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Abstract. Bounds are proved for the connective constant µ of
an infinite, connected, ∆-regular graph G. The main result is that
µ ≥

√
∆− 1 if G is vertex-transitive and simple. This inequality

is proved subject to weaker conditions under which it is sharp.

1. Introduction

A self-avoiding walk (SAW) is a path on a graph that visits no vertex
more than once. SAWs were introduced as a model for long-chain
polymers in chemistry (see [9]), and have since been studied intensively
by mathematicians and physicists interested in their critical behaviour
(see [18]). If the underlying graph has a property of periodicity, the
asymptotic behaviour of the number of SAWs of length n (starting at a
given vertex) is exponential in n, with growth rate called the connective
constant of the graph. The main purpose of this paper is to explore
upper and lower bounds for connective constants.

The principal result of this paper is the following lower bound for
the connective constant µ of a ∆-regular graph. The complementary
upper bound µ ≤ ∆− 1 is very familiar.

Theorem 1.1. Let ∆ ≥ 2, and let G be an infinite, connected, ∆-
regular, vertex-transitive, simple graph. Then µ(G) ≥

√
∆− 1.

The problem of counting SAWs is linked in two ways to the study
of interacting disordered systems such as percolation and Ising/Potts
models. First, the numerical value of µ leads to bounds on critical
points of such models (see [10, eqns (1.12)–(1.3)] for percolation, and
hence Potts models via [11, eqn (5.8)]). Secondly, the SAW problem
may be phrased in terms of the SAW generating function; this has
radius of convergence 1/µ, and the singularity is believed to have power-
law behaviour (for lattice-graphs at least), see [18]. Thus, a lower
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bound for µ may be viewed as an upper bound for the critical point of
a certain combinatorial problem.

In Section 2, we introduce notation and definitions used throughout
this paper, and in Section 3 we prove a theorem concerning the def-
inition of the connective constant on general graphs. Inequalities for
the connective constant µ(G) of a ∆-regular graph G are explored in
Section 4, including a re-statement and discussion of Theorem 1.1. It
is shown at Theorem 4.2 that a quasi-transitive, ∆-regular graph G
satisfies µ(G) = ∆ − 1 if and only if G is the ∆-regular tree. The
proofs of results in Section 4 are found in Section 5.

There are two companion papers, [12, 13]. In [12], we use the Fisher
transformation in the context of SAWs on a cubic or partially cubic
graph. In particular, we calculate the connective constant of a cer-
tain lattice obtained from the hexagonal lattice by applying the Fisher
transformation at alternate vertices. In [13], we study strict inequali-
ties between connective constants. It is shown that µ(G2) < µ(G1) if
G2 is the quotient graph of G1 with respect to a non-trivial unimodular,
normal subgroup of its automorphism group.

2. Notation

All graphs in this paper will be assumed infinite, connected, and
loopless (a loop is an edge both of whose endpoints are the same vertex).
In certain circumstances, they are permitted to have multiple edges
(that is, two or more edges with the same endpoints). A graph G =
(V,E) is called simple if it has neither loops nor multiple edges. An
edge e with endpoints u, v is written e = ⟨u, v⟩, and two edges with
the same endpoints are said to be parallel. If ⟨u, v⟩ ∈ E, we call u and
v adjacent and write u ∼ v. The degree of vertex v is the number of
edges incident to v, denoted deg(v). We assume that the vertex-degrees
of a given graph G are finite with supremum ∆, and shall often (but
not always) assume ∆ < ∞. The graph-distance between two vertices
u, v is the number of edges in the shortest path from u to v, denoted
dG(u, v).

A walk w on G is an alternating sequence v0e0v1e1 · · · en−1vn of ver-
tices vi and edges ei such that ei = ⟨vi, vi+1⟩. We write |w| = n for
the length of w, that is, the number of edges in w. The walk w is
called closed if v0 = vn. A cycle is a closed walk w with vi ̸= vj for
1 ≤ i < j ≤ n. Thus, two parallel edges form a cycle of length 2.

Let n ∈ {1, 2, . . . }∪{∞}. An n-step self-avoiding walk (SAW) on G
is a walk containing n edges that includes no vertex more than once.
Let σn(v) be the number of n-step SAWs starting at v ∈ V . We are
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interested here in the exponential growth rate of σn(v), and thus we
define

µ(v) = lim inf
n→∞

σn(v)
1/n, µ(v) = lim sup

n→∞
σn(v)

1/n.

The connective constant µ = µ(G) is given as

(2.1) µ = lim
n→∞

(
sup
v∈V

σn(v)
1/n

)
.

The limit in (2.1) exists for any graph by the usual argument using
subadditivity (see the start of the proof of Theorem 3.1).

It will be convenient to consider also SAWs starting at ‘mid-edges’.
We identify the edge e with a point (also denoted e) placed at the
middle of e, and then consider walks that start and end at these mid-
edges. Such a walk is self-avoiding if it visits no mid-edge or vertex
more than once, and its length is the number of vertices visited.

The automorphism group of the graphG = (V,E) is denoted Aut(G).
A subgroup A ⊆ Aut(G) is said to act transitively on G if, for v, w ∈ V ,
there exists α ∈ A with αv = w. It acts quasi-transitively if there ex-
ists a finite subset W ⊆ V such that, for v ∈ V there exists α ∈ A such
that αv ∈ W . The graph is called vertex-transitive (respectively, quasi-
transitive) if Aut(G) acts transitively (respectively, quasi-transitively).

3. Basic facts for general graphs

We begin with a result linking the connective constant µ to the µ(v)
and µ(v). The proof appears later in this section.

Theorem 3.1. Let G = (V,E) be an infinite, connected graph with
finite vertex-degrees, and assume there exists v ∈ V with µ(v) < ∞.

(a) µ(v) = µ for all v ∈ V .
(b) If µ(v) = µ for some v ∈ V , then µ(v) = µ for all v ∈ V .

Part (a) may be found also in [16, Prop. 1.1], which appeared during
the writing of this paper. It is in fact only a minor variation of an
earlier argument of Hammersley [14] from 1957.

Assume that the vertex-degree supremum ∆ satisfies ∆ < ∞. It is
elementary that

(3.1) 1 ≤ µ(v) ≤ µ ≤ ∆− 1, v ∈ V.

By Theorem 3.1(a), µ(v) = µ for all v ∈ V .
The connective constant is known exactly for a limited class of graphs,

of which we mention the ladder L, the hexagonal lattice H, and the
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Figure 3.1. Three regular graphs: the (doubly-infinite)
ladder graph L; the hexagonal tiling H of the plane; the
bridge graph B∆ (with ∆ = 4) obtained from Z by joining
every alternating pair of consecutive vertices by ∆ − 1
parallel edges.

bridge graph B∆ with degree ∆ ≥ 2 of Figure 3.1, for which

(3.2) µ(L) = 1
2
(
√
5 + 1), µ(H) =

√
2 +

√
2, µ(B∆) =

√
∆− 1.

See [2, p. 184] and [8] for the first two calculations. There is an extensive
literature devoted to self-avoiding walks, including numerical upper and
lower bounds for connective constants, of which we mention [1, 5, 15,
18].

Proof of Theorem 3.1. We adapt and extend an argument of [14]. First,
we have in the usual way that

(3.3) σm+n(v) ≤ σm(v)σn,

where σn = supv∈V σn(v). Therefore, σm+n ≤ σmσn, whence the limit
µ exists in (2.1). We note in passing that

(3.4) σn ≥ µn, n ≥ 1.

For τ > µ, there exists C = C(τ) < ∞ such that

(3.5) σn ≤ Cτn, n ≥ 0.

Let u, v be neighbours joined by an edge e. Let π be an n-step SAW
from u. Either π visits v, or it does not.

1. If π does not visit v, we prepend e to obtain an (n + 1)-step
SAW from v.

2. If π visits v after a number m < n steps, we break π after m−1
steps, and prepend e to the first subpath to obtain two SAWs
from v: one of length m and the other of length n−m.
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3. If π visits v after n steps, we remove the final edge and prepend
e to obtain an n-step SAW from v.

It follows that

(3.6) σn(u) ≤ σn+1(v) +
n−1∑
m=1

σm(v)σn−m(v) + σn(v).

Suppose now that µ(v) < ∞, and let τ > µ(v). There exists C =
C(τ) < ∞ such that

(3.7) σk(v) ≤ Cτ k, k ≥ 0.

By (3.6),

(3.8) σn(u) ≤ Cτn(τ + nC + 1).

Hence, µ(u) ≤ τ and therefore µ(u) ≤ µ(v). Part (a) follows since G
is connected and undirected.

We turn to part (b). Let τ > µ. By (3.3)–(3.5), there exists C =
C(τ) < ∞ such that

(3.9) σi+j(u) ≤ Cσi(u)τ
j, u ∈ V, i, j ≥ 0.

Set n = 2k in (3.6), and break the sum into two parts depending on
whether or not m ≤ k. By (3.6) and (3.9),

(3.10) σ2k(u) ≤ Cσk(v)(τ
k+1 + 2kCτ k + τ k).

Therefore, µ(u)2 ≤ µ(v)τ , so that µ(u)2 ≤ µ(v)µ. Assume that u
satisfies µ(u) = µ. Then µ(v) = µ, and the claim follows by iteration.

�

4. Connective constants of regular graphs

The graph G is regular (or ∆-regular) if every vertex has the same
degree ∆. A 3-regular graph is called cubic. In this section, we inves-
tigate bounds for the connective constants of infinite regular graphs.
The optimal universal lower bound, even restricted to quasi-transitive
graphs, is of course the trivial bound µ ≥ 1. This is achieved when
∆ = 3, 4 by the graphs of Figure 4.1, and by similar constructions for
∆ ≥ 5. Improved bounds may be proved when G is assumed vertex-
transitive.

The main result of this paper, Theorem 1.1 is included in the fol-
lowing theorem, of which the upper bound on µ(G) is already well
known.
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Figure 4.1. An infinite line may be decorated in order
to obtain regular graphs of degree 3 and 4. Similar con-
tructions yield regular graphs with arbitrary degree ∆
and connective constant 1.

Theorem 4.1. Let ∆ ≥ 2, and let G be an infinite, connected, ∆-
regular, vertex-transitive graph. We have µ(G) ≤ ∆−1, and in addition
µ(G) ≥

√
∆− 1 if either

(a) G is simple, or
(b) G is non-simple and ∆ ≤ 4.

Part (a) answers a question posed by Itai Benjamini (personal com-
munication). We ask whether the lower bound is strict for simple
graphs, and whether part (b) may be extended to larger values of ∆.
Proofs of theorems in this section are found in Section 5.

For a graph satisfying the initial conditions of Theorem 4.1, we have
by (2.1) and Theorem 3.1 that µ(v) = µ(v) = µ for all v ∈ V . The
Cayley graph (see [3]) of an infinite group with finitely many generators
satisfies the hypothesis of Theorem 4.1(a). If the assumption of vertex-
transitivity is weakened to quasi-transitivity, the best lower bound is
µ ≥ 1, as illustrated in Figure 4.1.

The upper bound of Theorem 4.1 is an equality for the ∆-regular
tree T∆, but is strict for non-trees, even within the larger class of quasi-
transitive graphs. We prove the slightly more general fact following,
thereby extending an earlier result of Bode [6, Sect. 2.2] for quotients
of free groups.

Theorem 4.2. Let G = (V,E) be an infinite, connected, quasi-transitive
graph (possibly with multiple edges), and let ∆ ≥ 3. We have that
µ(G) < ∆− 1 if either

(a) G is ∆-regular and contains a cycle, or
(b) deg(v) ≤ ∆ for all v ∈ V , and there exists w ∈ V with deg(w) ≤

∆− 1.

It is a natural problem to decide when the connective constant of a
graph decreases strictly as further cycles are added. Theorem 4.2 is a
step in this direction. When the graphs are required to be regular, this
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question may be phrased in terms of graphs and quotient graphs, and
it is considered in [13].

We shall deduce Theorem 4.1 from the stronger Theorem 4.3 follow-
ing. The latter assumes a certain condition which we introduce next.
This condition plays a role in excluding the graphs of Figure 4.1. It is
technical, but is satisfied by a variety of graphs of interest.

Let G = (V,E) be an infinite, connected, ∆-regular graph, possibly
with multiple edges. For distinct edges e, e′ ∈ E with a common vertex
w ∈ V , a SAW is said to traverse the triple ewe′ if it contains the
mid-edge e followed consecutively by the vertex w and the mid-edge e′.
For v ∈ V , let I(v) be the set of infinite SAWs from v, and I(e) the
corresponding set starting at the mid-edge of e ∈ E. Let π ∈ I(v), let
ewe′ be a triple traversed by π, and write πw for the finite subwalk of π
between v and w. Let e′′ ̸= e′, e′′ be an edge incident to w. We colour e′′

blue if there exists π′′ ∈ I(v) that follows πw to w and then takes edge
e′′, and we colour e′′ red otherwise. Let Rπ,w = {ej : j = 1, 2, . . . , r} be
the set of red edges corresponding to the pair (π,w).

We make two notes. First, an edge of the form ⟨u,w⟩ with u ∈ πw can
be red when seen from w and blue when seen from u. Thus, correctly
speaking, colour is a property of a directed edge. We shall take care
over this when necessary. Secondly, suppose there is a group of two or
more parallel edges ⟨w,w′⟩ with w′ /∈ π. Then all such edges have the
same colour. They are all blue if and only if there exists π′′ ∈ I(v) that
follows πw to w and then takes one of these edges.

The vertex v ∈ V is said to satisfy condition Πv if, for all π ∈ I(v)
and all triples ewe′ traversed by π, there exists a set F (π,w) = {fj =
⟨xj, yj⟩ : j = 1, 2, . . . , |Rπ,w|} of distinct edges of G such that, for
1 ≤ j ≤ |Rπ,w|,

(a) yj ∈ πw, yj ̸= w,
(b) there exists a SAW from w to xj with first edge ej, that is

vertex-disjoint from πw except at its starting vertex w.

The graph G is said to satisfy condition Π if every vertex v satisfies
condition Πv. The set F (π,w) is permitted to contain parallel edges.
By reversing the SAWs in (b) above, we see that every edge ⟨xj, yj⟩ ∈
F (π,w) is blue when seen from yj. Note that F (π, v) = ∅ for π ∈ I(v).

Condition Πv may be expressed in a simpler form for cubic graphs
(with ∆ = 3). In this case, for each pair (π,w) there exists at most
one red edge. Therefore, Πv is equivalent to the following: for every
π ∈ I(v) and every triple ewe′ traversed by π, there exists π′′ ∈ I(e′′)
beginning e′′w′′, where e′′ = ⟨w,w′′⟩ is the third edge incident with w.
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v w
e e′

∞

πy1 y2

x1

Figure 4.2. An illustration of the condition Πv with
∆ = 5 and x1 = x2.

It is thus sufficient for a cubic graph G that every vertex lies in some
doubly-infinite self-avoiding walk of G.

Theorem 4.3. Let ∆ ≥ 2, and let G = (V,E) be an infinite, connected
∆-regular graph. If v ∈ V satisfies condition Πv, we have µ(v) ≥√
∆− 1. The bridge graph B∆ satisfies condition Π, and µ(v) = µ =√
∆− 1 for all vertices v.

It is trivial that the ∆-regular tree T∆ satisfies condition Π and has
connective constant ∆ − 1, and it was noted in (3.1) that ∆ − 1 is
an upper bound for connective constants of ∆-regular graphs. Let
∆ ≥ 2 and

√
∆− 1 ≤ ρ ≤ ∆ − 1. By replacing the edges of T∆

by finite segments of the bridge graph B∆, one may construct graphs
satisfying condition Π with connective constant ρ. Therefore, the set of
connective constants of infinite, connected, ∆-regular graphs satisfying
condition Π is exactly the closed interval [

√
∆− 1,∆− 1].

5. Proofs of Theorems 4.1–4.3

Proof of Theorem 4.3. Let G satisfy the given conditions. A finite
SAW is called extendable if it is the starting sequence of some infi-
nite SAW. Let v ∈ V satisfy condition Πv, and let σ̃n be the number
of extendable n-step SAWs from v. We claim that

(5.1) lim inf
n→∞

σ̃1/n
n ≥

√
∆− 1,

from which the inequality of the theorem follows. The claim is trivial
when ∆ = 2, and we assume henceforth that ∆ ≥ 3.

Let π = v0e0v1 · · · e2n−1v2n be an extendable 2n-step SAW from v0 =
v, and, for convenience, augment π with a mid-edge e−1 (̸= e0) incident
to v0. Thus, π traverses the triples es−1vses for 0 ≤ s < 2n. Let rs and
bs be the numbers of red and blue edges, respectively, seen from vs, so
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that

(5.2) rs + bs = ∆− 2, 0 ≤ s < 2n.

We claim that

(5.3)
2n−1∑
s=0

bs ≥ n(∆− 2),

and the proof of this follows.
For 0 ≤ s < 2n, let Fs = F (π, vs), and recall that F (π, v0) = ∅.

We claim that Fs ∩ Ft = ∅ for s ̸= t. Suppose on the contrary that
0 ≤ s < t < 2n and f ∈ Fs ∩ Ft for some edge f = ⟨x, y⟩ with y = vu
and u < s. See Figure 5.1. There exists a SAW ωs from vs to x such
that: (i) the first edge of ωs, denoted es, is red, and (ii) ωs is vertex-
disjoint from πvs except at vs. Similarly, there exists a SAW ωt from
vt to x whose first edge et is red, and which is vertex-disjoint from πt

except at vt. Let z be the earliest vertex of ωs lying in ωt. Consider
the infinite SAW ω′ that starts at vs, takes edge es, follows ωs to z,
then ωt and et backwards to vt, and then follows π \πvt . Thus, ω

′ is an
infinite SAW starting with vses that is vertex-disjoint from πvs except
at vs. This contradicts the colour of es (seen from vs), and we deduce
that Fs ∩ Ft = ∅ as claimed.

v

∞

πy vs vt

z

es et
x

Figure 5.1. An illustration of the proof that Fs ∩ Ft = ∅.

Now,
2n−1∑
s=0

bs ≥
2n−1∑
s=0

|Fs| =
2n−1∑
s=0

rs.

The total number of blue/red edges is 2n(∆− 2), and (5.3) follows.
We show next that (5.3) implies the claim of the theorem. A branch

of π (with root x) is an edge e = ⟨x, y⟩ such that x ∈ π, x ̸= v2n, e /∈ π,
and the path xey lies in some π′ ∈ I(v). A set of branches with the
same root is called a group. By (5.3), π has at least n(∆−2) branches,
namely the blue edges. Each of these branches gives rise to a further
extendable 2n-step SAW from v, and similarly every such SAW has at
least n(∆ − 2) such branches. We wish to understand how to group
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the branches on these walks in order to minimize the total number of
ensuing 2n-step SAWs.

Let B = α(∆ − 2) + β with 0 ≤ β < ∆ − 2, and let π be an
extendable 2n-step SAW from v, as above. Suppose that there are
exactly B branches along every ensuing (extendable) 2n-step SAW π′,
and that no vertex of such a π′ is the endvertex of more than ∆ − 2
branches. If the group of branches of π closest to v has size β, and
all other groups have size ∆− 2, the number of ensuing 2n-step SAWs
is g(B) := (β + 1)(∆ − 1)α. It will suffice to show that, if every such
2n-step SAW has exactly B branches, then the total number of SAWs
is at least g(B). We prove this by induction on B.

The claim is trivially true when B = 1, since both numbers then
equal 2. Suppose B0 ≥ 1 is such that the claim is true for B ≤ B0, and
consider the case B = B0 + 1. Let B = α(∆ − 2) + β as above. Pick
π as above, and suppose the first group of branches along π has size γ
for some γ satisfying 1 ≤ γ ≤ ∆− 2.

There are two cases depending on whether or not γ ≤ β. Assume
first that γ ≤ β. The number of SAWs is at least (γ + 1)g(B − γ),
which satisfies

(γ + 1)g(B − γ) = (γ + 1)(β − γ + 1)(∆− 1)α ≥ g(B),

as required. In the second case (γ > β), the corresponding inequality

(γ + 1)g(B − γ) = (γ + 1)(∆− 2 + β − γ + 1)(∆− 1)α−1 ≥ g(B)

is quickly checked (since the middle expression is an upwards pointing
quadratic in γ, it suffices to check the two extremal cases γ = β +
1,∆− 2), and the induction is complete.

With B ≥ n(∆− 2), we find that σ̃2n ≥ (∆− 1)n, whence

lim inf
n→∞

σ̃
1/n
2n ≥ ∆− 1,

and (5.1) follows since σ̃k is non-decreasing in k.
Let ∆ ≥ 2. It is easily seen that the bridge graph B∆ satisfies

condition Π and has connective constant
√
∆− 1, as in (3.2) �

Proof of Theorem 4.1. The upper bound for µ(G) is as in (3.1).
(a) Let G = (V,E) satisfy the given conditions. We claim that, for
v ∈ V , there exist ∆ edge-disjoint infinite SAWs from v. It follows
that G satisfies condition Π, and hence part (a).

The claim is proved as follows. Let λf = λf(G) be the least number
of edges whose removal disconnects G into components at least one
of which is finite. By [4, Lemma 3.3] (see also [17, Chap. 12, Prob.
14]), we have that λf = ∆. It is a consequence of Menger’s theorem
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that there exist λf edge-disjoint infinite SAWs from v. A sketch of this
presumably standard fact follows. Let n ≥ 1, and let Bn be the graph
obtained from G by identifying all vertices distance n+1 or more from
v. The identified vertex is denoted ∂Bn. Since v has degree ∆ and
λf = ∆, the minimum number of edges whose removal disconnects v
from ∂Bn is ∆. By Menger’s theorem (see [7, Sect. 3.3]), there exist ∆
edge-disjoint SAWs from v to ∂Bn. Therefore, for all n, G contains ∆
edge-disjoint n-step SAWs from v. Since G is locally finite, this implies
the above claim.
(b) When ∆ = 2, G is simple. If ∆ = 3 and G is non-simple, it
is immediate that every v has property Πv, and the claim follows by
Theorem 4.3. Suppose ∆ = 4. There are three types of non-simple
graph, depending on the groupings of the parallel edges incident to a
given vertex. By consideration of these types, we see that only one
type merits a detailed argument, namely that in which each vertex
is adjacent to exactly three other vertices, and we restrict ourselves
henceforth to this case.

Two paths from w ∈ V are called vertex-disjoint if w is their unique
common vertex. Let π ∈ I(v), with vertex-sequence (v, v1, v2, . . . ).
Then vn is the endpoint of two vertex-disjoint SAWs of respective
lengths n and ∞. By vertex-transitivity, for every n ≥ 1 and w ∈ V ,
w is the endpoint of two vertex-disjoint SAWs of respective lengths n
and ∞. Since G is locally finite, every w ∈ V is the endpoint of two
vertex-disjoint infinite SAWs. We write the last statement as v =⇒ ∞.

Let π ∈ I(v), w = vk with k ≥ 1, and consider the triple ewe′

traversed by π. By assumption, w has three neighbours w1, w2, w3 in
G, labelled in such a way that w1 = vk−1 and w2 = vk+1. For some i,
there are two parallel edges of the form ⟨w,wi⟩, as illustrated in Figure
5.2.

ww1 w2

w3 w3 w3

w2ww1w1 w w2

v vv
e3 e′3 e′′3

Figure 5.2. The three cases in the proof Theorem 4.1(b).

There are several cases to consider. If w3 ∈ π, say w3 = vM , any
edge ⟨w,w3⟩ is red if M < k and blue otherwise. The situation is more
interesting if w3 /∈ π, and we assume this henceforth.

Consider the first case in Figure 5.2 (the second case is similar). The
edge e1 = ⟨w,w1⟩ not in π is red (seen from w), and contributes itself
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to the set F (π,w). Suppose e3 = ⟨w,w3⟩ is red (if it is blue, there
is nothing to prove). Since w3 =⇒ ∞, there exists an infinite SAW
ν from w3 not using e3. Since e3 is assumed red, there exists a first
vertex z of ν lying in π, and furthermore z = vK for some K < k. We
add to F (π,w) the last edge of ν before z.

Consider the third case in Figure 5.2, with parallel edges e′3 =
⟨w,w3⟩, e′′3 = ⟨w,w3⟩. Since e′3 and e′′3 have the same colour we may
restrict ourselves to the case when both are red. Since w3 =⇒ ∞, there
exists an infinite SAW ν from w3 using neither e′3 nor e′′3. Since e

′
3 and

e′′3 are assumed red, there exists an earliest vertex vK of ν lying in π,
with K < k. Write ν ′ for the sub-path of ν that terminates at vK , and
f(ν ′) for the final edge of ν ′.

Let g = ⟨w3, x⟩ be the edge incident to w3 other than e′3, e
′′
3, and the

first edge of ν. We construct a path ρ from w3 with first edge g, as
follows. Suppose ρ has been found up to some vertex z.

1. If z has been visited earlier by ρ, we exit z along the unique
edge not previously traversed by ρ. Such an edge exists since
G is 4-regular.

2. If z lies in ν ′, we exit z along the unique edge lying in neither
ν ′ nor the prior part of ρ.

3. If z ∈ π, say z = vL, we stop the construction, and write f(ρ)
for the final edge traversed.

Since e′3 and e′′3 are red, Case 3 occurs for some L < k. By construction,
ρ and ν ′ are edge-disjoint, whence f(ρ) ̸= f(ν ′). Corresponding to the
two red edges e′3, e

′′
3, we have the required set F (π,w) = {f(ν ′), f(ρ)}.

In conclusion, every v ∈ V has property Πv, and the claim follows
by Theorem 4.3. �

Proof of Theorem 4.2. Let u ∈ V and let e ∈ E be incident to u. Let
σn(u, e) be the number of n-step SAWs from u that do not traverse
e. We shall prove, subject to either (a) or (b), that there exists N =
N(G) ≥ 3, such that

(5.4) σN(u, e) ≤ (∆− 1)N − 1 for all such pairs u, e.

Assume first that (a) holds. By quasi-transitivity, there exist M, l ∈
N and a cycle ρ of length l such that, for v ∈ V , there exist w ∈ V and
α ∈ Aut(G) such that dG(v, w) < M and

(5.5) w ∈ α(ρ).

Let C(u, e) be the subset of V reachable from u along paths not using
e. If |C(u, e)| < ∞, then σn(u, e) = 0 for large n, whence (5.4) holds
for all N larger than some N(u, e). Assume that |C(u, e)| = ∞. Let
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π = (π0, π1, . . . ) be an infinite SAW from u not using e. This walk has
a first vertex, πR say, lying at distance 4M from u. By the definition
of M , there exists k = k(u, e,M) satisfying R−M ≤ k ≤ R+M , and
a k-step SAW π′ from u not using e, such that π′ has final endpoint
w′ lying in α′(ρ) for some α′ ∈ Aut(G). We may represent the set of
SAWs from u, not using e, as a subtree of the rooted tree of degree ∆
(excepting the root, which has degree ∆− 1). By counting the number
of paths in that tree, we deduce that, for N ≥ N0 := k + l + 1, the
number of such N -step walks is no greater than (∆− 1)N − 1.

Since G is quasi-transitive, N0 < ∞ may be picked uniformly in u,
e. Inequality (5.4) is proved in case (a).

If (b) holds, condition (5.5) is replaced by deg(w) ≤ ∆− 1, and the
conclusion above is valid for N ≥ k + 2. For both cases (a) and (b),
(5.4) is proved.

By considering the last edge traversed by a (k−1)N -step SAW from
v, we have that

σkN(v) ≤ σ(k−1)N(v)
[
(∆− 1)N − 1

]
, k ≥ 2,

and, furthermore, σN(v) ≤ ∆[(∆− 1)N − 1]. Therefore,

µ = lim
n→∞

σn(v)
1/n ≤

[
(∆− 1)N − 1

]1/N
< ∆− 1,

and the theorem is proved. �
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