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Abstract. The connective constant µ(G) of a quasi-transitive
graph G is the asymptotic growth rate of the number of self-
avoiding walks (SAWs) on G from a given starting vertex. We
survey several aspects of the relationship between the connective
constant and the underlying graph G.
• We present upper and lower bounds for µ in terms of the

vertex-degree and girth of a transitive graph.
• We discuss the question of whether µ ≥ φ for transitive cubic

graphs (where φ denotes the golden mean), and we introduce
the Fisher transformation for SAWs (that is, the replacement
of vertices by triangles).

• We present strict inequalities for the connective constants
µ(G) of transitive graphs G, as G varies.

• As a consequence of the last, the connective constant of a
Cayley graph of a finitely generated group decreases strictly
when a new relator is added, and increases strictly when a
non-trivial group element is declared to be a further genera-
tor.

• We describe so-called graph height functions within an ac-
count of ‘bridges’ for quasi-transitive graphs, and indicate
that the bridge constant equals the connective constant when
the graph has a unimodular graph height function.

• A partial answer is given to the question of the locality of con-
nective constants, based around the existence of unimodular
graph height functions.

• Examples are presented of Cayley graphs of finitely presented
groups that possess graph height functions (that are, in ad-
dition, harmonic and unimodular), and that do not.

• The review closes with a brief account of the ‘speed’ of SAW.
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1. Introduction

1.1. Self-avoiding walks. A self-avoiding walk (abbreviated to SAW)
on a graph G = (V,E) is a path that visits no vertex more than once.
An example of a SAW on the square lattice is drawn in Figure 1.1.
SAWs were first introduced in the chemical theory of polymerization
(see Orr [66] and the book of Flory [22]), and their critical behaviour has
attracted the abundant attention since of mathematicians and physi-
cists (see, for example, the book of Madras and Slade [56] and the
lecture notes [7]).

0

Figure 1.1. A 31-step SAW from the origin of the
square lattice.

The theory of SAWs impinges on several areas of science including
combinatorics, probability, and statistical mechanics. Each of these
areas poses its characteristic questions concerning counting and geom-
etry. The most fundamental problem is to count the number of n-step
SAWs from a given vertex, and this is the starting point of a rich theory
of geometry and phase transition.

Let σn(v) be the number of n-step SAWs on G starting at the vertex
v. The following fundamental theorem of Hammersley asserts the ex-
istence of an asymptotic growth rate for σn(v) as n→∞. (See Section
2.1 for a definition of (quasi-)transitivity.)

Theorem 1.1. [40] Let G = (V,E) be an infinite, connected, quasi-
transitive graph with finite vertex-degrees. There exists µ = µ(G) ∈
[1,∞), called the connective constant of G, such that

(1.1) lim
n→∞

σn(v)1/n = µ, v ∈ V.

At the heart of the proof is the observation by Hammersley and Mor-
ton [41] that (in the case of a transitive graph) log σn is a subadditive
function. That is,

(1.2) σm+n ≤ σmσn, m, n ≥ 1.
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The value µ = µ(G) depends evidently on the choice of graph G. In-
deed, µ may be viewed as a ‘critical point’, corresponding, in a sense,
to the critical probability of the percolation model, or the critical tem-
perature of the Ising model. Consider the generating function

(1.3) Zv(x) =
∑

w∈Σ(v)

x|w|, x ∈ R,

where Σ(v) is the set of finite SAWs starting from a given vertex v, and
|w| is the number of edges of w. Viewed as a power series, Zv(x) has
radius of convergence 1/µ, and thus a singularity at the point x = 1/µ.
Critical exponents may be introduced as in Section 1.4.

In this paper we review certain properties of the connective constant
µ(G), in particular exact values (Section 1.2), upper and lower bounds
(Section 2), a sharp lower bound for cubic graphs, and the Fisher trans-
formation (Section 3), strict inequalities (Sections 4–5), and the local-
ity theorem (Section 7). The results summarised here may be found
largely in the work of the authors [32]–[37] and [54]. This review is an
expanded and updated version of [31].

Previous work on SAWs tends to have been focussed on specific
graphs such as the cubic lattices Zd and certain two-dimensional lat-
tices. In contrast, the results of [32]–[37] are directed at general classes
of graphs that are quasi-transitive, and often transitive. The work re-
viewed here may be the first systematic study of SAWs on general
transitive and quasi-transitive graphs. It is useful to have a reservoir
of (quasi-)transitive graphs at one’s disposal for the construction and
analysis of hypotheses, and to this end the Cayley graphs of finitely
generated groups play a significant role (see Section 5.1). We note the
recent result of Martineau [59] that the set of connective constants of
Cayley graphs contains a Cantor space.

Notation for graphs and groups will be introduced when needed. A
number of questions are included in this review. The inclusion of a
question does not of itself imply either difficulty or importance.

1.2. Connective constants, exact values. For what graphs G is
µ(G) known exactly? There are a number of such graphs, which should
be regarded as atypical in this regard. We mention the ladder L, the
hexagonal lattice H, and the bridge graph B∆ with degree ∆ ≥ 2 of
Figure 1.2, for which

(1.4) µ(L) = 1
2
(1 +

√
5), µ(H) =

√
2 +
√

2, µ(B∆) =
√

∆− 1.

See [2, p. 184] and [19] for the first two calculations. The third is
elementary.
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Figure 1.2. Three regular graphs: the ladder graph
L, the hexagonal tiling H of the plane, and the bridge
graph B∆ (with ∆ = 4) obtained from Z by joining every
alternate pair of consecutive vertices by ∆ − 1 parallel
edges.

In contrast, the value of the connective constant of the square grid
Z2 is unknown, and a substantial amount of work has been devoted to
obtaining good bounds. The best rigorous bounds known currently to
the authors are those of [44, 68], namely (to 5 significant figures)

2.6256 ≤ µ(Z2) ≤ 2.6792,

and more precise numerical estimates are available, including the esti-
mate µ ≈ 2.63815 . . . of [43].

We make some remarks about the three graphs of Figure 1.2. There is
a correspondence between the Fibonacci sequence and counts of SAWs
on the ladder graph L (see, for example [73]), whereby one obtains that
µ(L) equals the golden ratio φ := 1

2
(1 +

√
5). We ask in Question 3.4

whether µ(G) ≥ φ for all infinite, simple, cubic, transitive graphs, and
we discuss evidence for a positive answer to this question.

Amongst a certain class of ∆-regular graphs permitted to possess
multiple edges, the bridge graph B∆ =

√
∆− 1 is extremal in the sense

that µ(B∆) is least. See the discussion of Section 2.

The proof that µ(H) =
√

2 +
√

2 by Duminil-Copin and Smirnov

[19] is a very significant recent result. The value
√

2 +
√

2 emerged in
the physics literature through work of Nienhuis [65] motivated origi-
nally by renormalization group theory. Its proof in [19] is based on the
construction of an observable with certain properties of discrete holo-
morphicity, complemented by a neat use of the bridge decomposition
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introduced by Hammersley and Welsh [42]. The bridge decomposi-
tion has been used since to prove the locality theorem for connective
constants (see Section 6 and Theorem 7.2).

1.3. Three problems on the square lattice. There are a number
of beautiful open problems associated with SAWs and connective con-
stants, of which we select three. Our first problem is to prove that a
random n-step SAW from the origin of Z2 converges, when suitably
rescaled, to the Schramm–Loewner curve SLE8/3. This important con-
jecture has been discussed and formalized by Lawler, Schramm, and
Werner [51].

Question 1.2. Does a uniformly distributed n-step SAW from the ori-
gin of Z2 converge, when suitably rescaled, to the random curve SLE8/3?

Recent progress in this direction was made by Gwynne and Miller
[39], who proved that a SAW on a random quadrangulation converges
to SLE8/3 on a certain Liouville-gravity surface.

There is an important class of results usually referred to as the ‘pat-
tern theorem’. In Kesten’s original paper [48] devoted to Z2, a proper
internal pattern P is defined as a finite SAW with the property that,
for any k ≥ 1, there exists a SAW containing at least k translates of
P . The pattern theorem states that: for a given proper internal pat-
tern P , there exists a > 0 such that the number of n-step SAWs from
the origin 0, containing fewer than an translates of P , is exponentially
smaller than the total σn := σn(0).

The lattice Z2 is bipartite, in that its vertices can be coloured black
or white in such a way that every edge links a black vertex and a white
vertex. The pattern theorem may be used to prove for this bipartite
graph that

lim
n→∞

σn+2

σn
= µ2.

The proof is based on a surgery of SAWs that preserves the parity of
their lengths. The following stronger statement has been open since
Kesten’s paper [48], see the discussion at [56, p. 244].

Question 1.3. Is it the case for SAWs on Z2 that σn+1/σn → µ?

Hammersley’s Theorem 1.1 establishes the existence of the connec-
tive constant for any infinite quasi-transitive graph. It is easy to con-
struct examples of (non-quasi-transitive) graphs for which the limit
defining µ does not exist, and it is natural to enquire of the situation
for a random graph. For concreteness, we consider here the infinite
cluster I of bond percolation on Z2 with edge-density p > 1

2
(see [26]).
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Question 1.4. Let σn(v) be the number of n-step SAWs on I starting
at the vertex v. Does the limit µ(v) := limn→∞ σn(v)1/n exist a.s., and
satisfy µ(v) = µ(w) a.s. on the event {v, w ∈ I}?

Discussions of issues around this question, including of when µ(v) =
pµ(Z2) a.s. on the event {v ∈ I}, may be found in papers of Lacoin
[49, 50].

1.4. Critical exponents for SAWs. ‘Critical exponents’ play a sig-
nificant role in the theory of phase transitions. Such exponents have
natural definitions for SAWs on a given graph, as summarised next.
The reader is referred to [7, 56] and the references therein for general
accounts of critical exponents for SAWs. The three exponents that
have received most attention in the study of SAWs are as follows.

We consider only the case of SAWs in Euclidean spaces, thus exclud-
ing, for example, the hyperbolic space of [58]. Suppose for concreteness
that there exists a periodic, locally finite embedding of G into Rd with
d ≥ 2, and no such embedding into Rd−1. The case of general G has
not been studied extensively, and most attention has been paid to the
hypercubic lattice Zd.

The critical exponent γ. It is believed (when d 6= 4) that the generic
behaviour of σn(v) is given by:

(1.5) σn(v) ∼ Avn
γ−1µn, as n→∞, for v ∈ V,

for constants Av > 0 and γ ∈ R. The value of the ‘critical exponent’ γ
is believed to depend on d only, and not further on the choice of graph
G. Furthermore, it is believed (and largely proved, see the account in
[56]) that γ = 1 when d ≥ 4. In the borderline case d = 4, (1.5) should
hold with γ = 1 and subject to the correction factor (log n)1/4. (See
the related work [6] on weakly self-avoiding walk.)

The critical exponent η. Let v, w ∈ V , and

Zv,w(x) =
∞∑
n=0

σn(v, w)xn, x > 0,

where σn(v, w) is the number of n-step SAWs with endpoints v, w. It is
known under certain circumstances that the generating functions Zv,w
have radius of convergence µ−1 (see [56, Cor. 3.2.6]), and it is believed
that there exists an exponent η and constants A′v > 0 such that

(1.6) Zv,w(µ−1) ∼ A′vdG(v, w)−(d−2+η), as dG(v, w)→∞,
where dG(v, w) is the graph-distance between v and w. Furthermore,
η satisfies η = 0 when d ≥ 4.
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The critical exponent ν. Let Σn(v) be the set of n-step SAWs from v,
and let πn be chosen at random from Σn(v) according to the uniform
probability measure. Let ‖π‖ be the graph-distance between the end-
points of a SAW π. It is believed (when d 6= 4) that there exists an
exponent ν (the so-called Flory exponent) and constants A′′v > 0, such
that

(1.7) E(‖πn‖2) ∼ A′′vn
2ν , v ∈ V.

As above, this should hold for d = 4 subject to the inclusion of the
correction factor (log n)1/4. It is believed that ν = 1

2
when d ≥ 4.

The exponent ν is an indicator of the geometry of an n-step SAW π
chosen with the uniform measure. In the diffusive case, we have ν = 1

2
,

whereas in the ballistic case (with ‖πn‖ typically of order n), we have
ν = 1. We return to this exponent in Section 9.

The three exponents γ, η, ν are believed to be related through the
so-called Fisher relation γ = ν(2 − η). The definitions (1.5), (1.6),
(1.7) may be weakened to logarithmic asymptotics, in which case we
say they hold logarithmically.

2. Bounds for connective constants

We discuss upper and lower bounds for connective constants in this
section, beginning with some algebraic background.

2.1. Transitivity of graphs. The automorphism group of the graph
G = (V,E) is denoted Aut(G), and the identity automorphism is writ-
ten 1. The expression A ≤ B means that A is a subgroup of B, and
A E B means that A is a normal subgroup.

A subgroup Γ ≤ Aut(G) is said to act transitively on G if, for v, w ∈
V , there exists γ ∈ Γ with γv = w. It is said to act quasi-transitively
if there exists a finite set W of vertices such that, for v ∈ V , there
exist w ∈ W and γ ∈ Γ with γv = w. The graph is called transitive
(respectively, quasi-transitive) if Aut(G) acts transitively (respectively,
quasi-transitively) on G.

An automorphism γ is said to fix a vertex v if γv = v. The stabilizer
of v ∈ V is the subgroup

Stabv := {γ ∈ Aut(G) : γv = v}.

The subgroup Γ is said to act freely on G (or on the vertex-set V ) if
Γ ∩ Stabv = {1} for v ∈ V .

Let G (respectively, Q) be the set of infinite, simple, locally finite,
transitive (respectively, quasi-transitive), rooted graphs, and let G∆
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(respectively, Q∆) be the subset comprising ∆-regular graphs. We
write 1 = 1G for the root of the graph G.

2.2. Bounds for µ in terms of degree. Let G be an infinite, con-
nected, ∆-regular graph. How large or small can µ(G) be? It is trivial
by counting non-backtracking walks that σn(v) ≤ ∆(∆−1)n−1, whence
µ(G) ≤ ∆−1 with equality if G is the ∆-regular tree. It is not difficult
to prove the strict inequality µ(G) < ∆− 1 when G is quasi-transitive
and contains a cycle (see [35, Thm 4.2]). Lower bounds are harder to
obtain.

A multigraph is called loopless if each edge has distinct endvertices.

Theorem 2.1. [35, Thm 4.1] Let G be an infinite, connected, ∆-
regular, transitive, loopless multigraph with ∆ ≥ 2. Then µ(G) ≥√

∆− 1 if either

(a) G is simple, or
(b) G is non-simple and ∆ ≤ 4.

Note that, for the (non-simple) bridge graph B∆ with ∆ ≥ 2, we
have the equality µ(B∆) =

√
∆− 1.

Here is an outline of the proof of Theorem 2.1. A SAW is called
forward-extendable if it is the initial segment of some infinite SAW.
Let σF

n(v) be the number of forward-extendable n-step SAWs starting
at v. Theorem 2.1 is proved by showing as follows that

(2.1) σF
2n(v) ≥ (∆− 1)n.

Let π be a (finite) SAW from v, with final endpoint w. For a vertex
x ∈ π satisfying x 6= w, and an edge e /∈ π incident to x, the pair
(x, e) is called π-extendable if there exists an infinite SAW starting at
v whose initial segment traverses π until x, and then traverses e.

First, it is proved subject to a certain condition Π that, for any
2n-step forward-extendable SAW π, there are at least n(∆ − 2) π-
extendable pairs. Inequality (2.1) may be deduced from this statement.

The second part of the proof is to show that graphs satisfying either
(a) or (b) of the theorem satisfy condition Π. It is fairly simple to show
that (b) suffices, and it may well be reasonable to extend the conclusion
to include values of ∆ ≥ 5.

Question 2.2. Is it the case that µ(G) ≥
√

∆− 1 in the non-simple
case of Theorem 2.1(b) with ∆ ≥ 5?

The growth rate µF of the number of forward-extendable SAWs has
been studied further by Grimmett, Holroyd, and Peres [29]. They
show that µF = µ for any infinite, connected, quasi-transitive graph,
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with further results involving the numbers of backward-extendable and
doubly-extendable SAWs.

Question 2.3. Let ∆ ≥ 3. What is the sharp lower bound µmin(∆) :=
inf{µ(G) : G ∈ G∆}? How does µmin(∆) behave as ∆→∞?

This question is considered in Section 3.2 when ∆ = 3, and it is
asked in Question 3.4 whether or not µmin(3) = φ, the golden mean.
The lower bound µ ≥

√
∆− 1 of Theorem 2.1(a) may be improved as

follows when G is non-amenable.
Let P be the transition matrix of simple random walk on G = (V,E),

and let I be the identity matrix. The spectral bottom of I−P is defined
to be the largest λ with the property that, for all f ∈ `2(V ),

(2.2)
〈
f, (I − P )f

〉
≥ λ〈f, f〉.

It may be seen that λ(G) = 1− ρ(G) where ρ(G) is the spectral radius
of P (see [55, Sect. 6], and [72] for an account of the spectral radius).
It is known that G is a non-amenable if and only if ρ(G) < 1, which is
equivalent to λ(G) > 0. This was proved by Kesten [46, 47] for Cayley
graphs of finitely-presented groups, and extended to general transitive
graphs by Dodziuk [16] (see also the references in [55, Sect. 6.10]).

Theorem 2.4. [37, Thm 6.2] Let G ∈ G∆ with ∆ ≥ 3, and let λ = λ(G)
be the above spectral bottom. The connective constant satisfies

(2.3) µ(G) ≥ (∆− 1)
1
2

(1+cλ),

where c = ∆(∆− 1)/(∆− 2)2.

2.3. Upper bounds for µ in terms of degree and girth. The girth
of a simple graph is the length of its shortest cycle. Let G∆,g be the
subset of G∆ containing graphs with girth g.

Theorem 2.5. [36, Thm 7.4] For G ∈ G∆,g where ∆, g ≥ 3, we have
that µ(G) ≤ y where ζ := 1/y is the smallest positive real root of the
equation

(2.4) (∆− 2)
M1(ζ)

1 +M1(ζ)
+

M2(ζ)

1 +M2(ζ)
= 1,

with

(2.5) M1(ζ) = ζ, M2(ζ) = 2(ζ + ζ2 + · · ·+ ζg−1).

The upper bound y is sharp, and is achieved by the free product graph
F := K2 ∗K2 ∗ · · · ∗K2 ∗ Zg, with ∆− 2 copies of the complete graph
K2 on two vertices and one copy of the cycle Zg of length g.
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The proof follows quickly by earlier results of Woess [72], and Gilch
and Müller [24]. By [72, Thm 11.6], every G ∈ G∆,g is covered by F ,
and by [24, Thm 3.3], F has connective constant 1/ζ.

3. Cubic graphs and the golden mean

A graph is called cubic if it is regular with degree ∆ = 3. Cubic
graphs have the property that every edge-self-avoiding cycle is also
vertex-self-avoiding. We assume throughout this section that G =
(V,E) ∈ Q3, and we write φ := 1

2
(1 +

√
5) for the golden mean.

A

BC

A

BC

v

Figure 3.1. The Fisher transformation of the star.

3.1. The Fisher transformation. Let v ∈ V , and recall that v has
degree 3 by assumption. The so-called Fisher transformation acts at
v by replacing it by a triangle, as illustrated in Figure 3.1. The Fisher
transformation has been valuable in the study of the relations between
Ising, dimer, and general vertex models (see [13, 21, 52, 53]), and also
in the calculation of the connective constant of the Archimedean lattice
(3, 122) (see, for example, [28, 38, 45]). The Fisher transformation may
be applied at every vertex of a cubic graph, of which the hexagonal
and square/octagon lattices are examples.

Let G be, in addition, quasi-transitive. By Theorem 1.1, G has
a well-defined connective constant µ = µ(G) satisfying (1.1). Write
F (G) for the graph obtained by applying the Fisher transformation at
every vertex of G. The automorphism group of G induces an auto-
morphism subgroup of F (G), so that F (G) is quasi-transitive and has
a well-defined connective constant. It is noted in [32], and probably
elsewhere also, that the connective constants of G and F (G) have a
simple relationship. This conclusion, and its iteration, are given in the
next theorem

Theorem 3.1. [32, Thm 3.1] Let G ∈ Q3, and consider the sequence
(Gk : k = 0, 1, 2, . . . ) given by G0 = G and Gk+1 = F (Gk).

(a) The connective constants µk := µ(Gk) satisfy µ−1
k = g(µ−1

k+1)
where g(x) = x2 + x3.
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Figure 3.2. The lattice H̃ is derived from the hexag-
onal lattice H by applying the Fisher transformation at
alternate vertices. Its connective constant µ̃ is a root of
the equation x−3 + x−4 = 1/(2 +

√
2).

(b) The sequence µk converges monotonely to the golden mean φ,
and

−
(

4

7

)k
≤ µ−1

k − φ
−1 ≤

(
2

7−
√

5

)k
, k ≥ 1.

The idea underlying part (a) is that, at each vertex v visited by
a SAW π on Gk, one may replace that vertex by either of the two
paths around the ‘Fisher triangle’ of Gk+1 at v. Some book-keeping is
necessary with this argument, and this is best done via the generating
functions (1.3).

A similar argument may be applied in the context of a ‘semi-cubic’
graph.

Theorem 3.2. [32, Thm 3.3] Let G be an infinite, connected, bipar-
tite graph with vertex-sets coloured black and white, and suppose the
coloured graph is quasi-transitive, and every black vertex has degree

3. Let G̃ be the graph obtained by applying the Fisher transformation

at each black vertex. The connective constants µ and µ̃ of G and G̃,
respectively, satisfy µ−2 = h(µ̃−1), where h(x) = x3 + x4.

Example 3.3. Take G = H, the hexagonal lattice with connective con-

stant µ =
√

2 +
√

2 ≈ 1.84776, see [19]. The ensuing lattice H̃ is
illustrated in Figure 3.2, and its connective constant µ̃ satisfies µ−2 =
h(µ̃−1), which may be solved to obtain µ̃ ≈ 1.75056.

We return briefly to the critical exponents of Section 1.4. In [32, Sect.
3], reasonable definitions of the three exponents γ, η, ν are presented,
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none of which depend on the existence of embeddings into Rd. Fur-
thermore, it is proved that the values of the exponents are unchanged
under the Fisher transformation.

3.2. Bounds for connective constants of cubic graphs. Amongst
cubic graphs, the 3-regular tree T3 has largest connective constant
µ(T3) = 2. It is an open problem to determine the sharp lower bound
on µ(G) for G ∈ G3. Recall the ladder graph L of Figure 1.2, with
µ(L) = φ.

Question 3.4. [36, Qn 1.1] Is it the case that µ(G) ≥ φ for G ∈ G3?

Even in the case of graphs with small girth, the best general lower
bounds known so far are as follows.

Theorem 3.5. [36, Thms 7.1, 7.2]

(a) For G ∈ G3,3, we have that

(3.1) µ(G) ≥ x,

where x ∈ (1, 2) satisfies

1

x2
+

1

x3
=

1√
2
.(3.2)

(b) For G ∈ G3,4, we have that

(3.3) µ(G) ≥ 121/6.

The sharp upper bounds for G3,3 and G3,4 are those of Theorem 2.5,
and they are attained respectively by the Fisher graph of the 3-regular
tree, and of the degree-4 tree (in which each vertex is replaced by a
4-cycle).

Question 3.4 is known to have a positive answer for various classes of
graph, including so-called TLF-planar graphs (see [36, 69]). The word
plane means a simply connected Riemann surface without boundaries.
An embedding of a graph G = (V,E) in a plane P is a function η : V ∪
E → P such that η restricted to V is an injection and, for e = 〈u, v〉 ∈
E, η(e) is a C1 image of [0, 1]. An embedding is (P-)planar if the
images of distinct edges are disjoint except possibly at their endpoints,
and a graph is (P-)planar if it possesses a (P-)planar embedding. An
embedding is topologically locally finite (TLF ) if the images of the
vertices have no accumulation point, and a connected graph is called
TLF-planar if it possesses a planar TLF embedding. Let T∆ denote
the class of transitive, TLF-planar graphs with vertex-degree ∆.

Theorem 3.6. [36] Let G ∈ T3 be infinite. Then µ(G) ≥ φ.
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Two techniques are used repeatedly in the proof. The first is to
construct an injection from the set of SAWs on the ladder graph L
that move either rightwards or vertically, into the set of SAWs on a
graph G′ derived from G. A large subclass of T3 may be treated using
such a construction. The remaining graphs in T3 require detailed anal-
yses using a variety of transformations of graphs including the Fisher
transformation of Section 3.1.

A second class of graphs for which µ ≥ φ is given as follows. The
definition of a transitive graph height function is deferred to Definition
6.1.

Theorem 3.7. [36, Thm 3.1] We have that µ(G) ≥ φ for any cubic
graph G ∈ G3 that possesses a transitive graph height function.

This theorem covers all Cayley graphs of finitely presented groups
with strictly positive first Betti numbers (see Section 5.1 and [36, Ex-
ample 3]). Cayley graphs are introduced in Section 5.1.

4. Strict inequalities for connective constants

4.1. Outline of results. Consider a probabilistic model on a graph G,
such as the percolation or random-cluster model (see [27]). There is a
parameter (perhaps ‘density’ p or ‘temperature’ T ) and a ‘critical point’
(usually written pc or Tc). The numerical value of the critical point
depends on the choice of graph G. It is often important to understand
whether a systematic change in the graph causes a strict change in
the value of the critical point. A general approach to this issue was
presented by Aizenman and Grimmett [1] and developed further in
[5, 12, 25] and [26, Chap. 3]. The purpose of this section is to review
work of [34] directed at the corresponding question for self-avoiding
walks.

LetG be a subgraph ofG′, and suppose each graph is quasi-transitive.
It is trivial that µ(G) ≤ µ(G′). Under what conditions does the strict
inequality µ(G) < µ(G′) hold? Two sufficient conditions for the strict
inequality are reviewed here. This is followed in Section 5 with a sum-
mary of consequences for Cayley graphs.

The results of this section apply to transitive graphs. Difficulties
arise under the weaker assumption of quasi-transitivity.

4.2. Quotient graphs. Let G = (V,E) ∈ G. Let Γ ≤ Aut(G) act
transitively, and let A E Γ (we shall discuss the non-normal case
later). There are several ways of constructing a quotient graph G/A,
the strongest of which (for our purposes) is given next. The set of
neighbours of a vertex v ∈ V is denoted by ∂v.
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We denote by ~G = (V , ~E) the directed quotient graph G/A con-
structed as follows. Let ≈ be the equivalence relation on V given by
v1 ≈ v2 if and only if there exists α ∈ A with αv1 = v2. The vertex-
set V comprises the equivalence classes of (V,≈), that is, the orbits
v := Av as v ranges over V . For v, w ∈ V , we place |∂v ∩ w| directed
edges from v to w (if v = w, these edges are directed loops).

Example 4.1. Let G be the square lattice Z2 and let m ≥ 1. Let Γ
be the set of translations of Z2, and let A be the normal subgroup of Γ
generated by the map that sends (i, j) to (i+m, j). The quotient graph
G/A is the square lattice ‘wrapped around a cylinder’, with each edge
replaced by two oppositely directed edges.

Since ~G is obtained from G by a process of identification of vertices
and edges, it is natural to ask whether the strict inequality µ(~G) <
µ(G) is valid. Sufficient conditions for this strict inequality are pre-
sented next.

Let L = L(G,A) be the length of the shortest SAW of G with
(distinct) endpoints in the same orbit. Thus, for example, L = 1 if
~G possesses a directed loop. A group is called trivial if it comprises
the identity only.

Theorem 4.2. [34, Thm 3.8] Let Γ act transitively on G, and let A be

a non-trivial, normal subgroup of Γ. The connective constant ~µ = µ(~G)
satisfies ~µ < µ(G) if: either

(a) L 6= 2, or
(b) L = 2 and either of the following holds:

(i) G contains some 2-step SAW v (= w0), w1, w2 (= v′) sat-
isfying v = v′ and |∂v ∩ w1| ≥ 2,

(ii) G contains some SAW v (= w0), w1, w2, . . . , wl (= v′) sat-
isfying v = v′, wi 6= wj for 0 ≤ i < j < l, and furthermore
v′ = αv for some α ∈ A which fixes no wi.

Remark 4.3. In the situation of Theorem 4.2, can one calculate an
explicit R = R(G,A) < 1 such that µ(~G)/µ(G) < R? The answer is
(in principle) positive under a certain condition, namely that the so-
called ‘bridge constant’ of G equals its connective constant. Bridges are
discussed in Section 6, and it is shown in Theorem 6.2 that the above
holds when G possesses a so-called ‘unimodular graph height function’
(see Definition 6.1). See also [34, Thm 3.11] and [33, Remark 4.5].

We call A symmetric if

|∂v ∩ w| = |∂w ∩ v|, v, w ∈ V.
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Consider the special case L = 2 of Theorem 4.2. Condition (i) of
Theorem 4.2(b) holds if A is symmetric, since |∂w∩ v| ≥ 2. Symmetry
of A is implied by unimodularity, for a definition of which we refer the
reader to [34, Sect. 3.5] or [55, Sect. 8.2].

Example 4.4. Conditions (i)–(ii) of Theorem 4.2(b) are necessary in
the case L = 2, in the sense illustrated by the following example. Let G
be the infinite 3-regular tree with a distinguished end ω. Let Γ be the set
of automorphisms that preserve ω, and let A be the normal subgroup
generated by the interchanges of the two children of any given vertex
v (and the associated relabelling of their descendants). The graph ~G
is isomorphic to that obtained from Z by replacing each edge by two
directed edges in one direction and one in the reverse direction. It is
easily seen that L = 2, but that neither (i) nor (ii) holds. Indeed,

µ(~G) = µ(G) = 2.

The proof of Theorem 4.2 follows partly the general approach of
Kesten in his pattern theorem, see [48] and [56, Sect. 7.2]. Any n-step

SAW ~π in the directed graph ~G lifts to a SAW π in the larger graph G.
The idea is to show there exists a > 0 such that ‘most’ such ~π contain
at least an sub-SAWs for which the corresponding sub-walks of π may
be replaced by SAWs on G. Different subsets of these sub-SAWs of ~G
give rise to different SAWs on G. The number of such subsets grows
exponentially in n, and this introduces an exponential ‘entropic’ factor
in the counts of SAWs.

Unlike Kesten’s proof and its later elaborations, these results apply
in the general setting of transitive graphs, and they utilize algebraic
and combinatorial techniques.

We discuss next the assumption of normality of A in Theorem 4.2.
The (undirected) simple quotient graph G = (V ,E) may be defined
as follows even if A is not a normal subgroup of Γ. As before, the
vertex-set V is the set of orbits of V under A. Two distinct orbits Av,
Aw are declared adjacent in G if there exist v′ ∈ Av and w′ ∈ Aw with
〈v′, w′〉 ∈ E. We write G = GA to emphasize the role of A.

The relationship between the site percolation critical points of G and
GA is the topic of a conjecture of Benjamini and Schramm [10], which
appears to make the additional assumption that A acts freely on V .
The last assumption is stronger than the assumption of unimodularity.

We ask for an example in which the non-normal case is essentially
different from the normal case.

Question 4.5. Let Γ be a subgroup of Aut(G) acting transitively on
G. Can there exist a non-normal subgroup A of Γ such that: (i) the
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quotient graph GA is transitive, and (ii) there exists no normal subgroup
N of some transitively acting Γ′ such that GA is isomorphic to GN?
Might it be relevant to assume that A acts freely on V ?

We return to connective constants with the following question, in-
spired in part by [10].

Question 4.6. Is it the case that µ(GA) < µ(G) under the assumption
that A is a non-trivial (not necessarily normal) subgroup of Γ acting
freely on V , such that GA is transitive?

The proof of Theorem 4.2 may be adapted to give an affirmative
answer to Question 4.6 subject to a certain extra condition on A, see
[34, Thm 3.12]. Namely, it suffices that there exists l ∈ N such that
GA possesses a cycle of length l but G has no cycle of this length.

4.3. Quasi-transitive augmentations. We consider next the sys-
tematic addition of new edges, and the effect thereof on the connective
constant. Let G = (V,E) ∈ G. From G, we derive a second graph
G′ = (V,E ′) by adding further edges to E, possibly in parallel to ex-
isting edges. We assume that E is a proper subset of E ′.

Theorem 4.7. [34, Thm 3.2] Let Γ ≤ Aut(G) act transitively on G,
and let A ≤ Γ satisfy either or both of the following.

(a) A is a normal subgroup of Γ acting quasi-transitively on G.
(b) The index [Γ : A] is finite.

If A ≤ Aut(G′), then µ(G) < µ(G′).

Example 4.8. Let Z2 be the square lattice, with A the group of its
translations. The triangular lattice T is obtained from Z2 by adding
the edge e = 〈0, (1, 1)〉 together with its images under A, where 0 de-
notes the origin. Since A is a normal subgroup of itself, it follows that
µ(Z2) < µ(T). This example may be extended to augmentations by
other periodic families of new edges, as explained in [34, Example 3.4].

Remark 4.9. In the situation of Theorem 4.7, can one calculate an
R > 1 such that µ(G′)/µ(G) > R? As in Remark 4.3, the answer is
positive when G′ has a unimodular graph height function.

A slightly more general form of Theorem 4.7 is presented in [34]. Can
one dispense with the assumption of normality in Theorem 4.7(a)?

Question 4.10. Let Γ act transitively on G, and let A be a subgroup
of Γ that acts quasi-transitively on G. If A ≤ Aut(G′), is it necessarily
the case that µ(G) < µ(G′)?
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A positive answer would be implied by an affirmative answer to the
following question.

Question 4.11. Let G ∈ G, and let A ≤ Aut(G) act quasi-transitively
on G. When does there exist a subgroup Γ of Aut(G) acting transitively
on G such that A ≤ Γ and Γ ∩ Stabv ≤ A for v ∈ V ?

See [34, Prop. 3.6] and the further discussion therein.

5. Connective constants of Cayley graphs

5.1. Cayley graphs. Let Γ be an infinite group with identity element
1 and finite generator-set S, where S satisfies S = S−1 and 1 /∈ S.
Thus, Γ has a presentation as Γ = 〈S | R〉 where R is a set of relators.
The group Γ is called finitely generated since |S| < ∞, and finitely
presented if, in addition, |R| <∞

The Cayley graph G = G(Γ, S) is defined as follows. The vertex-
set V of G is the set of elements of Γ. Distinct elements g, h ∈ V
are connected by an edge if and only if there exists s ∈ S such that
h = gs. It is easily seen that G is connected, and Γ acts transitively
by left-multiplication. It is standard that Γ acts freely, and hence G is
unimodular and therefore symmetric. Accounts of Cayley graphs may
be found in [4] and [55, Sect. 3.4].

Reference is occasionally made here to the first Betti number of Γ.
This is the power of Z, denoted B(Γ), in the abelianization Γ/[Γ,Γ].
(See [30, Remark 4.2].)

5.2. Strict inequalities for Cayley graphs. Theorems 4.2 and 4.7
have the following implications for Cayley graphs. Let s1s2 · · · sl = 1 be
a relation. This relation corresponds to the closed walk (1, s1, s1s2, . . . ,
s1s2 · · · sl = 1) of G passing through the identity 1. Consider now the
effect of adding a further relator. Let t1, t2, . . . , tl ∈ S be such that
ρ := t1t2 · · · tl satisfies ρ 6= 1, and write Γρ = 〈S | R ∪ {ρ}〉. Then
Γρ is isomorphic to the quotient group Γ/N where N is the normal
subgroup of Γ generated by ρ.

Theorem 5.1. [34, Corollaries 4.1, 4.3] Let G = G(Γ, S) be the Cayley
graph of the infinite, finitely presented group Γ = 〈S | R〉.

(a) Let Gρ = G(Γρ, S) be the Cayley graph obtained by adding to R
a further non-trivial relator ρ. Then µ(Gρ) < µ(G).

(b) Let w ∈ Γ satisfy w 6= 1, w /∈ S, and let Gw be the Cayley
graph of the group obtained by adding w (and w−1) to S. Then
µ(G) < µ(Gw).
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As noted in Remarks 4.3 and 4.9, non-trivial bounds may in principle
be calculated for the ratios of the two connective constants in case (a)
(respectively, case (b)) whenever G (respectively, Gw) has a unimodular
graph height function.

Example 5.2. The square/octagon lattice, otherwise known as the
Archimedean lattice (4, 82), is the Cayley graph of the group with gen-
erator set S = {s1, s2, s3} and relator set

R = {s2
1, s

2
2, s

2
3, s1s2s1s2, s1s3s2s3s1s3s2s3}.

(See [34, Fig. 3].) By adding the further relator s2s3s2s3, we obtain a
graph isomorphic to the ladder graph of Figure 1.2, whose connective
constant is the golden mean φ.

By Theorem 5.1(a), the connective constant µ of the square/octagon
lattice is strictly greater than φ = 1.618 . . . . The best lower bound
currently known appears to be µ > 1.804 . . . , see [44].

Example 5.3. The square lattice Z2 is the Cayley graph of the abelian
group with S = {a, b} and R = {aba−1b−1}. We add a generator ab
(and its inverse), thus adding a diagonal to each square of Z2. Theorem
5.1(b) implies the standard inequality µ(Z2) < µ(T) of Example 4.8.

6. Bridges

6.1. Bridges and graph height functions. Various surgical con-
structions are useful in the study of self-avoiding walks, of which the
most elementary involves concatenations of so-called ‘bridges’. Bridges
were introduced by Hammersley and Welsh [42] in the context of the
hypercubic lattice Zd. An n-step bridge on Zd is a self-avoiding walk
π = (π0, π1, . . . , πn) such that

π0(1) < πm(1) ≤ πn(1), 0 < m ≤ n,

where x(1) denotes the first coordinate of a vertex x ∈ Zd.
The significant property of bridges is as follows: given two bridges

π = (0, x1, . . . , xm), π′ = (0, y1, . . . , yn) starting at 0, the concatenation
π ∪ [xm + π′] is an (m + n)-step bridge from 0. It follows that the
number bn of n-step bridges from 0 satisfies

(6.1) bm+n ≥ bmbn,

whence the bridge constant β(Zd) := limn→∞ b
1/n
n exists. Since bn ≤ σn,

it is trivial that β(Zd) ≤ µ(Zd). Using a surgery argument, Hammersley
and Welsh proved amongst other things that β = µ for Zd.
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In this section, we discuss the bridge constant for transitive graphs,
therein introducing the graph height functions that will be useful in
the discussion of locality in Section 7.

First we define a graph height function, and then we use such a
function to define a bridge.

Definition 6.1. [33, Defn 3.1] Let G = (V,E) ∈ Q with root labelled
1.

(i) A graph height function on G is a pair (h,H) such that:
(a) h : V → Z, and h(1) = 0,
(b) H ≤ Aut(G) acts quasi-transitively on G such that h is
H-difference-invariant, in the sense that

h(αv)− h(αu) = h(v)− h(u), α ∈ H, u, v ∈ V,
(c) for v ∈ V , there exist u,w ∈ ∂v such that h(u) < h(v) <

h(w).
(ii) A graph height function (h,H) is called transitive (respectively,

unimodular) if the action of H is transitive (respectively, uni-
modular).

The reader is referred to [55, Chap. 8] and [33, eqn (3.1)] for discus-
sions of unimodularity.

6.2. The bridge constant. Let (h,H) be a graph height function
of the graph G ∈ Q. A bridge π = (π0, π1, . . . , πn) is a SAW on G
satisfying

h(π0) < h(πm) ≤ h(πn), 0 < m ≤ n.

Let bn be the number of n-step bridges π from π0 = 1. Using quasi-
transitivity, it may be shown (similarly to (6.1)) that the limit β =

limn→∞ b
1/n
n exists, and β is called the bridge constant. Note that β

depends on the choice of graph height function.
The following is proved by an extension of the methods of [42].

Theorem 6.2. [33, Thm 4.3] Let G ∈ Q possess a unimodular graph
height function (h,H). The associated bridge constant β = β(G, h,H)
satisfies β = µ(G).

In particular, the value of β does not depend on the choice of uni-
modular graph height function.

7. Locality of connective constants

7.1. Locality of critical values. The locality question for SAWs may
be stated as follows: for which families of rooted graphs is the value of
the connective constant µ = µ(G) determined by the graph-structure
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of large bounded neighbourhoods of the root of G? Similar questions
have been asked for other systems including the percolation model, see
[9, 60].

Let G ∈ Q. The ball Sk = Sk(G), with radius k, is the rooted
subgraph of G induced by the set of its vertices within distance k of
the root 1. For G,G′ ∈ Q, we write Sk(G) ' Sk(G

′) if there exists a
graph-isomorphism from Sk(G) to Sk(G

′) that maps 1 to 1′. Let

K(G,G′) = max
{
k : Sk(G) ' Sk(G

′)
}
, G,G′ ∈ G,

and d(G,G′) = 2−K(G,G′). The corresponding metric space was intro-
duced by Babai [3]; see also [11, 15].

Question 7.1. Under what conditions on G ∈ Q and {Gn} ⊆ Q is it
the case that

µ(Gn)→ µ(G) if K(G,Gn)→∞?

The locality property of connective constants turns out to be related
in a surprising way to the existence of harmonic graph height functions
(see Theorem 8.1).

7.2. Locality theorem. Let G ∈ Q support a graph height function
(h,H). There are two associated integers d, r defined as follows. Let

(7.1) d = d(h) = max
{
|h(u)− h(v)| : u, v ∈ V, u ∼ v

}
.

IfH acts transitively, we set r = 0. AssumeH does not act transitively,
and let r = r(h,H) be the infimum of all r such that the following holds.
Let o1, o2, . . . , oM be representatives of the orbits of H. For i 6= j, there
exists vj ∈ Hoj such that h(oi) < h(vj), and a SAW from oi to vj, with
length r or less, all of whose vertices x, other than its endvertices,
satisfy h(oi) < h(x) < h(vj).

For D ≥ 1 and R ≥ 0, let QD,R be the subset of Q containing
graphs which possess a unimodular graph height function (h,H) with
d(h) ≤ D and r(h,H) ≤ R.

Theorem 7.2 (Locality theorem). [33, Thm 5.1] Let G ∈ Q. Let
D ≥ 1 and R ≥ 0, and let Gn ∈ QD,R for n ≥ 1. If K(G,Gn)→∞ as
n→∞, then µ(Gn)→ µ(G).

The rationale of the proof is as follows. Consider for simplicity the
case of transitive graphs. Since log σn is a subadditive sequence (see

(1.2)), we have that µ ≤ σ
1/n
n for n ≥ 1. Similarly, by (6.1), log βn is

superadditive, so that β ≥ b
1/n
n for n ≥ 1. Therefore,

(7.2) b1/n
n ≤ β ≤ µ ≤ σ1/n

n , n ≥ 1.
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Now, bn and σn depend only on the ball Sn(G). If G is such that β = µ,
then their shared value can be approximated, within any prescribed ac-
curacy, by counts of bridges and SAWs on bounded balls. By Theorem
6.2, this holds if G supports a unimodular graph height function.

7.3. Application to Cayley graphs. Let Γ = 〈S | R〉 be finitely
presented with Cayley graph G = G(Γ, S). Let t ∈ Γ have infinite
order. We present an application of the Locality Theorem 7.2 to the
situation in which a new relator tn is added. Let Gn be the Cayley
graph of the group Γn = 〈S | R ∪ {tn}〉.

Theorem 7.3. [30, Thm 6.1] If the first Betti number of Γ satisfies
B(Γ) ≥ 2, then µ(Gn)→ µ(G) as n→∞.

8. Existence of graph height functions

We saw in Sections 6 and 7 that, subject to the existence of certain
unimodular graph height functions, the equality β = µ holds, and a
locality result follows. In addition, there exists a terminating algorithm
for calculating µ to any degree of precision (see [33]). In this section, we
identify certain classes of graphs that possess unimodular graph height
functions.

For simplicity in the following, we restrict ourselves to Cayley graphs
of finitely generated groups.

8.1. Elementary amenable groups. The class EG of elementary
amenable groups was introduced by Day in 1957, [14], as the smallest
class of groups that contains the set EG0 of all finite and abelian groups,
and is closed under the operations of taking subgroups, and of forming
quotients, extensions, and directed unions. Day noted that every group
in EG is amenable (see also von Neumann [64]). Let EFG be the set
of infinite, finitely generated members of EG.

Theorem 8.1. [37, Thm 4.1] Let Γ ∈ EFG. There exists a normal
subgroup H E Γ with [Γ : H] < ∞ such that any locally finite Cayley
graph G of Γ possesses a graph height function of the form (h,H) which
is both unimodular and harmonic.

Note that the graph height function (h,H) of the theorem is har-
monic. It has a further property, namely that H E Γ has finite index,
and H acts on Γ by left-multiplication. Such a graph height function
is called strong.

The proof of Theorem 8.1 has two stages. Firstly, by a standard
algebraic result, there exist H E Γ such that: |Γ/H| < ∞, and H is
indicable in that there exists a surjective homomorphism F : H → Z.
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At the second stage, we consider a random walk on the Cayley graph
G, and set h(γ) = Eγ(F (H)), where H is the first hitting point of H
viewed as a subset of vertices. That h is harmonic off H is automatic,
and on H because the action of H is unimodular.

8.2. Graphs with no graph height function. There exist transi-
tive graphs possessing no graph height function, and examples include
the (amenable) Cayley graph of the Grigorchuk group, and the (non-
amenable) Cayley graph of the Higman group (see [37, Thms 5.1, 8.1]).
This may be deduced from the next theorem.

Theorem 8.2. [37, Cor. 9.2] Let Γ = 〈S | R〉 where |S| <∞, and let Π
be the subgroup of permutations of S that preserve Γ up to isomorphism.
Let G be a Cayley graph of Γ satisfying Stab1 = Π, where Π is viewed
as a subgroup of Aut(G).

(a) If Γ is a torsion group, then G has no graph height function.
(b) Suppose Γ has no proper, normal subgroup with finite index. If

G has graph height function (h,H), then (h,Γ) is also a graph
height function.

The point is that, when Stab1 = Π, every automorphism of G is
obtained by a certain composition of an element of Γ and an element
of Π. The Grigorchuk group is a torsion group, and part (a) applies.
The Higman group Γ satisfies part (b), and is quickly seen to have no
graph height function of the form (h,Γ). (A graph height function of
the form (h,Γ) is called a group height function in [30, Sect. 4].)

9. Speed, and the exponent ν

For simplicity in this section, we consider only transitive rooted
graphs G. Let πn be a random n-step SAW from the root of G, chosen
according to the uniform measure on the set Σn of such walks. What
can be said about the graph-distance ‖πn‖ between the endpoints of
πn?

We say that SAW on G has positive speed if there exist c, α > 0 such
that

P(‖πn‖ ≤ cn) ≤ e−αn, n ≥ 0.

While stronger than the natural definition through the requirement of
exponential decay to 0, this is a useful definition for the results of this
section. When G is infinite, connected, and quasi-transitive, and SAW
on G has positive speed, it is immediate that

Cn2 ≤ E(‖πn‖2) ≤ n2,

for some C > 0; thus (1.7) holds (in a slightly weaker form) with ν = 1.
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For SAW on Zd it is known, [18], that SAW does not have positive
speed, and that that E(‖πn‖2)/n2 → 0 as n→∞ (cf. (1.7)). Comple-
mentary ‘delocalization’ results have been proved in [17], for example
that, for ε > 0 and large n,

P(‖πn‖ = 1) ≤ n−
1
4

+ε,

and it is asked there whether

P(‖πn‖ = x) ≤ n−
1
4

+ε, x ∈ Zd.

We pose the following question for non-amenable graphs.

Question 9.1. [18] Is it the case that, for any non-amenable Cayley
graph G of an infinite, finitely generated group, SAW on G has positive
speed?

Progress towards this question may be summarised as follows. By
bounding the number of SAWs by the number of non-backtracking
paths, Nachmias and Peres [63, eqn (2.3)] have proved that that, for a
non-amenable, transitive graph G satisfying

(9.1) (∆− 1)ρ < µ,

SAW on G has positive speed. Here, ∆ is the vertex degree, ρ is the
spectral radius of simple random walk on G (see the discussion around
(2.2)), and µ is the connective constant.

It is classical (see, for example, [26, eqn (1.13)]) that µpc ≥ 1, where
pc is the critical probability of bond percolation on G. Inequality (9.1)
is therefore implied by the stronger inequality

(9.2) (∆− 1)ρpc < 1.

These inequalities (9.1)–(9.2) are useful in several settings.

A. [63] There exist ρ0 < 1 and g0 < ∞ such that, if G is an
non-amenable, transitive graph with spectral radius less than
ρ0 and girth at least g0, then (9.2) holds, and hence SAW on G
has positive speed.

B. [67] Let S ⊂ Γ be a finite symmetric generating set of an infinite
group Γ, and ∆ = |S|. Let S(k) be the multiset of cardinality
∆k comprising all elements g ∈ Γ with length not exceeding k
in the word metric given by S, each such element included with
multiplicity equal to the number of such ways of expressing g.
The set S(k) generates Γ. By [67, Proof of Thm 2],

ρ(G,S(k))pc(G,S
(k))∆k → 0 as k →∞,
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where (G,S(k)) denotes the (possibly non-simple) Cayley graph
of Γ with generator-set S(k). Inequality (9.2) follows for suffi-
ciently large k

C. By the argument of [67, Prop. 1], (9.2) holds if

ρ <
∆2 + ∆− 1

∆2 + (∆− 1)2
.

This holds when ρ < 1
2
, irrespective of ∆.

D. Thom [71] has shown that, for any finitely generated, non-
amenable group Γ and any ε > 0, there exists a finite symmet-
ric generating set S such that the corresponding Cayley graph
G = G(Γ, S) has ρ < ε. By the above, SAW on G has positive
speed.

E. [70] Let i = i(G) be the edge-isoperimetric constant of an infi-
nite, transitive graphG. Since pc ≤ (1+i)−1 and ρ2 ≤ 1−(i/∆)2

([61, Thm 2.1(a)]), inequality (9.2) holds whenever

(∆− 1)

√
1− (i/∆)2

1 + i
< 1.

It is sufficient that i/∆ > 1/
√

2.
F. [20] It is proved that

ρ ≤
√

8∆− 16 + 3.47

∆
,

when G is planar. When combined with C above, for example,
this implies that SAW has positive speed on any transitive,
planar graph with sufficiently large ∆. A related inequality for
hyperbolic tesselations is found in [20, Thm 7.4].

We turn next to graphs embedded in the hyperbolic plane. It was
proved by Madras and Wu [57] that SAWs on most regular tilings
of the hyperbolic plane have positive speed. Note that the graphs
treated in [57] are both (vertex-)transitive and edge-transitive (unlike
the graphs in F above). It was proved by Benjamini [8] that SAWs
on the seven regular planar triangulations of the hyperbolic plane have
mean displacement bounded beneath by a linear function.

We turn finally to a discussion of the number of ends of a transitive
graph. The number of ends of an infinite, connected graph G = (V,E)
is the supremum over all finite subsets W ⊂ V of the number of infi-
nite components that remain after deletion of W . An infinite, finitely
generated group Γ is said to have k ends if some locally finite Cay-
ley graph (and hence all such Cayley graphs) has k ends. Recall from
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[62, Prop. 6.2] that a transitive graph G has k ∈ {1, 2,∞} and, more-
over, if k = 2 (respectively, k = ∞) then G is amenable (respectively,
non-amenable).

Infinite, connected, (quasi-)transitive graphs with two or more ends
have been studied by Li [54, Thm 1.3], who has proved, subject to
two conditions, that SAW has positive speed. The approach of the
proof (see [54]) is to consider a finite ‘cutset’ W with the property that
many SAWs cross S to another component of G \W and never cross
back. The pattern theorem is a key element in the proof. These results
may be applied, for example, to a cylindrical quotient graph of Zd (see
[2, 23]), and the infinite free product of two finite, transitive, connected
graphs. Here are two corollaries for Cayley graphs.

Theorem 9.2. [54, Thms 1.7, 1.8] Let Γ be an infinite, finitely gener-
ated group with two or more ends.

(a) If Γ has infinitely many ends, and G is a locally finite Cayley
graph, there exists c > 0 such that

lim sup
n→∞

∣∣{π ∈ Σn(1) : ‖π‖ ≥ cn}
∣∣1/n = µ.

(b) There exists some locally finite, Cayley graph G such that SAW
on G has positive speed.
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