
latter’s reversed walk as π−1

2 . Consider the walk ν obtained by following π1, followed
by π−1

2 . Thus ν is a closed walk of G from 1.
Any ρ ∈ R gives rise to a directed cycle in G through 1, and we write ΓR for

the set of images of such cycles under the action of Γ. Any closed walk lies in the
vector space over Z generated by the directed cycles of ΓR (see, for example, [16,
Sect. 4.1]). The sum of the γs around any gρ ∈ ΓR is zero, by (4.3) and the fact that
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Cγ = 0. Hence
m∑
i=1

γsi
−

n∑
j=1

γuj
= 0,

as required.
We check next that (h,Γ) is a graph height function. Certainly, h(1) = 0. For

u, v ∈ V , write v = ux where x = u−1v, so that h(v) − h(u) = h(x) by (4.1). For
g ∈ Γ, we have that gv = (gu)x, whence

(4.4) h(gv)− h(gu) = h(x) = h(v)− h(u).

Since γ 6= 0, there exists s ∈ S with γs > 0. For v ∈ V , we have h(vs−1) < h(v) <
h(vs).

(b) The null space N (C) is non-trivial if and only if rank(C) < |S|. Since C has
integer entries, N (C) is non-trivial if and only if it contains a non-zero vector of
integers.

(c) See Remark 4.2. This may also be proved directly, but we omit the details. �

Proof of Proposition 4.3. See Remark 4.2. Since Γ is infinite and abelian, there exists
a generator, σ say, of infinite order. For s ∈ S, let

(4.5) γs =


1 if s = σ,

−1 if s = σ−1,

0 otherwise.

Since any relator must contain equal numbers of appearances of σ and σ−1, we have
that γ ∈ N (C). Therefore, the function h of (4.1) is a group height function. �

Proof of Proposition 4.6. We do not give the details of this, since a more general
fact is proved in Proposition 8.1(b). The current proof follows that of the latter
proposition with H = Γ, F = h, and Γ acting on V by left-multiplication. Since this
action of Γ has no non-trivial fixed points, Γ is unimodular. �

5. Cayley graphs with height functions

The main result of this section is as follows. The associated definitions are pre-
sented later, and the proofs of the next two theorems are at the end of this section.

Theorem 5.1. Let Γ be an infinite, finitely generated group with a normal subgroup
Γ∗ satisfying [Γ : Γ∗] <∞. Let q = sup{i : [Γ∗ : Γ∗(i)] <∞} where (Γ∗(i) : i ≥ 1) is the

derived series of Γ∗. If q < ∞ and [Γ∗(q),Γ
∗
(q+1)] = ∞, then every Cayley graph of Γ

has a graph height function of the form (h,Γ∗(q)) which is harmonic.
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The theorem may be applied to any finitely generated, virtually solvable group Γ,
and more generally whenever the derived series of Γ∗ terminates after finitely many
steps at a finite perfect group.

In preparation for the proof, we present a general construction of a height function
for a group having a normal subgroup. Part (a) extends Proposition 4.3 (see also
Remark 4.2).

Theorem 5.2. Let Γ be an infinite, finitely generated group, and let Γ′ E Γ.

(a) If the quotient group Γ/Γ′ is infinite and abelian, then Γ has a group height
function h with d(h) = 1.

(b) If the quotient group Γ/Γ′ is finite, and Γ′ has a group height function, then
every Cayley graph of Γ has a harmonic, graph height function of the form
(h,Γ′).

Recall that Γ/Γ′ is abelian if and only if Γ′ contains the commutator group [Γ,Γ],
of which the definition follows. An example of Theorem 5.2(b) in action is the special
linear group SL2(Z) of the forthcoming Example 6.2 (see [19, p. 66]).

We turn now towards solvable groups. Let Γ be a group with identity 1Γ. The
commutator of the pair x, y ∈ Γ is the group element [x, y] := x−1y−1xy. Let A, B
be subgroups of Γ. The commutator subgroup [A,B] is defined to be

[A,B] =
〈
[a, b] : a ∈ A, b ∈ B

〉
,

that is, the subgroup generated by all commutators [a, b] with a ∈ A, b ∈ B. The
commutator subgroup of Γ is the subgroup [Γ,Γ]. It is standard that [Γ,Γ] E Γ, and
the quotient group Γ/[Γ,Γ] is abelian. The group Γ is called perfect if Γ = [Γ,Γ].

Example 5.3. Here is an example of a finitely generated but not finitely presented
group with a group height function. The lamplighter group L has presentation 〈S | R〉
where S = {a, t, u} and R = {a2, tu} ∪ {[a, tnaun] : n ∈ Z}. It has a group height
function since the rank of its coefficient matrix is 2.

Let Γ(1) = Γ. The derived series of Γ is given recursively by the formula

(5.1) Γ(i+1) = [Γ(i),Γ(i)], i ≥ 1.

The group Γ is called solvable if there exists an integer c ∈ N such that Γ(c+1) = {1Γ}.
Thus, Γ is solvable if there exists c ∈ N such that

Γ = Γ(1) D Γ(2) D · · · D Γ(c+1) = {1Γ}.
A virtually solvable group is a group Γ for which there exists a normal subgroup Γ∗

which is solvable and satisfies [Γ : Γ∗] < ∞. The reader is referred to [31] for a
general account of group theory.

Since every virtually solvable group is amenable, one is led by Theorem 5.1 to ask
whether all Cayley graphs of infinite, finitely generated, amenable groups have graph
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height functions. We do not know the answer to this in general, but it is negative
within a significant subclass of cases.

Let Γ be an infinite, finitely generated group with Cayley graph G, and suppose
G has a graph height function (h,H) with the further property that

(5.2) H ≤ Γ, and H acts on G by left-multiplication.

Since h is a graph height function, there exists an infinite path of G along which h
is strictly increasing. Since H acts quasi-transitively, there exist v ∈ Γ and γ ∈ H
with h(v) < h(γv). Now, h is H-difference-invariant, so that (h(γkv) : k ≥ 0), is a
strictly increasing sequence, whence γ has infinite order.

In conclusion, if every γ ∈ H has finite order, there exists no graph height function
of the form (h,H) and satisfying (5.2).

Example 5.4. The Grigorchuk group [7] is an infinite, finitely generated, amenable
group that is not virtually solvable, with the property that every element has finite
order. Therefore, its Cayley graph has no graph height function satisfying (5.2).

Proof of Theorem 5.2. (a) This is an immediate consequence of Remark 4.2. A de-
tailed argument may be outlined as follows. Let Γ = 〈S | R〉. If Q := Γ/Γ′ is infinite
and abelian, it is generated by the cosets {s := sΓ′ : s ∈ S}, and its relators are the
words s1s2 · · · sr as ρ = s1s2 · · · sr ranges over R. Choose σ ∈ S with infinite order,
and let

(5.3) γs =


1 if s ∈ σ,
−1 if s−1 ∈ σ,
0 otherwise.

It may now be checked that Cγ = 0 where C is the coefficient matrix.
(b) Let G be a Cayley graph of Γ, and let Γ′ E Γ satisfy [Γ : Γ′] < ∞. By
assumption, Γ′ has a group height function h′. The subgroup Γ′ of Γ acts on G
by left-multiplication, and it is unimodular since its elements act with no non-trivial
fixed points. We apply Proposition 3.5 withH = Γ′ and F = h′ to obtain a harmonic,
graph height function (h,Γ′) on G.

�

Proof of Theorem 5.1. Since q < ∞, we have that [Γ : Γ∗(q)] < ∞, and in particular
Γ∗(q) is finitely generated. Now, Γ∗(q) is characteristic in Γ∗, and Γ∗ E Γ, so that
Γ∗(q) E Γ.

By applying Theorem 5.2(a) to the pair Γ∗(q+1) E Γ∗(q), there exists a group height

function h∗q on Γ∗(q). We apply Theorem 5.2(b) to the pair Γ∗(q) E Γ to obtain a

harmonic, graph height function (h,Γ∗(q)) on Γ. �
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6. Groups with elementary presentations

In Definition 3.1 is defined a graph height function (h,H) on a transitive graph
G = (V,E). It is useful to allow H to act only quasi-transitively on G, since there
exist transitive graphs G having a graph height function (h,H) with H acting quasi-
transitively but none with H acting transitively.

In Section 4, we established a necessary and sufficient condition for a Cayley graph
to have a group height function, and we pointed out that a group height function
is a graph height function with an associated H that acts transitively. Even when
the condition fails to hold, it can be the case that G has a graph height function
in the sense of Definition 3.1; consider, for example, the square/octagon lattice and
Example 4.4.

We thus seek conditions under which the Cayley graph of a finitely presented
group Γ = 〈S | R〉 has a graph height function. A sufficient condition is given in the
forthcoming Theorem 6.1, which is derived from Theorem 3.3.

Since G is a Cayley graph, the group Γ acts transitively on G by left multiplication.
Let H be a normal subgroup of Γ satisfying [Γ : H] <∞, so that H acts on G quasi-
transitively. Now, H is unimodular, and we may thus define the undirected quotient
graph G as prior to Theorem 3.3 (see [12]). Since Γ acts transitively on G, G is
transitive.

The presentation Γ = 〈S | R〉 is called elementary with respect to H if each
relator r1r2 · · · rm ∈ R gives rise to a cycle of the Cayley graph G, that is, the edges
〈ui, ui+1〉, 0 ≤ i < m, form a cycle of G, where ui = r1 · · · ri and u = Hu. The
presentation Γ = 〈S | R〉 is called elementary if it is elementary with respect to the
trivial subgroup comprising the identity element, that is, every relator gives rise a
cycle of G.

Theorem 6.1. Let Γ be an infinite, finitely generated group. Let H E Γ be such that
[Γ : H] <∞, and assume the presentation Γ = 〈S | R〉 is elementary with respect to
H. The Cayley graph G possesses a graph height function (h,H).

Proof. Let H E Γ and [Γ : H] < ∞. Then H acts quasi-transitively on G by left-
multiplication. Since H acts without non-trivial fixed points, it is unimodular. We
may take B to be the cycles through the origin 1 of G to which the relators in R
give rise.

Assumption (c) of Theorem 3.3 holds since the presentation is elementary with
respect to H, and the claim follows by that theorem. �

There follows an example of a Cayley graph having no group height function, but
for which there exists a graph height function (h,H).
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Example 6.2. The special linear group Γ := SL2(Z) has a presentation

(6.1) Γ = 〈x, y, u, v | xu, yv, x4, x2v3〉,
where

x =

(
0 −1
1 0

)
, y =

(
0 −1
1 1

)
.

The presentation has no group height function. Each of the last two relators of
(6.1) projects onto a cycle of the Cayley graph, and therefore the presentation is
elementary.

The following properties of SL2(Z) may be found in [5] and [19, p. 66]. The commu-
tator subgroup Γ(2) := [Γ,Γ] is a normal subgroup of Γ with index 12. The (abelian)
quotient Q = Γ/Γ(2) has elements xiyj for i = 0, 1, j = 0, 1, . . . , 5. Furthermore, x
has order 4, y has order 6, and x2 = y3.

The relator x4 of (6.1) projects onto the cycle (1, x, x2, x3,1) of Q, and the relator
x2y−3 projects onto the cycle (1, x, x2, y2, y,1). Therefore, the presentation (6.1) is
elementary with respect to Γ(2). By Theorem 6.1, the Cayley graph has a graph height
function of the form (h,Γ(2)). This may also be proved via Theorem 5.1.

There exist Cayley graphs for which we have been unable to construct a graph
height function (h,H), even allowing H to be merely quasi-transitive. Here is an
example.

Example 6.3. The Higman group Γ of [20] is an infinite, finitely presented group
with presentation Γ = 〈S | R〉 where

S = {a, b, c, d, a′, b′, c′, d′},
R = {aa′, bb′, cc′, dd′} ∪ {a′ba(b′)2, b′cb(c′)2, c′dc(d′)2, d′ad(a′)2}.

The quotient of Γ by its maximal proper normal subgroup is an infinite, finitely
generated, simple group. By Theorem 4.1(b), Γ has no group height function. Since
Γ has no nontrivial normal subgroup N with finite index, the construction of Theorem
6.1 fails.

The commutator group of the Higman group Γ satisfies [Γ,Γ] = Γ. This follows by
Theorem 5.2(a) and the above (or otherwise).

7. Convergence of connective constants of Cayley graphs

Let Γ = 〈S | R〉 be finitely presented with coefficient matrix C and Cayley graph
G = G(S,R). Let t ∈ Γ have infinite order. We consider in this section the effect of
adding a new generator tm, in the limit as m→∞. Let Gm be the Cayley graph of
the group Γm = 〈S | R ∪ {tm}〉.

Theorem 7.1. If rank(C) < |S| − 1, then µ(Gm)→ µ(G) as m→∞.
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Proof. The coefficient matrix Cm of Gm differs from C1 only in the multiplicity of
the row corresponding to the new relator, and therefore N (C1) = N (Cm). Since Γ1

has only one relator more than G, rank(C1) ≤ rank(C) + 1. If rank(C) < |S| − 1,
then rank(C1) < |S|. By Theorem 4.1, we may find γ = (γs : s ∈ S) ∈ N (C1)
such that γ ∈ ZS, γ 6= 0. By the above, for m ≥ 1, γ ∈ N (Cm), so that Gm has a
corresponding group height function hm. By (4.2), d(h) = d(hm) =: D for all m, so
that Gm ∈ GD for all m.

The group Γm is obtained as the quotient group of Γ by the normal subgroup
generated by tm. We apply [11, Thm 5.2] with αm = tm. The condition of the
theorem holds since t has infinite order. �

As examples of finitely generated groups satisfying the conditions of Theorem 7.1,
we mention free groups, abelian groups, free nilpotent groups, free solvable groups,
and, more widely, nilpotent and solvable groups Γ with presentations 〈S | R〉 whose
coefficient matrix C satisfies b(Γ) = |S| − rank(C) > 1. Here is an example where
Theorem 7.1 cannot be applied, though the conclusion is valid.

Example 7.2. Let G be the Cayley graph of the infinite dihedral group Dih∞ =
〈s1, s2 | s2

1, s
2
2〉 of Example 4.4. As noted there, G has no group height function,

though it has a graph height function h with d(h) = 1. Let Γm = G × Jm where
m ≥ 2 and Jm = 〈a, b | ab, am〉 is the cyclic group {1, a, a2, . . . , am−1}. Thus, Γm
is finitely presented but, by Theorem 4.1(b), it has no group height function. In
particular, Theorem 7.1 may not be applied.

On the other hand, we may define a graph height function h′ on Gm by h′(γ, ak) =
h(γ) for γ ∈ Dih∞ and k ≥ 0. Furthermore, d(h′) = d(h) = 1. By [11, Thm 5.2],
µ(Gm)→ µ(G) as m→∞.

8. Proof of Theorem 3.5

Assume that assumptions (a)–(c) of Theorem 3.5 hold. There are two steps in the
proof, namely of the following.

A. (Prop. 8.2) There exists ψ : V → Q which isH-difference-invariant, harmonic,
non-constant, and takes values in the rationals.

B. (Prop. 8.3) There exists a graph height function which is harmonic on G.

The vertex 1 may appear to play a distinguished role in this section. This is in
fact not so: since G is assumed transitive, the following is valid with any choice of
vertex for the label 1. The approach of the proof is inspired in part by the proof of
[24, Cor. 3.4]. Let X = (Xn : n = 0, 1, 2, . . . ) be a simple random walk on G, with
transition matrix

P (u, v) = Pu(X1 = v) =
1

deg(u)
, u, v ∈ V, v ∈ ∂u,
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where Pu denotes the law of the random walk starting at u.
Let V1 = H1 be the orbit of the identity under H, and let P1 be the transition

matrix of the induced random walk on V1, that is

P1(u, v) = Pu(Xτ = v), u, v ∈ V1,

where τ = min{n ≥ 1 : Xn ∈ V1}. It is easily seen that Pu(τ <∞) = 1 since, by the
quasi-transitive action of H, there exist α > 0 and K <∞ such that

(8.1) Pu(Xk ∈ V1 for some 1 ≤ k ≤ K) ≥ α, u ∈ V.

We note for later use that, by (8.1), there exist α′ = α′(α,K) > 0 and A = A(α,K)
such that

(8.2) Pu(τ ≥ m) ≤ A(1− α′)m, m ≥ 1, u ∈ V.

Since H ≤ Aut(G), P1 is invariant under H in the sense that

(8.3) P1(u, v) = P1(γu, γv), γ ∈ H, u, v ∈ V1.

Proposition 8.1.

(a) The transition matrix P1 is symmetric, in that

P1(u, v) = P1(v, u), u, v ∈ V1.

(b) Let F1 : V1 → Z be H-difference-invariant. Then F1 is P1-harmonic in that

F1(u) =
∑
v∈V1

P1(u, v)F1(v), u ∈ V1.

Proof. (a) Since P is reversible with respect to the measure (deg(v) : v ∈ V ), and
deg(v) is constant on V1, we have that

P (u0, u1)P (u1, u2) · · ·P (un−1, un) = P (un, un−1)P (un−1, un−2) · · ·P (u1, u0)

for u0, un ∈ V1, u1, . . . , un−1 ∈ V . The symmetry of P1 follows by summing over
appropriate sequences (ui).
(b) It is required to prove that

(8.4)
∑
v∈V1

P1(u, v)[F1(u)− F1(v)] = 0, u ∈ V1,

and it is here that we shall use assumption (b) of Theorem 3.5, namely, that H is
unimodular. Since F1 is H-difference-invariant, there exists D <∞ such that

|F1(u)− F1(v)| ≤ DdG(u, v), u, v ∈ V1.

By (8.1), the random walk on V1 has finite mean step-size. It follows that the sum
in (8.4) converges absolutely.
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Equation (8.4) may be proved by a cancellation of summands, but it is shorter to
use the mass-transport principle. Let

m(u, v) = P1(u, v)[F1(u)− F1(v)], u, v ∈ V1.

The sum
∑

v∈V1
m(u, v) is absolutely convergent as above, and m(γu, γv) = m(u, v)

for γ ∈ H. Since H is unimodular, by the mass-transport principle (see, for example,
[26, Thm 8.7, Cor. 8.11]),

(8.5)
∑
v∈V1

m(u, v) =
∑
w∈V1

m(w, u), u ∈ V1.

Now, ∑
w∈V1

m(w, u) =
∑
w∈V1

P1(w, u)[F1(w)− F1(u)]

= −
∑
w∈V1

P1(u,w)[F1(u)− F1(w)] by part (a),

and (8.4) follows by (8.5).
It is usual to assume in the mass-transport principle that m(u, v) ≥ 0, but it

suffices that
∑

vm(u, v) is absolutely convergent. �

A function f : V → R is said to have expon(β) growth if there exists B such that

(8.6) |f(v)| ≤ Bβn if dG(1, v) ≤ n.

Proposition 8.2. Let F1 : V1 → Z be H-difference-invariant, and let

(8.7) ψ(v) = Ev[F1(XN)], v ∈ V,

where N = inf{n ≥ 0 : Xn ∈ V1}. Then:

(a) the function ψ is H-difference-invariant, and agrees with F1 on V1,
(b) ψ is harmonic on G, in that

(8.8) ψ(u) =
∑
v∈V

P (u, v)ψ(v), u ∈ V,

and, furthermore, ψ is the unique harmonic function that agrees with F1 on
V1 and has expon(β) growth with β(1− α′) < 1, where α′ satisfies (8.2),

(c) ψ takes rational values.

By part (b), any harmonic extension of F1 with such expon(β) growth is H-
difference-invariant. Conversely, any H-difference-invariant function f has expon(β)
growth for all β > 0, whence the function ψ of (8.7) is the unique harmonic extension
of F1 that is H-difference-invariant.
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Proof. (a) The function ψ is H-difference-invariant since the law of the random walk
is H-invariant, and

ψ(v)− ψ(w) = Ev[F1(XN)]− Ew[F1(XN)].

It is trivial that ψ ≡ F1 on V1.
(b) By conditioning on the first step, ψ is harmonic at any v /∈ V1. For v ∈ V1, it
suffices to show that

ψ(v) =
∑
w∈V

P (v, w)ψ(w).

Since ψ ≡ F1 on V1, and F1 is P1-harmonic (by Proposition 8.1), this may be written
as ∑

w∈V1

P1(v, w)ψ(w) =
∑
w∈V

P (v, w)ψ(w), v ∈ V1

Each term equals Ev[ψ(W (X1))], where X1 is the position of the random walk after
one step, and W (X1) is the first element of V1 encountered having started at X1.

To establish uniqueness, let φ be a harmonic function with expon(β) growth where
β(1 − α′) < 1, such that φ ≡ F1 on V1. Then Yn := φ(Xn) is a martingale, and
furthermore N is a stopping time with tail satisfying (8.2). By the optional stopping
theorem (see, for example, [15, Thm 12.5.1]) and (8.7),

φ(u) = Eu(YN) = Eu(F1(XN)) = ψ(u),

so long as Eu(|Yn|IN≥n) → 0 as n → ∞. To check the last condition, note by (8.6)
and (8.2) that

Eu(|Yn|IN≥n) ≤ Bβn+|u|Pu(N ≥ n)

≤ (ABβ|u|)βn(1− α′)n → 0 as n→∞,

where |u| = dG(1, u).
(c) The quantity ψ(v) has a representation as a sum of values of the unique solution
of a finite set of linear equations with integral coefficients and boundary conditions,
and thus ψ(v) ∈ Q. The proof uses the assumed symmetry of H. Some further
details follow.

The graph G = (V ,E) (respectively, ~G = (V , ~E)) is the undirected (respectively,
directed) quotient graph on the vertex-set V = V/H, as before the statement of
Theorem 3.3. To each e ∈ E, we allocate an arbitrary but fixed orientation. For
δ : E → R, let

δ(~e) :=

{
δ(e) if e ∈ E is oriented in the direction ~e,

−δ(e) otherwise.
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Then δ lifts to a function δ on the edges of G (with orientations) that is H-invariant.
This δ sums to 0 around the cycles of G if and only if

(8.9)
∑
~e∈ ~C

δ(~e) = 0, ~C ∈ ~C(G),

where ~C(G) is the set of all directed cycles of G. This is (generally) an infinite set
of linear equations in only finitely many variables, and therefore there exists a finite
subset D ⊆ ~C(G) such that (8.9) holds if and only if

(8.10)
∑
~e∈ ~C

δ(~e) = 0, ~C ∈ D.

Assume that (8.10) holds, and let φ : V → R be given by φ(1) = 0, and φ(v) is
the sum of the δ(~e) along a (and hence any) directed path of G from 1 to v. Since δ
is H-invariant, φ is H-difference-invariant. Also, φ is harmonic on G if and only if

(8.11)
∑
v∼u

δ([u, v〉) = 0, u ∈ V.

Since δ is H-invariant and H acts quasi-transitively, (8.11) amounts to a finite col-
lection of distinct equations involving the values of δ. In summary, any harmonic,
H-difference-invariant function φ, satisfying φ(1) = 0, corresponds to a solution to
the finite collection (8.10)–(8.11) of linear equations.

With F1 as given, let ψ be given by (8.7). By parts (a) and (b), equations (8.10)
and (8.11) have a unique solution satisfying

(8.12)
∑
~e∈lv

δ(~e) = F1(v)− F1(1), v ∈ V1,

where lv is an arbitrary directed path from 1 to v. By (8.9), it suffices in (8.12)
to consider only the finite set of vertices v within some bounded distance of 1 that
depends on the graph G.

Therefore, (8.10)–(8.11) possess a unique solution subject to (8.12) (with V1 re-
placed by a fixed finite subset). All coefficients and boundary values in these linear
equations are integral, and therefore ψ takes only rational values. �

Proposition 8.3. Let F1 : V1 → Z be H-difference-invariant, and non-constant on
V1. There exists a graph height function h = hF which is harmonic on G.

Proof. The normality of H is used in this proof. A vertex v ∈ V is called a point of
increase of a function h : V → R if v has neighbours u, w such that h(u) < h(v) <
h(w). The function h is said to increase everywhere if every vertex is a point of
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increase. For v ∈ V and a harmonic function h,

(8.13)
either: v is a point of increase of h,

or: h is constant on {v} ∪ ∂v.

An H-difference-invariant function h on G is a graph height function if and only if
it takes integer values, and it increases everywhere.

Let F1 be as given, and let ψ be given by Proposition 8.2. Thus, ψ : V → Q
is non-constant on V1, H-difference-invariant, and harmonic on G. Since ψ is H-
difference-invariant, we may replace it by mψ for a suitable m ∈ N to obtain such
a function that in addition takes integer values. We shall work with the latter
function, and thus we assume henceforth that ψ : V → Z. Now, ψ may not increase
everywhere. By (8.13), ψ has some point of increase w ∈ V .

Let V1, V2, . . . , VN be the orbits of V under H. Find ω such that w ∈ Vω. Since Γ
acts transitively on G, and H is a normal subgroup of Γ acting quasi-transitively on
G, there exist γ1, γ2, . . . , γN ∈ Γ such that γω = 1 and

Vi = γiVω, i = 1, 2, . . . , N.

Let ψω = ψ and

(8.14) ψi(v) = ψω(γ−1
i v), i = 1, 2, . . . , N.

Since w ∈ Vω is a point of increase of ψω, wi := γiw is a point of increase of ψi, and
also wi ∈ Vi.

Lemma 8.4. For i = 1, 2, . . . , N ,

(a) ψi : V → Z is a non-constant, harmonic function, and
(b) ψi is H-difference-invariant.

Proof. (a) Since ψi is obtained from ψ1 by shifting the domain according to the
automorphism γi, ψi is non-constant and harmonic.
(b) For α ∈ H and u, v ∈ V ,

ψi(αv)− ψi(αu) = ψω(γ−1
i αv)− ψω(γ−1

i αu).

Since H E Γ and γi ∈ Γ, there exists αi ∈ H such that γ−1
i α = αiγ

−1
i . Therefore,

ψi(αv)− ψi(αu) = ψω(αiγ
−1
i v)− ψω(αiγ

−1
i u)

= ψω(γ−1
i v)− ψω(γ−1

i u) since ψω is H-difference-invariant

= ψi(v)− ψi(w) by (8.14),

so that ψi is H-difference-invariant. �

Let ν : V → R be H-difference-invariant. For j = 1, 2, . . . , N , either every vertex
in Vj is a point of increase of ν, or no vertex in Vj is a point of increase of ν. We shall
now use an interative construction in order to find a harmonic, H-difference-invariant
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function h′ for which every wi is a point of increase. Since the wi represent the orbits
Vi, the ensuing h′ increases everywhere.

1. If every wi is a point of increase of ψω, we set h′ = ψω.
2. Assume otherwise, and find the smallest j2 such that wj2 is not a point of

increase of ψω. By (8.13), we may choose cj2 ∈ Q such that both wω and wj2
are points of increase of h2 := ψω + cj2ψj2 . If h2 increases everywhere, we set
h′ = h2.

3. Assume otherwise, and find the smallest j3 such that wj3 is not a point of
increase of h2. By (8.13), we may choose cj3 ∈ Q such that wω, wj2 , and wj3
are points of increase of h3 := ψω+cj2ψj2 +cj3ψj3 . If h3 increases everywhere,
we set h′ = h3.

4. This process is iterated until we find an H-difference-invariant, harmonic
function of the form

h′ =
N∑
l=1

cjlψjl ,

with j1 = ω, cω = 1, and cjl ∈ Q, which increases everywhere.

The function h′ may fail to be a graph height function only in that it may take
rational rather than integer values. Since the cjl are rational, there exists m ∈ Z
such that h = mh′ is a graph height function. �

Proof of Theorem 3.5. By Propositions 8.1 and 8.2, there exists ψ : V → Q satisfying
(i). The existence of ψ′ : V → Q, in (ii), follows as in Proposition 8.3. �

9. Proof of Theorem 3.3

As above, G = (V ,E) (respectively, ~G = (V , ~E)) is the undirected (respectively,
directed) quotient graph on the vertex-set V = V/H. Edges, walks, and cycles of G
and the quotient graph may sometimes be directed and sometimes undirected. We
use notation and words to distinguish between these two situations, and we hope our
presentation is clear to the reader.

Assume that assumptions (a)–(c) of Theorem 3.3 hold. The conclusion of the
theorem follows by Theorem 3.5 and the following proposition.

Proposition 9.1. There exists a function F : V → Z which is non-constant on the
orbit H1, and is H-difference-invariant.

Proof. The proof makes use of the cycle space of the graph G = (V ,E), which we

recall as the vector subspace of {0, 1}E, over Z2, generated by incidence vectors of
the cycles of G (see [6, 21, 25]). For an undirected graph H, we write C(H) for its
cycle space.
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For v ∈ V , let lv be the length of a shortest path from v to Hv \{v}. Since H E Γ,
l := lv does not depend on the choice of v (see [12, Sect. 3.4]). We assume first
that l ≥ 3, in which case H is automatically symmetric (by [12, Lemma 3.10]), and
furthermore, for a cycle C of G, either every lift of C is a cycle, or no lift is a cycle.

Let B be the set of projections of B onto G, and let C(B) be the subspace of C(G)
generated by B. Since each β ∈ B is the projection of a cycle, every lift of β is a
cycle of G. Therefore, for σ ∈ C(B), every lift of σ lies in C(G). Let l1 be a shortest
path of G from 1 to V \ {1}. The projection l1 is a cycle of G that lifts to a SAW
of G. Therefore, l1 ∈ C(G) \ C(B), and hence ρ := dim(C(B)) satisfies ρ < ∆, where
∆ := dim(C(G)).

Since C(B) is a subspace of C(G), it has a basis {C1, C2, . . . , Cρ}, which may be

extended to a basis {C1, . . . , Cρ, Cρ+1, . . . , C∆} of C(G) with C∆ = l1. We direct

each Ci in an arbitrary way, and we write ~Ci for the resulting directed cycle.
We turn G into a directed graph by adding orientations to the edges in an arbitrary

but fixed way (as in the proof of Proposition 8.2). For a directed edge ~e arising thus,
we write −~e for the corresponding edge with the reversed orientation. Let δ : E → Q
be a solution of the equations∑

~e∈ ~Ci

δ(~e) = 0, 1 ≤ i ≤ ρ,(9.1)

∑
~e∈ ~C∆

δ(~e) = 1,(9.2)

where

δ(~e) :=

{
δ(e) if e is oriented in the direction ~e,

−δ(e) otherwise.

The rows of the coefficient matrix of the system (9.1)–(9.2) of linear equations are
independent over Z2, and therefore over Q also. Since ρ < ∆, the rank of the
coefficient matrix of (9.1)–(9.2) equals the rank of its augmented matrix, whence
there exists a solution to (9.1)–(9.2). Indeed, there exists a rational solution since
the equations have integral coefficients. Let δ be such a solution, and, for a directed

edge ~f derived from an edge f ∈ E, let δ(~f) = δ(~e) where ~e is the projection of ~f .
Since C(G) is generated by B, a closed walk W on G may be expressed as a sum,

over Z, of cycles of the form γiCi with γi ∈ H and 1 ≤ i ≤ ρ. With ~W obtained from
W by orienting the walk, we have by (9.1) that

(9.3)
∑
~e∈ ~W

δ(~e) = 0.
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Let F : V → Q be given as follows. Let F (1) = 0. For v ∈ V , find a directed path
lv from 1 and v, and define

F (v) =
∑
~e∈lv

δ(~e).

By (9.3), F is well defined in the sense that F (v) is independent of the choice of lv.
Moreover, F is non-constant on the orbit H1 since, by (9.2), F (w) = ±1 where w is
the endpoint of l1 other than 1.

Suppose finally that l ≤ 2. For a cycle C of G, we adopt the convention that C
lifts to a trail of G, that is, a walk that repeats no edge. The above argument is
valid subject to the difference that each β ∈ B has at least one lift that is a cycle,
and every lift of l1 is a SAW. It follows that l1 /∈ C(B), and the proof proceeds as
before. �

10. Proof of Theorem 3.4

Let G, Γ, H be as given. The idea is to apply Theorem 3.5 to a suitable triple G′,
Γ′, H′ satisfying the conditions of the proposition, and to extend the resulting graph
height function to the original graph G. The required function F of the theorem will
be derived from the modular function of G under H.

Let S be the normal subgroup of Γ generated by
⋃
v∈V Stabv, where Stabv = StabHv .

We may define a positive weight function M : V → (0,∞) by

(10.1)
M(u)

M(v)
=
|Stabuv|
|Stabvu|

, u, v ∈ V,

where | · | denotes cardinality. The weight function is uniquely defined up to a mul-
tiplicative constant, and is automorphism-invariant up to a multiplicative constant.
Since G is assumed non-unimodular, M is non-constant on some orbit of H. Without
loss of generality, we assume 1 lies in such an orbit and that M(1) = 1. See [26,
Sect. 8.2] for an account of (non-)unimodularity.

Let G′ denote the quotient graph G/S, which we take to be simple in that every
pair of neighbours is connected by just one edge.

Lemma 10.1.

(a) S E H.
(b) The function F ′ : V/S → (0,∞) given by F ′(Sv) = logM(v), v ∈ V , is well

defined, in the sense that F ′ is constant on each coset in V/S.
(c) The quotient group Γ′ := Γ/S acts transitively on G′, and H′ := H/S acts

quasi-transitively on G′.
(d) The quotient graph G′ = G/S satisfies G′ ∈ G.
(e) H′ is unimodular and symmetric on G′.
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Proof. (a) Since S E Γ and H ≤ Γ, it suffices to show that S ≤ H. Now, S is the
set of all products of the form (γ1σ1γ

−1
1 )(γ2σ2γ

−1
2 ) · · · (γkσkγ−1

k ) with k ≥ 0, γi ∈ Γ,
σi ∈ Stabwi

, wi ∈ V . Since γiσiγ
−1
i ∈ Stabγiwi

, we have that S ≤ H as required.
(b) If u = σv with σ ∈ Stabw, then

M(u)

M(w)
=
|Stabuw|
|Stabwu|

=
|Stabσv(σw)|
|Stabσw(σv)|

=
|Stabvw|
|Stabwv|

=
M(v)

M(w)
,

so that M(u) = M(v). As in part (a), every element of S is the product of members
of the stabilizer groups Stabw, and the claim follows.
(c) Let u, v ∈ V , and find γ ∈ Γ such that v = γu. Since S E Γ, Sγ(Su) = Sγu = Sv,
so that Sγ : Su 7→ Sv. The first claim follows, and the second is similar since H
acts quasi-transitively on G.
(d) Since M is non-constant on the orbit H1, there exist v, w ∈ H1 such that
µ := M(w)/M(v) satisfies µ > 1. Let α ∈ H be such that w = αv. By (10.1),
M(αkv)/M(v) = µk, whence the range of M is unbounded. By part (b), G′ is
infinite. (The non-constantness of the modular function has been used also in [8].)
The graph G′ is connected since G is connected, and is transitive by part (c). It is
locally finite since its vertex-degree is no greater than that of G.
(e) It suffices for the unimodularity that, for u ∈ V and u := Su, we have that

Stabu := StabH
′

u is a single element, namely the identity element S of H′. (The
symmetry follows by [12, Lemma 3.10].) Let α ∈ H be such that Sα ∈ Stabu. Then
Sα(Su) = αSu = Su. Therefore, there exists s ∈ S such that αs(u) = u, so that
αs ∈ S. It follows that α ∈ S, and hence Sα = S as required. �

Since M is non-constant on H1, F ′ is non-constant on the orbit of H′ containing
S1. By Theorem 3.5, G′ has a harmonic graph height function (ψ′,H′) satisfying
ψ′(S1) = 0. Let ψ : V → Z be given by ψ(v) = ψ′(Sv). We claim that (ψ,H) is a
graph height function on G.

Firstly, for α ∈ H,

ψ(αv)− ψ(αu) = ψ′(Sαv)− ψ′(Sαu)

= ψ′(αSv)− ψ′(αSu) since S E H
= ψ′(Sv)− ψ′(Su) since (ψ′,H′) is a graph height function

= ψ(v)− ψ(u),

whence ψ is H-difference-invariant. Secondly, let v ∈ V , and find u,w ∈ ∂v such
that ψ′(Su) < ψ′(Sv) < ψ′(Sw). Then ψ(u) < ψ(v) < ψ(w), so that v is a point of
increase of ψ. Therefore, (ψ,H) is a graph height function on G.

Finally, we give an example in which the above recipe leads to a graph height
function which is not harmonic. Consider the ‘grandparent graph’ introduced in [35]
(see also [26, Example 7.1]). Let T be an infinite degree-3 tree, and select an ‘end’ ω.
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For each vertex v, we add an edge to the unique grandparent of v in the direction of
ω. Let H be the set of automorphisms of the resulting graph G that preserve ω. Note
that H acts transitively on G, and is non-unimodular. The above recipe yields (up
to a multiplicative constant which we take to be 1) the graph height function on T
which measures the (integer) height of a vertex in the direction of ω. The neighbours
of a vertex with height h have average height h− 7

8
, whence h is not harmonic.
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