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Figure 1. Harry Kesten in White Hall, Cornell University,
around 1980.

The mathematical achievements of Harry Kesten since the
mid-1950s have revolutionized probability theory as a
subject in its own right and in its associations with as-
pects of algebra, analysis, geometry, and statistical physics.
Through his personality and scientific ability, he has
framed the modern subject to a degree exceeded by no
other.

Harry inspired high standards of honesty, modesty, and
informality, and he played a central part in the creation of
a lively and open community of researchers.
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Biographical Notes
Early life. Harry Kesten’s early life was far from tran-
quil. His already migrant father migrated once again from
Germany following Hitler’s appointment as chancellor in
1933. Harry survived the war under the protection of a
non-Jewish family in the Netherlands. His parents died
naturally during and immediately following the war. In
1952, he recognized his likely future as a mathematician.

Harry was born in Duisburg, Germany, on 19 No-
vember 1931 to Michael and Elise Kesten. “Hamborn
(Hochfeld)” is listed as his place of birth in both a German
and a Polish document. Harry had Polish citizenship from
birth via his father, and he retained this until his American
naturalization in 1962.

He was the only child of Michael Kesten (born in
Podołowoczyska, [5], then in Galicia and now Ukraine, 22
November 1890) and Elise Abrahamovich (born in Char-
lottenburg, Berlin, 4 October 1905). The Kesten family
name featured prominently in the affairs of the substan-
tial Jewish population of Podołowoczyska in the late nine-
teenth century. Michael moved from Galicia to Berlin,
where he and Elise were married in Charlottenburg on 23
May 1928. Amos Elon has written eloquently in [4] of
the Jewish community in Berlin up to 1933, the year in
which the Kesten family moved to Amsterdam, perhaps as
a member of a group of Jewish families.

German military forces attacked and invaded the
Netherlands in May 1940. Shortly afterwards, Harry was
offered protection by a non-Jewish Dutch family resid-
ing in Driebergen near Utrecht, with whom he lived un-
til the Dutch liberation in May 1945. His father was hid-
den in the same village, and they could be in occasional
contact throughout the occupation. During that period
Harry attended school in a normal way ([3]). Elise died of
leukemia in Amsterdam on 11 February 1941, andMichael
died in October 1945, probably in Groningen of cancer.
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Later in life, Harry kept in touch with his Dutch family,
and would visit them whenever he was in the Netherlands.

Harry moved back to Amsterdam at the end of the war
to live with an older married cousin who had been born
a Kesten, and who had survived the war in Switzerland. It
was during the period between 1945 and graduation from
high school in 1949 that his attachment to Orthodox Ju-
daism developed, and this was to remain with him for the
rest of his life.

The earliest surviving indication of Harry’s scientific
ability is found in his school report on graduation from the
General Secondary High School in 1949. His six grades in
the six given scientific topics (including mathematics) are
recorded as five 10s and one 9. In languages, they were
7 (Dutch), 7 (French), 8 (English), 10 (German). There
were three subjects in which his mark was a mere 6 (“sat-
isfactory”), including handwriting and physical education.
In later life, Harry was very active physically, and was keen
to run, swim, hike, and to ski cross-country, usually with
friends and colleagues.

Figure 2. Harry Kesten, cross-country skiing with Rob and
Margriet van den Berg, Ithaca, 1991.

Following his uncle’s advice to become a chemical engi-
neer, Harry entered the University of Amsterdam in 1949
to study chemistry ([3]). This was not altogether success-
ful, and Harry took a particular dislike to laboratory work.
He moved briefly to theoretical physics before settling on
mathematics. From 1952 to 1956 he had a half-time assist-
antship in the statistical department of the Mathematical
Centre (now the CWI), Amsterdam, under the supervision
of David van Dantzig (known for his theory of collective
marks) and Jan Hemelrijk. He shared an office with fellow
student Theo (J. Th.) Runnenburg, with whom he wrote
his first papers on topics in renewal theory and queueing
theory. The pair of papers [20] are notable, since they are

probably related to the master’s (almost, in a sense, doc-
toral) thesis that Harry wrote in 1956.

It was around this time that he met his wife-to-be, Do-
raline Wabeke, who worked in the Mathematical Centre
Library while studying interior design at evening school.
Middle years. Mark Kac visited Holland in 1955, and
Harry had the opportunity to meet him at the Mathemati-
cal Centre. He wrote to Kac in January 1956 to enquire of
a graduate fellowship at Cornell University to study prob-
ability theory, perhaps for one year. Van Dantzig wrote to
Kac in support, “. . . I have not the slightest doubt that, if
you grant him a fellowship, you will consider the money
well spent afterwards.”

A Junior Graduate Fellowship was duly arranged with a
stipend of $1,400 plus fees, and Harry joined the mathe-
matics graduate program at Cornell that summer, traveling
on a passport issued by the International Refugee Organi-
zation. His fellowship was extended to the next academic
year 1957–58 with support from Mark Kac: “Mr. Kesten
is. . . the best student we have had here in the last twenty
years.. . . one of these days we will indeed be proud of hav-
ing helped to educate an outstanding mathematician.”

He defended his PhD thesis at the end of that year, on
the (then) highly novel topic of random walks on groups.
This area of Harry’s creation remains an active and fruitful
area of research at the time of this memoir.

Doraline followed Harry to the USA in 1957 under the
auspices of “The Experiment of International Living,” and
took a position in Oswego, NY, about seventy-five miles
north of Ithaca on Lake Ontario. As a result of the At-
lantic crossing she became averse to long boat journeys,
and never traveled thus again. She studied and converted
to Judaism with a rabbi in Syracuse, and the couple was
married in 1958.

Harry and Doraline moved to Princeton in 1958, where
Harry held a (one-year) instructorship in the company of
Hillel Furstenberg. For the following academic year, he ac-
cepted a position at the Hebrew University of Jerusalem.
Harry was interested in settling in Israel, and wanted to try
it out, but there were competing pressures from Cornell,
who wished to attract him back to Ithaca, and from Dora-
line’s concerns about practical matters. They postponed a
decision on the offer of an assistant professorship at Cor-
nell (with a standard nine hours/week teaching load), opt-
ing instead to return for the year 1961–62 on a one-year
basis.

It was during that year that Harry and Doraline decided
to make Ithaca their home. Harry was promoted to the
rank of associate professor in 1962, and in 1965Harry and
Doraline celebrated both his promotion to full professor
and the birth of their only child, Michael. Harry stayed at
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Cornell for his entire career, becoming emeritus professor
in 2002.

Harry, Doraline, and Michael lived for many years with
their cats at 35 Turkey Hill Road, where visitors would be
welcomed for parties and walks.

Unsurprisingly, many invitations arrived, and he would
invariably try to oblige. Harry traveled widely, and paid
many extended visits to universities and research centers in
the USA and abroad, frequently accompanied by Doraline,
and in earlier years by Michael.

For some years the principal events in Cornell proba-
bility included the biweekly five-mile runs of Harry with
Frank Spitzer, and able-bodied visitors were always wel-
come. WhenHarry’s knees showed their age, he spent time
swimming lengths in Cornell’s Teagle pool, usually in the
now passé men-only sessions. He worked on his problems
while swimming.

Figure 3. Harry Kesten with Geoffrey Grimmett in Kendal at
Ithaca, 2011.

Later years. Harry maintained his research activities and
collaborations beyond his retirement from active duty in
2002. He spoke at the Beijing ICM that year on the sub-
ject of percolation, finishing with a slide listing individu-
als who had been imprisoned in China for the crime of
expressing dissent ([18]).

He was awarded an honorary doctorate at the Univer-
sité de Paris-Sud in 2007, shortly following his diagnosis of
Parkinson’s disease. Harry and Doraline sold their house
and moved in 2008 into the Kendal retirement home, a

“home away fromhome” for numerous retired Cornell aca-
demics. Doraline developed Alzheimer’s disease and died
at Kendal on 2 March 2016, followed by Harry from com-
plications of Parkinson’s disease on 29 March 2019. A vol-
ume on percolation remained on his bedside table until
the end.
Awards of distinction. From among the awards made to
Harry Kesten, mention is made here of the Alfred P. Sloan
Fellowship (1963), the Guggenheim Fellowship (1972),
the Brouwer Medal (1981), the SIAM George Pólya Prize
(1994), and the AMS Leroy P. Steele Prize for Lifetime
Achievement (2001). Harry delivered the Wald Memo-
rial Lectures of the IMS (1986), and was elected a Corre-
spondent of the Royal Netherlands Academy of Arts and
Sciences (1980), a Member of the National Academy of
Sciences (1983), and of the American Academy of Arts
and Sciences (1999). He was elected an Overseas Fel-
low of Churchill College, Cambridge (1993), and was
awarded an Honorary Doctorate of the Université de Paris-
Sud (2007).

He was an invited lecturer at three ICMs—Nice (1970),
Warsaw (1983), and Beijing (2002)—and he spoke at the
Hyderabad ICM (2012) on the work of Fields Medalist
Stanislav Smirnov. Hewas amember of the inaugural class
of Fellows of the AMS in 2013.

Personality and Influence
Probability theory gained great momentum in the second
half of the twentieth century. Exciting and beautiful prob-
lems were formulated and solved, and connections with
other fields of mathematics and science, both physical and
socio-economic, were established. The general area at-
tracted a large number of distinguished scientists, and it
grew in maturity and visibility. Harry was at the epicenter
of the mathematical aspects of this development. He con-
tributed new and often startling results at the leading edge
of almost every branch of probability theory.

Despite an occasionally serious aspect, he was a very
sociable person who enjoyed his many scientific collabo-
rations and was a popular correspondent. His archive of
papers (now held by Cornell University) reveals a wealth
of letters exchanged with many individuals worldwide,
and every serious letter received a serious reply, frequently
proposing solutions to the problems posed. He was espe-
cially keen to discuss and collaborate with younger people,
and he played a key role through his achievements and per-
sonality in bringing them into the field.

Harry commanded enormous respect and affection
amongst those who knew him well. He displayed an un-
compromising honesty, tempered by humanity, in both
personal and professional matters. This was never clearer
than in his opposition to oppression, and in his public
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Figure 4. Harry Kesten and Frank Spitzer in 1970.

support for individuals deprived of their positions, or even
liberty, for expressing their beliefs or needs.

Harry loved hard problems. Supported by an extraordi-
nary technical ability and a total lack of fear, he gained a
just reputation as a fearsome problem solver. His work
often exceeded the greatest current expectations, and it
could be years before the community caught up with him.
When the going became too tough for the rest of us, he
would simply refuse to give in. The outcome is 196 works
listed on MathSciNet, almost every one of which contains
some new idea of substance. An excellent sense of Harry
as a mathematician may be gained by reading the first two
pages of Rick Durrett’s appreciation [2], published in 1999
to mark 40+ years of Harry’s mathematics.

Scientific Work
Most areas of probability theory have been steered, even
moulded, by Harry, and it is not uncommon to attend con-
ferences in which a majority of speakers refer to his work
as fundamental to their particular topics. In this memoir,
we do not aim at a comprehensive survey but, instead, to
select and describe some high points. Our selection is per-
sonal by necessity, and readers desirous of a more compre-
hensive account are referred to [2,7].
Random walks on groups. Harry’s PhD work was on the
topic of random walks on groups. So-called “simple ran-
dom walk” takes random jumps of size ±1 about the line
ℤ. The domain ℤmay be replaced by either ℤ𝑑 or ℝ𝑑, and
the unit moves replaced by a general family of indepen-
dent and identically distributed displacements. Harry’s
space was algebraic rather than Euclidean. He considered
a countable group 𝐺, a symmetric (𝑝(𝑥) = 𝑝(𝑥−1)) prob-
ability distribution on a generating set of 𝐺, and defined
random walk on 𝐺 as the process that moves at each step
from 𝑦 to 𝑦𝑥 with probability 𝑝(𝑥). Let 𝑞2𝑛 denote the

probability that the random walk returns to its starting
point after 2𝑛 steps. For example, the usual random walk
on ℤ𝑑 has 𝑞2𝑛 ∼ 𝑐𝑑𝑛−𝑑/2, while for the free group on two

generators we have 𝑞2𝑛 ≈ ( 3
4
)
𝑛
.

Harry showed for a general countably infinite group 𝐺
that the quantity

Λ(𝐺, 𝑝) ∶= lim
𝑛→∞

𝑞1/2𝑛2𝑛

equals both the spectral radius and the maximal value of
the spectrum of the associated operator on 𝐿2(𝐺) given by
the random walk. He proved that the equality Λ(𝐺, 𝑝) = 1
is a property of the group𝐺 and not of the particulars of the
transition probabilities 𝑝, and if it holds wewriteΛ(𝐺) = 1.
The so-called “Kesten criterion for amenability” states that
Λ(𝐺) = 1 if and only if 𝐺 is amenable.1 This remarkable
characterization of amenability may be viewed as a fairly
early contribution to the currently important area of geo-
metric group theory (see [1]).
Products of random matrices. One of the earliest papers
in the now important field of random matrices is [6] by
Furstenberg and Kesten, written by two Princeton instruc-
tors in 1958–59. They were motivated by the 1954 work
of Bellman, studying the asymptotic behavior of the prod-
uct of 𝑛 independent, random 2 × 2matrices, and they de-
rived substantial extensions of Bellman’s results. This now
classical paper [6] has been very influential and is much
cited, despite having proved unwelcome at the authors’
first choice of journal. It deals with products of random
matrices, in contrast to most of the modern theory which
is directed towards spectral properties.

Consider a stationary sequence 𝑋1, 𝑋2, … of random 𝑘×
𝑘 matrices, and let

𝑌𝑛 = (𝑦𝑛𝑖𝑗) = 𝑋𝑛𝑋𝑛−1⋯𝑋1.
In an analysis termed by Bellman “difficult and ingenious,”
Furstenberg and Kesten proved a law of large numbers and
a central limit theorem. Firstly, if 𝑋 is ergodic, the limit
𝐸 ∶= lim𝑛→∞ 𝑛−1 log ‖𝑌𝑛‖1 exists a.s. Secondly, subject
to certain conditions, the limit of 𝑛−1𝔼(log 𝑦𝑛𝑖𝑗) exists, and
𝑛−1/2(log 𝑦𝑛𝑖𝑗 − 𝔼(log 𝑦𝑛𝑖𝑗)) is asymptotically normally dis-
tributed.

Although they used subadditivity in the proofs, they did
not anticipate the forthcoming theory of subadditive sto-
chastic processes, initiated in 1965 by Hammersley and
Welsh to study first-passage percolation, which would one
day provide a neat proof of some of their results.

Harry returned in 1973 to a study of products of ran-
dom matrices arising in stochastic recurrence relations. In

1Of the various equivalent definitions of amenability, the reader is reminded
that a discrete group 𝐺 is amenable if there exists a sequence 𝐹𝑛 of finite subsets
such that, for 𝑔 ∈ 𝐺, |(𝑔𝐹𝑛)△𝐹𝑛|/|𝐹𝑛| → 0 as 𝑛 → ∞.
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the one-dimensional case, it was important to understand
the tail behavior of a random variable 𝑌 satisfying a sto-

chastic equation of the form 𝑌 𝑑= 𝑀𝑌 + 𝑄; that is, for ran-
dom variables 𝑀 and 𝑄 with given distributions, 𝑌 and
𝑀𝑌+𝑄 have the same distribution. He proved in [11] that
such 𝑌 are generally heavy-tailed in that ℙ(𝑌 > 𝑦) decays
as a power law as 𝑦 → ∞. This work has generated a very
considerable amount of interest since in probability, sta-
tistics, and mathematical finance.
Random walks and Lévy processes. Harry’s early years at
Cornell marked a heyday for the theory of random walk.
His colleague Frank Spitzer hadwritten his Springermono-
graph Principles of Random Walk, and, together, they and
their collaborators did much to further the field. The clas-
sical definition of random walk is as a sum 𝑆𝑛 = 𝑥 + 𝑋1 +
⋯+ 𝑋𝑛 where 𝑥 is an initial position and 𝑋1, 𝑋2, … are in-
dependent and identically distributed. When the distribu-
tions are nice, the theory parallels that of the continuous
potential theory of the Laplacian. When the hypotheses on
distributions are weakened, some but not all such proper-
ties persist.

In an early sequence of papers, Harry proved a family
of ratio limit theorems for probabilities associated with
random walks on ℤ𝑑. Here are two examples, taken from
joint work with Spitzer and Ornstein. Let 𝑇 denote the
first return time of 𝑋 to its starting point. Then ℙ0(𝑇 >
𝑛 + 1)/ℙ0(𝑇 > 𝑛) → 1 as 𝑛 → ∞, and this may be used to
show that the limit

𝑎(𝑥) = lim
𝑛→∞

ℙ𝑥(𝑇 > 𝑛)
ℙ0(𝑇 > 𝑛)

exists and equals the potential kernel (fundamental solu-
tion of the corresponding discrete Laplacian) at 𝑥, that is,

𝑎(𝑥) =
∞
∑
𝑛=0

[ℙ0(𝑋𝑛 = 0) − ℙ𝑥(𝑋𝑛 = 0)], 𝑥 ≠ 0.

This result requires no further assumptions on the random
walk. (The subscript 𝑥 on ℙ𝑥 denotes the starting point.)

A Lévy process is a random process in continuous time
with stationary independent increments. Let 𝑋 be a Lévy
process on ℝ𝑑. The fundamental question arose through
work of Neveu, Chung, Meyer, and McKean of deciding
when the hitting probability ℎ(𝑟) by 𝑋 of a point 𝑟 ∈ ℝ𝑑

satisfies ℎ(𝑟) > 0. Harry solved this problem in his extra-
ordinary AMS Memoir of 1969, [10]. The situation is sim-
plest when 𝑑 = 1, for which case Harry showed that (apart
from special cases) ℎ(𝑟) > 0 if and only if the so-called
characteristic exponent of 𝑋 satisfies a certain integral con-
dition.

The expression “random walk” is sometimes used
loosely in the context of interesting and challenging
problems, arising for instance in physical and biological

models, which lack the full assumptions of independence
and identical distribution of jumps. Harry responded
to the challenge to attack many of these difficult prob-
lems for which the current machinery was not sufficient.
He combined his mastery of classical techniques with his
“problem-solving” ability to develop new ideas for such
novel topics.

A significant variant of the classical random walk is the
“random walk in random environment” (RWRE). In the
one-dimensional case, this is given by (i) sampling ran-
dom variables for each site that prescribe the transition
probabilities when one reaches the site, and (ii) perform-
ing a random walk (or more precisely a Markov chain)
with those transition probabilities. RWRE is a Markov
chain given the environment, but it is not itself Markovian
because, in observing the process, one accrues information
about the underlying random environment.

One of the first RWRE cases considered was a near-
est neighbor, one-dimensional walk, sometimes called a
birth-death chain on ℤ. Let 𝛼𝑥 denote the probability that
the random walk moves one step rightward when at po-
sition 𝑥 (so that 𝛽𝑥 = 1 − 𝛼𝑥 is the probability of moving
one step leftward). We assume the 𝛼𝑥 are independent and
identically distributed. In the deterministic environment
with, say, 𝛽𝑥 = 𝛽 < 1

2
for all 𝑥, as 𝑛 → ∞, 𝑋𝑛/𝑛 → 1 − 2𝛽;

when 𝛽 = 1
2
, the walk returns to the origin infinitely often.

For the RWRE (with random 𝛼𝑥), the distributional proper-
ties of the ratio 𝛽0/𝛼0 are pivotal for determining whether
or not 𝑋𝑛 →∞; a straightforward birth-death argument in-
dicates that 𝑋𝑛 →∞ if 𝔼[log(𝛽0/𝛼0)] < 0. The regime with
𝔼[log(𝛽0/𝛼0)] < 0 and 𝔼[𝛽0/𝛼0] > 1 turns out to be interest-
ing. It was already known for this regime that 𝑋𝑛 →∞ but
𝑋𝑛/𝑛 → 0. With Kozlov and Spitzer [19], Harry showed in
this case that the rate of growth of 𝑋𝑡 is essentially deter-
mined by the value of the parameter 𝜅 defined by

𝔼 [(𝛽0/𝛼0)𝜅] = 1.

In particular, if 𝜅 < 1, then 𝑋𝑛 has order 𝑛𝜅. It turns out
that the limit distribution of 𝑛−𝜅𝑋𝑛 may be expressed in
terms of a stable law with index 𝜅. This result answered a
question of Kolmogorov.

The above is an early contribution to the broad area
of RWRE, and to the related area of homogenization of
differential operators with random coefficients. The one-
dimensional case is special (roughly speaking, because the
walk cannot avoid the exceptional regions in the environ-
ment), and rather precise results are now available, includ-
ing Sinai’s proof that 𝑋𝑛/(log 𝑛)2 converges weakly (to a
distribution calculated later by Harry). RWRE in higher di-
mensions poses a very challenging problem. This process
is more diffusive than its one-dimensional cousin, and its
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study requires different techniques. Major progress has
been made on it by Bricmont, Kupiainen, and others.
Self-avoiding walk. A self-avoiding walk (or SAW) on the 𝑑-
dimensional hypercubic lattice ℤ𝑑 is a path that visits no
vertex more than once. SAWs may be viewed as a simple
model for long-chain polymers, and the SAW problem is
of importance in physics as well as in mathematics.

Let 𝜒𝑛 be the number of 𝑛-step SAWs starting at the
origin. The principal SAW problems are to establish the
asymptotics of 𝜒𝑛 as 𝑛 → ∞, and to determine the typi-
cal radius of a SAW of length 𝑛. Hammersley and Morton
proved in 1954 that there exists a “connective constant”
𝜅 such that 𝜒𝑛 = 𝜅𝑛(1+o(1)) as 𝑛 → ∞. The finer asymp-
totics of 𝜒𝑛 have proved elusive, especially in dimensions
𝑑 = 2, 3.

Harry’s ten-page paper [9] from 1963 contains a the-
orem and a technique; the theorem is essentially unim-
proved, and the technique has frequently been key to the
work of others since. His main result is the ratio limit the-
orem that 𝜒𝑛+2/𝜒𝑛 → 𝜅2 as 𝑛 → ∞. It remains an open
problem to prove that𝜒𝑛+1/𝜒𝑛 → 𝜅. His technique is an ar-
gument now referred to as “Kesten’s pattern theorem.” To
paraphrase Frank Spitzer from Mathematical Reviews, the
idea is that any configuration of 𝑘 steps which can occur
more than once in an 𝑛-step SAW has to occur at least 𝑎𝑛
times, for some 𝑎 > 0, in all but “very few” such SAWs.

The pattern theorem is proved using a type of path
surgery that has been useful in numerous other contexts
since. The proof is centered around an “exponential esti-
mate” of a general type that made powerful appearances
in various different settings in Harry’s later work.

One of the most prominent current conjectures in SAW
theory is that SAW in two dimensions converges, in an
appropriate limit, to a certain Schramm–Loewner evolu-
tion (namely, SLE8/3). If one could show that the limit
exists and exhibits conformal invariance, then it would
be known that the limit must be SLE8/3. Although the
behavior of this SLE is now understood fairly precisely
([22]), and the analogues of the finite asymptotics of 𝜒𝑛
and the typical length of a SAW are known for the contin-
uous model, the problems of establishing that the discrete
SAW has a limit, and showing that the limit is conformally
invariant, remain wide open.
Diffusion limited aggregation. Diffusion limited aggre-
gation (DLA) is a growth model introduced by Witten and
Sander. The model may be defined in general dimensions
𝑑, but we concentrate here on the case 𝑑 = 2.

Let𝐴0 be the origin of the square latticeℤ2. Conditional
on the set𝐴𝑛, the set𝐴𝑛+1 is obtained by starting a random
walk “at infinity” and stopping it when it reaches a point
that is adjacent to 𝐴𝑛, and then adding that new point to

Figure 5. A simulation of diffusion limited aggregation in two
dimensions.

the existing 𝐴𝑛. The concept of random walk from infin-
ity can be made precise using harmonic measure, and the
hard problem is then to describe the evolution of the ran-
dom sets 𝐴𝑛. Computer simulations suggest a random,
somewhat tree-like, fractal structure for 𝐴𝑛 as 𝑛 → ∞. In-
deed, assigning a “fractal dimension” to such a set is a sub-
tle issue, but a start is made by trying to find the exponent
𝛼 such that the diameter of 𝐴𝑛 grows like 𝑛𝛼. Since 𝐴𝑛 is
a connected set of 𝑛+ 1 points, we have the trivial bounds
1
2
≤ 𝛼 ≤ 1.
Harry wrote a short paper [15] containing a beautiful

argument showing that 𝛼 ≤ 2
3
. For many readers, this

seemed a good start to the problem, andmuch subsequent
effort has been invested in seeking improved estimates.
Unfortunately, no one has yet made a substantial rigorous
improvement to Harry’s bound. There are a number of pla-
nar models with diffusive limited growth, and it is open
whether they are in the same universality class. On the
other hand, “Kesten’s bound” is one property they have in
common.

Harry’s argument is simple, but in order to complete
it, he needed a separate lemma ([17]) about planar ran-
dom walks which is a discrete analogue of a theorem from
complex variables due to Beurling. Kesten’s lemma has
itself proved an extremely useful tool over the last thirty
years in the development of the theory of conformally in-
variant limits of two-dimensional randomwalks and other
processes. Although the original theorem of Beurling was
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phrased in terms of complex analysis, both the continu-
ous version of Beurling and the discrete lemma of Kesten
becomemost important in probabilistic approaches to prob-
lems. While Kesten figured out what the right answer
should be in his discrete version, hewas fortunate to have a
colleague, Clifford Earle, who knew Beurling’s result and
could refer Harry to a proof that proved to be adaptable
(with work!) to the discrete case.
Branching processes. The branching process (sometimes
called the Galton–Watson process) is arguably the most
fundamental stochastic model for population growth. In-
dividuals produce a random number of offspring. The
offspring produce offspring similarly, and so on, with dif-
ferent family-sizes being independent and identically dis-
tributed. The first question is whether or not the popu-
lation survives forever. A basic fact taught in elementary
courses on stochastic processes states that the population
dies out with probability 1 if and only if 𝜇 ≤ 1, where 𝜇
is the mean number of offspring per individual. (There
is a trivial deterministic exception to this, in which each
individual produces exactly one offspring.)

One of Harry’s best known results is the Kesten–Stigum
theorem [21] for the supercritical case 𝜇 > 1; it was proved
in the more general situation with more than one type of
individual, but we discuss here the situation with only one
population type. If 𝑋𝑛 denotes the population size of the
𝑛th generation, we have 𝔼[𝑋𝑛] = 𝜇𝑛𝑋0, and with some
(computable) probability 𝑞 > 0, the population survives
forever. One might expect that, for large 𝑛, 𝑋𝑛 ∼ 𝐾∞𝜇𝑛
with 𝐾∞ a random variable determined by the growth of
the early generations. In other words, once the popula-
tion has become large, we should be able to approximate
its growth by the deterministic dynamics 𝑋𝑛+1 ∼ 𝜇𝑋𝑛. If
this were true, we would write 𝐾∞ = lim𝑛→∞ 𝐾𝑛 where
𝐾𝑛 = 𝑋𝑛/𝜇𝑛. The process 𝐾𝑛 is a martingale, and the mar-
tingale convergence theorem implies that 𝐾𝑛 converges al-
most surely to some limit 𝐾∞. However, it turns out to be
possible that 𝐾∞ = 0 a.s., even though the process survives
forever with a strictly positive probability.

Let 𝐿 be a random variable with the family-size distri-
bution, so that 𝜇 = 𝔼[𝐿]. It was a problem of some impor-
tance to identify a necessary and sufficient moment condi-
tion for the statement that 𝔼[𝐾∞] = 𝑋0. Kesten and Stigum
showed that this condition is that 𝔼[𝐿 log+ 𝐿] < ∞.

Harry was inevitably attracted by the critical branching
process (with 𝜇 = 1). Amongst his numerous results
are the well-known necessary and sufficient conditions
(proved with Ney and Spitzer) for the so-called Yaglom
and Kolmogorov laws,

ℙ(𝑋𝑛 > 0) ∼ 𝑐
𝑛 , ℙ(𝑋𝑛 > 𝑛𝑥 | 𝑋𝑛 > 0) → 𝑒−𝑐′𝑥.

Figure 6. A simulation of bond percolation on ℤ2 with 𝑝 = 0.51.

We return later to his work on random walk on the critical
family tree conditioned on non-extinction.
Percolation. The percolation model for a disordered
medium was pioneered by Hammersley in the 1950s/60s,
and it has since become one of the principal objects in
probability theory. In its simplest form, each edge of the
square lattice is declared open with probability 𝑝 and oth-
erwise closed, different edges having independent states.
How does the geometry of the open graph vary as 𝑝 in-
creases, and in particular for what 𝑝 does there exist an
infinite open cluster?

It turns out that there exists a critical probability 𝑝c such
that an infinite open cluster exists if and only if 𝑝 > 𝑝c. The
so-called “phase transition” at 𝑝c is emblematic of phase
transitions in mathematical physics. Percolation theory is
frequently used directly in the study of other systems, and
it has led to the development of a number of powerful in-
sights and techniques.

As Harry wrote in the preface of his 1982 book [13],

Quite apart from the fact that percolation theory
had its origin in an honest applied problem… , it is
a source of fascinating problems of the best kind a
mathematician can wish for: problems which are
easy to state with a minimum of preparation, but
whose solutions are (apparently) difficult and re-
quire new methods. At the same time many of the
problems are of interest to or proposed by statisti-
cal physicists and not dreamt upmerely to demon-
strate ingenuity.

They certainly require ingenuity to solve, as demonstrated
in Harry’s celebrated proof that 𝑝c =

1
2
for the square lat-

tice problem, published in 1980 ([12], see Figure 6). Harry
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Figure 7. Harry Kesten, Rudolf Peierls, and Roland Dobrushin
in New College, Oxford, 1993.

proved that 𝑝c ≤
1
2
, thereby complementing Harris’s ear-

lier proof that 𝑝c ≥
1
2
. His paper, and the book [13] that

followed, resolved this notorious open problem, and in-
vigorated an area that many considered almost impossibly
mysterious.

Harry’s book [13] was a fairly formidable work contain-
ing many new results for percolation in two dimensions,
set in quite a general context. He was never frightened by
technical difficulty or complication, and entertained simi-
lar standards of the reader. This project led in a natural way
to his important and far-sighted work [16] on scaling rela-
tions and so-called “arms” at and near the critical point,
which was to prove relevant in the highly original study
initiated by Schramm and developed by Smirnov and oth-
ers on conformal invariance in percolation.

Write 𝐶 for the open cluster containing the origin. Ac-
cording to scaling theory, macroscopic functions, such
as the percolation probability 𝜃 and mean cluster size 𝜒,
given by

𝜃(𝑝) = ℙ𝑝(|𝐶| = ∞), 𝜒(𝑝) = 𝔼𝑝|𝐶|,

have singularities at 𝑝c of the form |𝑝 − 𝑝c| raised to an
appropriate power called a “critical exponent.” In similar
fashion, when 𝑝 = 𝑝c, several random variables associated
with the open cluster at the origin have power-law tail be-
haviors of the form 𝑛−𝛿 as 𝑛 → ∞, for suitable critical
exponents 𝛿. The set of critical exponents describes the na-
ture of the singularity and they are characteristics of the
model. They are not, however, independent variables, in
that they satisfy the “scaling relations” of statistical physics.
It is an open problem to prove almost any of the above in
general dimensions.

In the special case of two dimensions, the proof of
existence of critical exponents had to wait beyond the

Figure 8. Site percolation on the triangular lattice 𝕋. The red
path is a black/white interface. Smirnov proved Cardy’s
formula, which states in this context that the hitting point of
the interface on the bottom side is asymptotically uniformly
distributed.

invention of SLE by Schramm around 2000, and the proof
of Cardy’s formula by Smirnov in 2001 (illustrated in Fig-
ure 8), and is the work of several individuals including
Lawler and Werner. In a precursor [16] of that, Harry
proved amongst other things that, conditional on the ex-
istence of certain exponents, certain others must also exist
and a variety of scaling relations ensue. In this work, he
introduced a number of techniques that have been at the
heart of understanding the problem of conformal invari-
ance.

Correlation inequalities are central to the theory of dis-
ordered systems in mathematics and physics. The highly
novel BK (van den Berg/Kesten) inequality plays a key role
in systems subjected to a product measure such as perco-
lation. Proved in 1985, this inequality is a form of nega-
tive association, based around the notion of the “disjoint
occurrence” of two events. It is a delicate and tantalizing
result.

When 𝑝 > 𝑝c, there exists a.s. at least one infinite open
cluster, but how many? This uniqueness problem was an-
swered by Harry in joint work with Aizenman and New-
man. He tended to downplay his part in this work, but his
friends knew him better than to take such protestations at
face value. Their paper was soon superseded by the elegant
argument of Burton and Keane, but it remains important
as a source of quantitative estimates.

Under the title “ant in a labyrinth,” de Gennes
proposed the use of a random walk to explore the
geometry of an open cluster. In a beautiful piece of work
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[14], Harry showed the existence of a measure known as
the “incipient infinite cluster,” obtained effectively by con-
ditioning on critical percolation possessing an infinite clus-
ter at the origin. He then proved that random walk 𝑋𝑛 on
this cluster is subdiffusive in that there exists 𝜖 > 0 such

that 𝑋𝑛/𝑛
1
2−𝜖 → 0. This is in contrast to the situation on

ℤ𝑑 for which 𝑋𝑛 has order 𝑛
1
2 . This “slowing down” oc-

curs because the walk spends time in blind alleys of the
incipient infinite cluster.

Whereas it was not possible to obtain exact results for
critical percolation, Harry gave a precise solution to the
corresponding problem on the family tree 𝑇 of a critical
branching process, conditioned on non-extinction. Here
also there are blind alleys, but it is possible to estimate the
time spent in them. It turns out that the displacement 𝑋𝑛
of the walk has order 𝑛

1
3 and, moreover, Harry computed

the limit distribution of 𝑋𝑛/𝑛
1
3 .

In joint work with Grimmett and Zhang on supercritical
percolation, he showed that random walk on the infinite
cluster in 𝑑 ≥ 2 dimensions is recurrent if and only if 𝑑 = 2.
This basic result stimulated others to derive precise heat
kernel estimates for random walks on percolation clusters
and other random networks.

We mention one further result for classical percolation
on ℤ𝑑. When 𝑝 < 𝑝c, the tail of |𝐶| decays exponentially to
0, in that ℙ𝑝(|𝐶| = 𝑛) ≤ 𝑒−𝛼𝑛 for some 𝛼(𝑝) > 0. Matters
are more complicated when 𝑝 > 𝑝c, since large clusters
“prefer” to be infinite. It turns out that the interior of a
large cluster (of size 𝑛, say) typically resembles that of the
infinite cluster, and its finiteness is controlled by its bound-
ary (of order 𝑛(𝑑−1)/𝑑). As a result, |𝐶| should have a tail
of order exp{−𝑐𝑛(𝑑−1)/𝑑}. There was a proof by Aizenman,
Delyon, and Souillard that

ℙ𝑝(|𝐶| = 𝑛) ≥ exp{−𝛽𝑛(𝑑−1)/𝑑}
for 𝛽(𝑝) > 0. Kesten and Zhang showed, by a block argu-
ment, the complementary inequality

ℙ𝑝(|𝐶| = 𝑛) ≤ exp{−𝛾𝑛(𝑑−1)/𝑑}
for some 𝛾(𝑝) > 0. When 𝑑 ≥ 3, they were in fact only
able to show this for 𝑝 exceeding a certain value 𝑝slab, but
the conclusion for 𝑝 > 𝑝c followed once Grimmett and
Marstrand had proved the slab limit 𝑝c = 𝑝slab. Sharp
asymptotics were established later by Alexander, Chayes,
and Chayes when 𝑑 = 2, and by Cerf in the more challeng-
ing situation of 𝑑 = 3, in their work on the Wulff construc-
tion for percolation.

First-passage percolation was introduced by Hammers-
ley and Welsh in 1965 as an extension of classical percola-
tion in which each edge has a random “passage time,” and
one studies the set of vertices reached from the origin along

Figure 9. Harry Kesten with John Hammersley, Oxford, 1993.

paths of length not exceeding a given value. This is where
the notion of a subadditive stochastic process was intro-
duced, and an ergodic theorem first proved. The theory of
subadditivity was useful throughout Harry’s work on dis-
ordered networks, and indeed he noted that it provided an
“elegant” proof of his 1960 theorem with Furstenberg on
products of random matrices.

Harry turned towards first-passage percolation around
1979, and he resolved a number of open problems, and
posed others, in a series of papers spanning nearly ten
years. He established fundamental properties of the time
constant, including positivity under a natural condition,
and continuity as a function of the underlying distribution
(with Cox), together with a large deviation theorem for
passage times (with Grimmett). Perhaps his most notable
contribution was a theory of duality in three dimensions
akin to Whitney duality of two dimensions, as expounded
in his Saint-Flour notes [8]. The dual process is upon pla-
quettes, and dual surfaces occupy the role of dual paths in
two dimensions. This leads to some tricky geometrical is-
sues concerning the combinatorics and topology of dual
surfaces which have been largely answered since by Zhang,
Rossignol, Théret, Cerf, and others.

Percolation and its cousins provide the environment for
a number of related processes to which Harry contributed
substantial results. He was an enthusiastic contributor to
too many collaborative ventures to be described in full
here. As a sample wemention word percolation (with Ben-
jamini, Sidoravicius, Zhang), 𝜌-percolation (with Su), ran-
dom lattice animals (with Cox, Gandolfi, Griffin), and uni-
form spanning trees (with Benjamini, Peres, Schramm).

Postscript
This memoir describes only a sample of Harry Kesten’s
impact within the probability and statistical physics com-
munities. Those seeking more may read Rick Durrett’s
account [2] or the recent article [7]. The latter includes
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summaries of Harry’s work in other areas, such as quasi-
stationary distributions of Markov chains and bounded re-
mainder sets in Euclidean dynamics.
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