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Abstract. We give a rigorous proof of the boundedness of the entangle-
ment of a block of spins for the ground state of the one-dimensional quan-
tum Ising model with sufficiently strong transverse field. This is proved by
a refinement of the arguments in the earlier work by the same authors (J.
Statist. Phys. 131 (2008) 305–339). The proof is geometrical, and utilises
a transformation to a model of classical probability called the continuum
random-cluster model. The same conclusion has been announced by M.
Campanino and M. Gianfelice using the different method of cluster expan-
sions. Our method of proof is fairly robust, and applies also to certain
disordered systems.

1. The quantum Ising model and entanglement

The purpose of the current note is to explain how the geometrical approach
of [11] may be elaborated to obtain the boundedness of the entanglement
entropy of a block of spins in the ground state of the one-dimensional quantum
Ising model with sufficiently strong transverse field. The current paper is
presented as a elaboration of the earlier work [11] by the same authors, to
which the reader is referred for details of the background and basic theory.

We shall consider a block of L spins in a line of length 2m+ L. Let L ≥ 0.
For m ≥ 0, let

∆m = {−m,−m+ 1, . . . ,m+ L}
be a subset of the one-dimensional lattice Z, and attach to each vertex x ∈ ∆m

a quantum spin-1
2

with local Hilbert space C2. The Hilbert space H for the

system is H =
⊗m+L

x=−mC2. A convenient basis for each spin is provided by the

two eigenstates |+〉 =

(
1
0

)
, |−〉 =

(
0
1

)
, of the Pauli operator

σ(3)
x =

(
1 0
0 −1

)
,
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at the site x, corresponding to the eigenvalues ±1. The other two Pauli
operators with respect to this basis are represented by the matrices

σ(1)
x =

(
0 1
1 0

)
, σ(2)

x =

(
0 −i
i 0

)
. (1.1)

A complete basis for H is given by the tensor products (over x) of the eigen-

states of σ
(3)
x . In the following, |φ〉 denotes a vector and 〈φ| its adjoint. As a

notational convenience, we shall represent sub-intervals of Z as real intervals,
writing for example ∆m = [−m,m+ L].

The spins in ∆m interact via the quantum Ising Hamiltonian

Hm = −1
2

∑
〈x,y〉

λσ(3)
x σ(3)

y −
∑
x

δσ(1)
x , (1.2)

generating the operator e−βHm where β denotes inverse temperature. Here,
λ ≥ 0 and δ ≥ 0 are the spin-coupling and external-field intensities, re-
spectively, and

∑
〈x,y〉 denotes the sum over all (distinct) unordered pairs of

neighbouring spins. While we phrase our results for the translation-invariant
case, our approach can be extended to certain random couplings and field
intensities, much as in [11, Sect. 8]. See Section 4.

The Hamiltonian Hm has a unique pure ground state |ψm〉 defined at zero
temperature (as β →∞) as the eigenvector corresponding to the lowest eigen-
value of Hm. This ground state |ψm〉 depends only on the ratio θ = λ/δ. We
work here with a free boundary condition on ∆m, but we note that the same
methods are valid with a periodic (or wired) boundary condition, in which
∆m is embedded on a circle.

Write ρm(β) = e−βHm/ tr(e−βHm), and

ρm = lim
β→∞

ρm(β) = |ψm〉〈ψm|

for the density operator corresponding to the ground state of the system. The
ground-state entanglement of |ψm〉 is quantified by partitioning the spin chain
∆m into two disjoint sets [0, L] and ∆m \ [0, L] and by considering the entropy
of the reduced density operator

ρLm = tr∆m\[0,L](|ψm〉〈ψm|). (1.3)

One may similarly define, for finite β, the reduced operator ρLm(β). In both
cases, the trace is performed over the Hilbert space of spins belonging to
∆m \ [0, L]. Note that ρLm is a positive semi-definite operator on the Hilbert
space HL of dimension d = 2L+1 of spins indexed by the interval [0, L]. By the
spectral theorem for normal matrices [6], this operator may be diagonalised
and has real, non-negative eigenvalues, which we denote in decreasing order
by λ↓j(ρ

L
m).
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Definition 1.4. The entanglement (entropy) of the interval [0, L] relative to
its complement ∆m \ [0, L] is given by

S(ρLm) = − tr(ρLm log2 ρ
L
m) = −

2L+1∑
j=1

λ↓j(ρ
L
m) log2 λ

↓
j(ρ

L
m), (1.5)

where 0 log2 0 is interpreted as 0.

Here are our two main theorems.

Theorem 1.6. Let λ, δ ∈ (0,∞) and θ = λ/δ. There exists C = C(θ) ∈
(0,∞), and a constant γ = γ(θ) satisfying 0 < γ <∞ if θ < 1, such that, for
all L ≥ 1,

‖ρLm − ρLn‖ ≤ min{2, Ce−γm}, 2 ≤ m ≤ n. (1.7)

Furthermore, we may find such γ satisfying γ →∞ as θ ↓ 0.

Equation (1.7) is in terms of the operator norm:

‖ρLm − ρLn‖ ≡ sup
‖ψ‖=1

∣∣∣〈ψ|ρLm − ρLn |ψ〉∣∣∣, (1.8)

where the supremum is taken over all vectors |ψ〉 ∈ HL with unit L2-norm.

Theorem 1.9. Consider the quantum Ising model (1.2) on n = 2m + L + 1
spins, with parameters λ, δ, and let γ and C be as in Theorem 1.6. If γ >
4 ln 2, there exists c1 = c1(θ, γ) such that

S(ρLm) ≤ c1, m, L ≥ 0. (1.10)

Weaker versions of these two theorems were proved in [11, Thms 2.2, 2.8],
namely that (1.7) holds subject to a power factor of the form Lα, and (1.10)
holds with c1 replaced by C1 + C2 logL.

There is a considerable and growing literature in the physics journals con-
cerning entanglement entropy in one and more dimensions. For example,
paper [8] is an extensive review of area laws. The relationship between en-
tanglement entropy and the spectral gap has been explored in [2, 3], and
polynomial-time algorithms for simulating the ground state are studied in [4].

We make next some remarks about the proofs of the above two theorems.
These follow the proofs of [11, Thms 2.2, 2.8] subject to certain improvements
in the probabilistic estimates. The general approach and many details are the
same as in the earlier paper. We make frequent reference here to [11], and will
highlight where the current proofs differ, while omitting arguments that may
be taken directly from [11]. In particular, the reader is referred to [11, Sects.
4, 5] for details of the percolation representation of the ground state, and
of the associated continuum random-cluster model. In Section 2, we review
the relationship between the reduced density operator and the random-cluster
model, and we state the fundamental inequalities of Theorem 2.6 and Lemma
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2.8. Once the last two results have been proved, Theorems 1.6 and 1.9 follow
as in [11]: the first as in the proof of [11, Thm 2.2], and the second as in that
of [11, Thm 2.8].

We reflect in Section 4 on the extension of our methods and conclusions
when the edge-couplings λ and field strengths δ are permitted to vary, either
deterministically or randomly, about the line. In this disordered case, the
Hamiltonian (1.2) is replaced by

Hm = −1
2

∑
〈x,y〉

λx,yσ
(3)
x σ(3)

y −
∑
x

δxσ
(1)
x , (1.11)

where the sum is over neighbouring pairs 〈x, y〉 of ∆m. We write λ = (λx,x+1 :
x ∈ Z) and δ = (δx : x ∈ Z).

Theorem 1.12. Consider the quantum Ising model on Z with Hamiltonian
(1.11), such that, for some λ, δ > 0, λ and δ satisfy

λx,y/δx ≤ λ/δ, y = x− 1, x+ 1, x ∈ Z. (1.13)

(a) If λ/δ < 1, then (1.8) holds with C and γ as given there.
(b) If, further, γ > 4 ln 2, then (1.10) holds with c1 as given there.

If λ and δ are random sequences satisfying (1.13) with probability one, then
parts (a) and (b) are valid a.s.

The situation is more complicated when λ, δ are random but do not a.s.
satisfy (1.13). See Section 4 for a short discussion of this case.

Remark 1. The authors acknowledge Massimo Campanino’s announcement
in a lecture on 12 June 2019 of his proof with Michele Gianfelice of a version
of Theorem 1.9 using cluster expansions. That announcement provoked the
current work.

2. Estimates via the continuum random-cluster model

The continuum percolation model is constructed as in [10, 11]. For x ∈ Z,
let Dx be a Poisson process of points in {x}×R with intensity δ; the processes
{Dx : x ∈ Z} are independent, and the points in the Dx are termed ‘deaths’.
The lines {x} × R are called ‘time lines’.

For x ∈ Z, let Bx be a Poisson process of points in {x + 1
2
} × R with

intensity λ; the processes {Bx : x ∈ Z} are independent of each other and of
the Dy. For x ∈ Z and each (x + 1

2
, t) ∈ Bx, we draw a unit line-segment

in R2 with endpoints (x, t) and (x + 1, t), and we refer to this as a ‘bridge’
joining its two endpoints. For (x, s), (y, t) ∈ Z× R, we write (x, s)↔ (y, t) if
there exists a path π in R2 with endpoints (x, s), (y, t) such that: π comprises
sub-intervals of Z × R containing no deaths, together possibly with bridges.
For Λ,∆ ⊆ Z× R, we write Λ↔ ∆ if there exist a ∈ Λ and b ∈ ∆ such that
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a ↔ b. Let PΛ,λ,δ denote the associated probability measure when restricted
to the set Λ.

We make a note concerning exponential decay which will be important later.
The critical point of continuum percolation is given by θ = 1 where θ = λ/δ
(see [5, Thm 1.12]). In particular (as in [11, Thm 6.7]) there is exponential
decay when θ < 1. Let Λm = [−m,m]2 ⊆ Z× R, with boundary ∂Λm.

Theorem 2.1 ([5, Thm 1.7]). Let λ, δ ∈ (0,∞), and I = {0} × [−1
2
, 1

2
] ⊆

Z × R. There exist C = C(λ, δ) ∈ (0,∞) and γ = γ(λ, δ) satisfying γ > 0
when θ = λ/δ < 1, such that

Pλ,δ
(
I ↔ ∂Λm

)
≤ Ce−γm, m ≥ 0.

The function γ(λ, δ) may be chosen to satisfy γ →∞ as δ →∞ for fixed λ.

Henceforth the function γ denotes that of Theorem 2.1.
The continuum random-cluster model on Z × R is defined as follows. Let

a, b ∈ Z, s, t ∈ R satisfy a ≤ b, s ≤ t, and write Λ = [a, b] × [s, t] for the box
{a, a + 1, . . . , b} × [s, t]. Its boundary ∂Λ is the set of all points (x, y) ∈ Λ
such that: either x ∈ {a, b}, or y ∈ {s, t}, or both.

As sample space we take the set ΩΛ comprising all finite subsets (of Λ)
of deaths and bridges, and we assume that no death is the endpoint of any
bridge. For ω ∈ ΩΛ, we write B(ω) and D(ω) for the sets of bridges and
deaths, respectively, of ω.

The top/bottom periodic boundary condition is imposed on Λ: for x ∈ [a, b],
we identify the two points (x, s) and (x, t). The remaining boundary of Λ,
denoted ∂hΛ, is the set of points of the form (x, u) ∈ Λ with x ∈ {a, b} and
u ∈ [s, t].

For ω ∈ ΩΛ, let k(ω) be the number of its clusters (subject to the above
boundary condition). Let q ∈ (0,∞), and define the ‘continuum random-
cluster’ probability measure PΛ,λ,δ,q by

dPΛ,λ,δ,q(ω) =
1

Z
qk(ω)dPΛ,λ,δ(ω), ω ∈ ΩΛ, (2.2)

where Z is the appropriate partition function. As at [11, eqn (5.3)],

PΛ,λ,δ,q ≤st PΛ,λ,δ, q ≥ 1, (2.3)

in the sense of stochastic ordering.
We introduce next a variant in which the box Λ possesses a ‘slit’ at its

centre. Let L ≥ 0 and SL = [0, L] × {0}. We think of SL as a collection of
L + 1 vertices labelled in the obvious way as x = 0, 1, 2, . . . , L. For m ≥ 2,
β > 0, let Λm,β be the box

Λm,β = [−m,m+ L]× [−1
2
β, 1

2
β]
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subject to a ‘slit’ along SL. That is, Λm,β is the usual box except that each
vertex x ∈ SL is replaced by two distinct vertices x+ and x−. The vertex x+

(respectively, x−) is attached to the half-line {x} × (0,∞) (respectively, the
half-line {x} × (−∞, 0)); there is no direct connection between x+ and x−.
Write S±L = {x± : x ∈ SL} for the upper and lower sections of the slit SL.
Let φm,β be the continuum random-cluster measure on Λm,β with top/bottom
periodic boundary condition and parameters λ, δ, q = 2.

It is explained in [11] that a random-cluster configuration ω gives rise to
an Ising configuration on Λ, which serves (see [1]) as a two-dimensional rep-
resentation of the quantum Ising model of (1.2). We shall use φm,β to denote
the coupling of the continuum random-cluster measure and the corresponding
(Ising) spin-configuration.

Let Ωm,β be the sample space of the continuum random-cluster model on
Λm,β, and Σm,β the set of admissible allocations of spins to the clusters of
configurations in Ωm,β. For σ ∈ Σm,β and x ∈ SL, write σ±x for the spin-state
of x±. Let ΣL = {−1,+1}L+1 be the set of spin-configurations of the vectors
{x+ : x ∈ SL} and {x− : x ∈ SL}, and write σ+

L = (σ+
x : x ∈ SL) and

σ−L = (σ−x : x ∈ SL).
Let

am,β = φm,β(σ+
L = σ−L ). (2.4)

Then,

am,β → am = φm(σ+
L = σ−L ) as β →∞, (2.5)

where φm = limβ→∞ φm,β.
Here is the main estimate of this section, of which Theorem 1.6 is an imme-

diate corollary with adapted values of the constants. It differs from [12, Thm
6.5] in the removal of a factor of order Lα.

Theorem 2.6. Let λ, δ ∈ (0,∞) and write θ = λ/δ. If θ < 1, there exist
C,M ∈ (0,∞), depending on θ only, such that the following holds. For L ≥ 1
and M ≤ m ≤ n <∞,

sup
‖c‖=1

∣∣∣∣φm(c(σ+
L )c(σ−L ))

am
− φn(c(σ+

L )c(σ−L ))

an

∣∣∣∣ ≤ Ce−
1
3
γm, (2.7)

where γ is as in Theorem 2.1, and the supremum is over all functions c :
ΣL → R with L2-norm satisfying ‖c‖ = 1.

The theorem should presumably be valid subject to the weaker condition
θ < 2, since it is now known that θ = 2 is the critical value of the associated
continuum random-cluster model on Z × R (see [7, Thm 7.1]). In constrast,
the value θ = 1 is the critical point of the continuum percolation model (see
[5, Thm 1.12]).
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In the proof of Theorem 2.6, we make use of the following two lemmas
(corresponding, respectively, to [11, Lemmas 6.8, 6.9]), which are proved in
Section 3 using the method of ratio weak-mixing.

Lemma 2.8. Let λ, δ ∈ (0,∞) satisfy θ = λ/δ < 1, and let γ be as in Theorem
2.1. There exist constants A(λ, δ), C1(λ, δ) ∈ (0,∞) such that the following
holds. Let

Rξ = R(K,L, ξ) = C1

(
e−

1
2
γK + Le−

1
4
γξ
)
. (2.9)

For all K,L,m ≥ 1, β ≥ 1, and all ε+, ε− ∈ ΣL, we have that

A2K(1−Rβ) ≤ φm,β(σ+
L = ε+, σ−L = ε−)

φm,β(σ+
L = ε+)φm,β(σ−L = ε−)

≤ A−2K(1 +Rβ),

whenever K, L, β are such that Rβ ≤ 1
2
.

In the second lemma we allow a general boundary condition on Λm,β. As
in the discussion at the end of [11, Sect. 5], there are two types of legitimate
boundary conditions, depending on whether they indicate random-cluster con-
nectivity, or spin-values on the clusters thereof.

Lemma 2.10. Let λ, δ ∈ (0,∞), and let γ be as in Theorem 2.1. There
exists a constant C1 ∈ (0,∞) such that: for all L,m ≥ 1, β ≥ 1, all events
A ⊆ ΣL × ΣL, and all admissible random-cluster boundary conditions τ and
spin boundary conditions η of Λm,β,∣∣∣∣∣φαm,β((σ+

L , σ
−
L ) ∈ A)

φm,β((σ+
L , σ

−
L ) ∈ A)

− 1

∣∣∣∣∣ ≤ C1e
− 2

7
γm, for α = τ, η,

whenever the right side of the inequality is less than or equal to 1.

The above two lemmas are stated in terms of the box Λm,β with top/bottom
periodic boundary conditions. Their proofs are valid under other boundary
conditions also, including free boundary conditions.

Proof of Theorem 2.6. Let 0 < λ < δ, and let γ be as in Theorem 2.1. Let
A, C1, Rβ be as in Lemma 2.8, and let L ≥ 1 and 1 ≤ K < 1

2
L be such that

C1e
− 1

2
γK < 1

4
. (Other pairs K, L are covered in (2.7) by adjusting C.) By

(2.9),

lim
β→∞

Rβ = C1e
− 1

2
γK ≤ 1

4
, (2.11)

and we choose l = l(λ, δ, L) ≥ 1 such that Rl <
1
2
.

Let 2l ≤ m ≤ n < ∞ and take β > m. Later we shall let β → ∞. Since
φm,β ≤st φn,β, we may couple φm,β and φn,β via a probability measure ν on
pairs (ω1, ω2) of configurations on Λn,β in such a way that ν(ω1 ≤ ω2) = 1. It
is standard (as in [9, 15]) that we may find ν such that ω1 and ω2 are identical
configurations within the region of Λm,β that is not connected to ∂hΛm,β in
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the upper configuration ω2. Let D be the set of all pairs (ω1, ω2) ∈ Ωn,β×Ωn,β

such that: ω2 contains no path joining ∂B to ∂hΛm,β, where

B = [−r, r + L]× [−r, r]

and r will be chosen later to satisfy

l ≤ r < 1
2
m, (2.12)

implying in particular that

R2r ≤ Rβ <
1
2
. (2.13)

We take free boundary conditions on B. The relevant regions are illustrated
in Figure 1.

B

SL

Λm,βΛn,β

Figure 1. The boxes Λn,β, Λm,β, and B.

Having constructed the measure ν accordingly, we may now allocate spins
to the clusters of ω1 and ω2 in the manner described in [11, Sect. 5]. This may
be done in such a way that, on the event D, the spin-configurations associated
with ω1 and ω2 within B are identical. We write σ1 (respectively, σ2) for the
spin-configuration on the clusters of ω1 (respectively, ω2), and σ±i,L for the
spins of σi on the slit SL.

By the remark following [11, eqn (6.4)], it suffices to consider non-negative
functions c : ΣL → R, and thus we let c : ΣL → [0,∞) with ‖c‖ = 1. Let

Sc =
c(σ+

1,L)c(σ−1,L)

am,β
−
c(σ+

2,L)c(σ−2,L)

an,β
, (2.14)
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so that

φm,β(c(σ+
L )c(σ−L ))

am,β
− φn,β(c(σ+

L )c(σ−L ))

an,β
= ν(Sc1D) + ν(Sc1D), (2.15)

where D is the complement of D, and 1E is the indicator function of E.
Consider first the term ν(Sc1D) in (2.15). On the event D, we have that

σ±1,L = σ±2,L, so that

|ν(Sc1D)| ≤
∣∣∣∣1− am,β

an,β

∣∣∣∣ φm,β(c(σ+
L )c(σ−L ))

am,β
. (2.16)

By Lemma 2.8, (2.13), and [11, Lemma 6.10],

φm,β(c(σ+
L )c(σ−L )) =

∑
ε±∈ΣL

c(ε+)c(ε−)φm,β(σ+
L = ε+, σ−L = ε−)

≤ A−2K(1 +Rβ)φm,β(c(σ+
L ))φm,β(c(σ−L ))

= A−2K(1 +Rβ)

(∑
ε∈ΣL

c(ε)φm,β(σ+
L = ε)

)2

≤ A−2K(1 +Rβ)
∑
ε∈ΣL

φm,β(σ+
L = ε)2, (2.17)

where we have used reflection-symmetry in the horizontal axis at the interme-
diate step. By Lemma 2.8 and reflection-symmetry again,

am,β =
∑
ε∈ΣL

φm,β(σ+
L = σ−L = ε)

≥ A2K(1−Rβ)
∑
ε∈ΣL

φm,β(σ+
L = ε)2.

Therefore,

φm,β(c(σ+
L )c(σ−L ))

am,β
≤ A−4K 1 +Rβ

1−Rβ

. (2.18)

We set A = {σ+
L = σ−L} in Lemma 2.10 to find that, for sufficiently large

m ≥M1(λ, δ), ∣∣∣∣∣φ
η
m,β(σ+

L = σ−L )

φm,β(σ+
L = σ−L )

− 1

∣∣∣∣∣ ≤ Ce−
2
7
γm <

1

2
.

By averaging over η, sampled according to φn,β, we deduce that∣∣∣∣ φn,β(σ+
L = σ−L )

φm,β(σ+
L = σ−L )

− 1

∣∣∣∣ ≤ Ce−
2
7
γm <

1

2
,
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which is to say that ∣∣∣∣ an,βam,β
− 1

∣∣∣∣ ≤ Ce−
2
7
γm <

1

2
. (2.19)

We make a note for later use. By the remark after Lemma 2.10, a version of
inequality (2.18) holds with φm,β replaced by the continuum random-cluster
measure φB on the box B with free boundary conditions, namely,

φB(c(σ+
L )c(σ−L ))

aB
≤ A−4K 1 +R2r

1−R2r

, (2.20)

where R2r <
1
2

by (2.13). By (2.19), we may take C and M1 above such that∣∣∣∣an,βaB − 1

∣∣∣∣ ≤ Ce−
2
7
γr <

1

2
, r ≥M ′(λ, δ), (2.21)

where aB = φB(σ+
L = σ−L ).

Inequalities (2.18) and (2.19) may be combined as in (2.16) to obtain

|ν(Sc1D)| ≤ C1A
−4K 1 +Rβ

1−Rβ

e−
2
7
γm (2.22)

for an appropriate constant C1 = C1(λ, δ) and all m ≥M1.
We turn to the term ν(Sc1D) in (2.15). Evidently,

|ν(Sc1D)| ≤ Am +Bn, (2.23)

where

Am =
ν(c(σ+

1,L)c(σ−1,L)1D)

am,β
, Bn =

ν(c(σ+
2,L)c(σ−2,L)1D)

an,β
.

There exist constants C2, M ′′ depending on λ, δ, such that, for m > r ≥M2,

Bn =
ν(D)

an,β
ν(c(σ+

2,L)c(σ−2,L) | D)

=
ν(D)

an,β
φn,β

(
φτB(c(σ+

2,L)c(σ−2,L)) | D
)

≤ ν(D)

aB
C2φB(c(σ+

2,L)c(σ−2,L)) (2.24)

by Lemma 2.10 with φm,β replaced by φB, and (2.21). At the middle step, we
have used conditional expectation given the configuration τ on Λm,β \ B. By
(2.20), there exists C3 = C3(λ, δ) such that

1

aB
φB(c(σ+

2,L)c(σ−2,L)) ≤ C3A
−4K 1 +R2r

1−R2r

. (2.25)

Inequalities (2.24)–(2.25) imply an upper bound for Bn in terms of ν(D).
A similar upper bound is valid for Am, on noting that the conditioning on D

imparts certain information about the configuration ω1 outside B but nothing
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further about ω1 within B. Combining this with (2.23)–(2.25), we find that,
for r ≥M3(λ, δ) and some C4 = C4(λ, δ),

|ν(Sc1D)| ≤ ν(D)C4A
−4K 1 +R2r

1−R2r

. (2.26)

Let r = max{2l,M3} to obtain by (2.3), (2.12), and Theorem 2.1 that

ν(D) ≤ C5re
− 1

2
γm ≤ C6e

− 1
3
γm, m ≥M4, (2.27)

for some C5, C6, M4 ≥ 2M3. We combine (2.22), (2.26), (2.27) as in (2.15).
Letting β →∞ and recalling (2.11), we obtain (2.7) from (2.5), for m ≥M :=
max{M1,M2,M4}.

Finally, we remark that C and M depend on λ and δ. The left side of (2.7) is
invariant under re-scalings of the time-axes, that is, under the transformations
(λ, δ) 7→ (λη, δη) for η ∈ (0,∞). We may therefore work with the new values
λ′ = θ, δ′ = 1, with appropriate constants α(θ, 1), C(θ, 1), M(θ, 1). �

3. Proofs of Lemmas 2.8 and 2.10

Let Λ be a box in Z×R (we shall later consider a box Λ with a slit SL, for
which the same definitions and results are valid). A path π of Λ is an alter-
nating sequence of disjoint intervals (contained in Λ) and unit line-segments
of the form [z0, z1], b12, [z2, z3], b34, . . . , b2k−1,2k, [z2k, z2k+1], where: each pair
z2i, z2i+1 is on the same time line of Λ, and b2i−1,2i is a unit line-segment with
endpoints z2i−1 and z2i, perpendicular to the time-lines. The path π is said to
join z0 and z2k+1. The length of π is its one-dimensional Lebesgue measure.
A circuit D of Λ is a path except inasmuch as z0 = z2k+1. A set D is called
linear if it is a disjoint union of paths and/or circuits. Let ∆, Γ be disjoint
subsets of Λ. The linear set D is said to separate ∆ and Γ if every path of Λ
from ∆ to Γ passes through D, and D is minimal with this property in that
no strict subset of D has the property.

Let ω ∈ ΩΛ. An open path π of ω is a path of Λ such that, in the notation
above, the intervals [z2i, z2i+1] contain no death of ω, and the line-segments
b2i−1,2i are bridges of ω.

The (one-dimensional) Lebesgue measure of a measurable subset S of Z×R
is denoted |S|. Let S and T be measurable subsets of Λ. The distance d(S, T )
from S to T is defined to be the infimum of the lengths of paths having one
endpoint in S and one in T .

Let φΛ denote the random-cluster measure on ΩΛ with parameters λ, δ, and
q = 2 (with top/bottom periodic boundary condition). Let Γ be a measurable
subset and ∆ a finite subset of Λ such that ∆ ∩ Γ = ∅. We shall make use of
the ‘ratio weak-mixing property’ of the spin-configurations in ∆ and Γ that
is stated and proved in [11, Thm 7.1]. Let φ denote the continuum random-
cluster measure on Λ with parameters λ, δ, q = 2, but subject to the difference
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that the set of clusters that intersect ∆ ∪ Γ count only 1 in all towards the
cluster count k(ω) in (2.2). We call φ a ‘wired random-cluster measure’.

We now prove Lemmas 2.8 and 2.10. Consider the box Λm,β with slit SL.
Let K be an integer satisfying 1 ≤ K < 1

2
L, and let

∆ = {x+ : x ∈ SL, K ≤ x ≤ L−K},
Γ = {x− : x ∈ SL, K ≤ x ≤ L−K}.

(3.1)

The following replaces [11, Lemma 7.24].

Lemma 3.2. Let λ, δ ∈ (0,∞) satisfy θ = λ/δ < 1. There exists C1 =
C1(λ, δ) ∈ (0,∞) such that the following holds. Let

R = R(K,L, β) = C1(e−
1
2
γK + Le−

1
4
γβ),

and let γ > 0 be as in Theorem 2.1. For ε+K ∈ Σ∆, ε−K ∈ ΣΓ, we have that∣∣∣∣ φm,β(σ∆ = ε+K , σΓ = ε−K)

φm,β(σ∆ = ε+K)φm,β(σΓ = ε−K)
− 1

∣∣∣∣ ≤ R,

whenever R ≤ 1
2
.

Proof. Take

D =
(

[−m, 0)× {0}
)
∪
(

(L,L+m])× {0}
)
∪
(

[−m,m+ L]× {1
2
β}
)
,

the union of the two horizontal line-segments that, when taken with the slit
SL, complete the ‘equator’ of Λm,β, together with the top/bottom of Λm,β.
Recalling that we are dealing with the top/bottom periodic boundary condi-
tion, D is a linear subset of Λm,β that separates ∆ and Γ. Let t1, t2, t be as
in [11, Thm 7.1], namely,

t1 = φ(∆↔ D), t2 =

√
φ(D ↔ Γ), t = t1 + 2t2 +

t1 + t2
1− t1 − 2t2

. (3.3)

Since φ ≤st PΛ,λ,δ, there exist constants C2, C3, depending on λ and δ alone,
such that

t1 ≤ 2

bL/2c∑
i=K

C2e
−γi + 2Le−

1
2
γβ

≤ C3e
−γK + 2Le−

1
2
γβ,

and furthermore t22 = t1. The claim now follows by [11, Thm 7.1]. �

Proof of Lemma 2.8. Let γ be as in Theorem 2.1. With 1 ≤ K < 1
2
L, write

σ±L,K = (σ±x : K ≤ x ≤ L − K). First, let x = (L, 0), and let ε+, ε− ∈
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{−1,+1}L+1 be possible spin-vectors of the sets S+
L and S−L , respectively. By

[11, Lemma 7.25] with S = S+
L ∪ S

−
L \ {x+},

φm,β(σ+
L = ε+, σ−L = ε−)

≥ 1
2
φm,β(σ+

y = ε+y for y ∈ S+
L \ {x

+}, σ−L = ε−)PΛm,β ,λ,δ(x
+ = S).

Now, PΛm,β ,λ,δ(x = S) is at least as large as the probability that the first
event (death or bridge) encountered on moving northwards from x is a death,
so that

PΛm,β ,λ,δ(x= S) ≥ δ

2λ+ δ
.

On iterating the above, we obtain that

φm,β(σ+
L = ε+, σ−L = ε−) ≥ A2Kφm,β(σ+

L,K = ε+K , σ
−
L,K = ε−K), (3.4)

where ε±K is the vector obtained from ε± by removing the entries labelled by
vertices x satisfying 0 ≤ x < K and L−K < x ≤ L, and

A =

(
δ

2λ+ δ

)2

. (3.5)

In summary, for ε± ∈ ΣL,

A2Kφm,β(σ+
L,K = ε+K , σ

−
L,K = ε−K) ≤ φm,β(σ+

L = ε+, σ−L = ε−)

≤ φm,β(σ+
L,K = ε+K , σ

−
L,K = ε−K). (3.6)

With ∆, Γ as in (3.1), we apply Lemma 3.2 to obtain that there exists
C1 = C1(λ, δ) <∞ such that∣∣∣∣∣ φm,β(σ+

L,K = ε+K , σ
−
L,K = ε−K)

φm,β(σ+
L,K = ε+K)φm,β(σ−L,K = ε−K)

− 1

∣∣∣∣∣ ≤ C1(e−
1
2
γK + Le−

1
4
γβ),

whenever the right side is less than or equal to 1
2
.

By a similar argument to (3.6),

AKφm,β(σ±L,K = ε±K) ≤ φm,β(σ±L = ε±) ≤ φm,β(σ±L,K = ε±K).

The claim follows. �

Proof of Lemma 2.10. Let ∆ = S+
L ∪ S

−
L and Γ = ∂hΛm,β. Let k = 3

7
m and

assume for simplicity that k is an integer. (If either m is small or k is non-
integral, the constant C may be adjusted accordingly.) Let D0 be the circuit
illustrated in Figure 2, comprising a path in the upper half-plane from (−k, 0)
to (L + k, 0) together with its reflection in the x-axis. Let D = D0 ∩ Λm,β.
Thus, D = D0 in the case β = β2 of the figure. In the case β = β1, D
comprises two disjoint circuits of Λm,β (with top/bottom periodic boundary
condition). In each case, D separates ∆ and Σ.
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∆
km− k

D0

1
2β1

− 1
2β1

1
2β2

− 1
2β2

T

B

Figure 2. The circuit D0 is approximately a parallelogram
with ∆ at its centre. The sides comprise vertical steps of height
2 followed by horizontal steps of length 1. The horizontal and
vertical diagonals of D0 have lengths 2k+L and (approximately)
4k + 2L respectively, where k = 3

7
m. Two values of β are in-

dicated. When β = β2, D0 is contained in Λm,β and we take
D = D0. When β = β1, Λm,β is the shaded area only, and we
work with D = D0∩Λm,β considered as the union of two disjoint
circuits that separates D and Σ.

Let t1, t2, t be as in (3.3). By the ratio weak-mixing theorem [11, Thm 7.1],∣∣∣∣∣φαm,β((σ+
L , σ

−
L ) = (ε+, ε−))

φm,β((σ+
L , σ

−
L ) = (ε+, ε−))

− 1

∣∣∣∣∣ ≤ 2t, α = η, τ, ε± ∈ ΣL,

whenever t ≤ 1
2
. We ‘multiply up’ and sum over (ε+, ε−) ∈ A to obtain∣∣∣∣φαm,β(σ∆ ∈ A)

φm,β(σ∆ ∈ A)
− 1

∣∣∣∣ ≤ 2t, (3.7)

whenever t ≤ 1
2
.

Since φ ≤st PΛ,λ,δ, there exist C2, C3, c4 > 0, depending on λ, δ, such that

t1 ≤ 4

bL/2c∑
i=0

Pλ,δ((i, 0)↔ D0) ≤ 4

bL/2c∑
i=0

C2e
−γ 2

3
(k+i) ≤ C3e

− 2
7
γm, (3.8)
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and similarly,

t22 ≤ 8

dk+L/2e∑
i=0

C2e
−γ( 4

7
m+c4i) ≤ C3e

− 4
7
γm. (3.9)

The claim of the lemma follows by [11, Thm 7.1]. �

4. Quenched disorder

The parameters λ and δ have so far been assumed constant. The situation
is more complicated in the disordered case, when either they vary determin-
istically, or they are random. The arguments of this paper may be applied
in both cases, and the outcomes are summarised in this section. Let the
Hamiltonian (1.2) be replaced by (1.11), and write λ = (λx,x+1 : x ∈ Z) and
δ = (δx : x ∈ Z).

The fundamental bound of Theorem 2.6 depends only on the ratio θ =
λ/δ. In the disordered setting, the connection probabilities of the continuum
random-cluster model are increasing in λ and decreasing in δ, and the function
A(λ, δ) of (3.5) is replaced by functions of the form

A′x,k =
k∏
i=1

(
δx+i

δx+i + λx+i,x+i−1 + λx+i,x+i+1

)
, (4.1)

which are decreasing in λ and increasing in δ. By examination of the earlier
lemmas and proofs, the conclusions of the paper are found to be valid with
γ = γ(λ, δ) whenever (1.13) holds with some λ, δ > 0. Hence, in the disordered
case where (1.13) holds with probability one, the corresponding conclusions
are valid a.s. (subject to appropriate bounds on the ratio λ/δ). This proves
Theorem 1.12.

Consider now the situation in which (1.13) does not hold with probability
one. Suppose that the λx,x+1, x ∈ Z, are independent, identically distributed
random variables, and similarly the δx, x ∈ Z, and assume that the vectors
λ and δ are independent. (One may work with weaker assumptions on the
dependence structure of λ and δ, but for convenience we assume the above
independence.) We write P for the corresponding probability measure, viewed
as the measure governing the ‘random environment’, and Λ, ∆ for random
variables with the same distributions as λx,y and δz, respectively. The mean
of a random variable Z under P is denoted P (D). Let Pλ,δ be the probability
measure of the quenched continuum percolation process, condiitonal on λ, δ.
In applying the methods of this paper within the random environment, one
needs to deal with sub-domains of Z where the environment is not propitious
for the bound of Theorem 2.6.

As before, we perform a comparison of the continuum random-cluster and
percolation models in a random environment, and we shall appeal to [11, Thm
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8.2] (see [14] and [1, Thm 1.6]). For (x, s), (y, t) ∈ Z× R, let

d(x, s; y, t) = max
{
|x− y|, ln+ |s− t|

}
, (4.2)

where ln+ x = max{lnx, 0}.
For the remainder of this section we assume that the conditions of [11, Thm

8.2] are valid, and we shall work with γ > 1, and the identically distributed
random variables Dx given in the theorem. We let L ≥ 8, 1 ≤ K < 1

2
(L− 1),

and consider the event

AK,L =
L−K⋂
x=K

{
Dx < min{x, L− x}

}
,

noting that

P (AK,L) ≥ 1− 2
∞∑
x=K

P (D ≥ x),

where D has the distribution of the Dx. By [11, Thm 8.2], there exists η > 1
such that P (Dη) <∞, whence

P (AK,L) ≥ 1− CK1−η → 1 as K,L→∞. (4.3)

The conclusion of Lemma 3.2 is valid whenever the event AK,L occurs. The
conclusion of Lemma 2.8 holds on AK,L with A(λ, δ) replaced by XK,L, where

XK,L =

(∏
x∈Θ

δx
δx + λx,x−1 + λx,x+1

)2

,

where, in the notation of the proof of Lemma 2.8, Θ = (S+
L \∆) ∪ (S−L \ Γ);

cf. (4.1). Now,

lnXK,L = −2
K−1∑
x=0

Zx − 2
L∑

x=L−K+1

Zx (4.4)

where

Zx = ln

(
1 +

λx,x−1 + λx,x+1

δx

)
.

The two summations in (4.4) are independent of one another, and each is the
sum of a 1-dependent sequence of random variables. Also,

Zx ≤ ln

(
1 +

λx,x−1

δx

)
+ ln

(
1 +

λx,x+1

δx

)
,

so that, by [11, ass. (8.4)] and the Minkowski inequality,√
P (Z2

x) ≤ 2

√
P
([

ln(1 + (Λ/∆))
]2)

<∞.
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By the central limit theorem for 1-dependent sequences (see, for example, [13,
Thm 19.2.1]),

P
(
XK,L ≥ e−aK

√
K
)
→ 1 as K,L→∞, (4.5)

for any aK satisfying ak →∞ as K →∞. Let BK,L(a) = {XK,L ≥ e−a
√
K}.

Some changes are necessary to the proof of Lemma 2.10, reflecting the fact
that the distance function of (2.13) is sublinear in time. The circuit illustrated
in Figure 2 is generated by translation, discretisation, and reflection of the
Cartesian line y = 2x. In the disordered setting, we work instead with the
curve y = ex, and we assume β > 5em+ 1

2
L. We define two further events

that depend on the environment. Assume for simplicity that m is even, write
k = 1

2
m, and let

CL,m =
L⋂
x=0

{
Dx <

1
2

min{k + x, L+ k − x}
}
,

DL,m =
L+k⋂
x=−k

{
Dx < min{m+ x, L+m− x}

}
.

In the current setting, (3.8) becomes

t1 ≤ C1e
− 1

4
γm on the event CL,m,

for some constant C1 depending on γ. Similarly, (3.9) is replaced by

t22 ≤ C2e
− 1

2
γm on the event DL,m.

An amended version of Lemma 2.10 thus holds, so long as the event CL,m ∩
DL,m occurs.

We estimate P (CL,m ∩DL,m) as follows. First, since P (D) <∞,

P (CL,m) ≥ 1− 2

b 1
2
Lc∑

x=0

P (Dx ≥ 1
2
(k + x))→ 1 as k = 1

2
m→∞. (4.6)

Similarly,

P (DL,m) ≥ 1− 2

b 1
2
Lc∑

x=−k

P (Dx ≥ m+ x)→ 1 as m→∞. (4.7)

[Note: The following is subject to editing.] Let aK → ∞ as K → ∞, and F
let EK,L = AK,L∩BK,L(aK)∩CL,m∩DL,m, noting from (4.3), (4.5), and (4.6)–
(4.7) that Pλ,δ(EK,L)→ 1 as K →∞. On the event EK,L, the estimate (1.7)

holds with C replaced by CecaK
√
K for some absolute constant c > 0. The

proof of Theorem 1.9 may be followed to obtain that there exists a random
variable c1 <∞ such that S(ρLm) ≤ c1.
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