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Abstract. A necessary and sufficient condition is established for the strict in-
equality pc(G∗) < pc(G) between the critical probabilities of site percolation on a
one-ended, quasi-transitive, plane graph G and on its matching graph G∗. When
G is transitive, strict inequality holds if and only if G is not a triangulation.

The basic approach is the standard method of enhancements, but its implemen-
tion has complexity arising from the non-Euclidean (hyperbolic) space, the study
of site (rather than bond) percolation, and the generality of the assumption of
quasi-transitivity.

This result is complementary to the work of the authors (“Hyperbolic site per-
colation”, arXiv:2203.00981) on the equality pu(G)+pc(G∗) = 1, where pu is the
critical probability for the existence of a unique infinite open cluster. It implies for
transitive, one-ended G that pu(G) + pc(G) ≥ 1, with equality if and only if G is a
triangulation.

1. Strict inequalities for percolation probabilities

It is fundamental to the percolation model on a graphG that there exists a ‘critical
probability’ pc(G) marking the onset of infinite open clusters. Two questions arise
immediately.

(a) What can be said about the value of pc(G)?
(b) For what values of the percolation density p is there a unique infinite cluster?

These questions have attracted a great deal of attention since percolation was in-
troduced by Broadbent and Hammersley [7] in 1957. They turn out to be more
tractable when G is planar.

Amongst exact calculations of pc(G), those for bond percolation on the square,
triangular, and hexagonal lattices have been especially influential (see [16, 23], and
also the book [11]). Earlier discussion (falling short of rigorous proof) of these values
was provided by Sykes and Essam [22] in 1964. The last paper includes also an
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Figure 1.1. The square lattice Z2 and its matching graph.

account of site percolation on the triangular lattice, and a discussion of site percola-
tion on a so-called ‘matching pair’ of planar lattices. This term is explained in the
companion paper [13]; the current work is concerned with the matching pair (G,G∗),
where the so-called matching graph G∗ is defined as follows.

Let G = (V,E) be a planar graph, embedded in the plane R2 in such way that two
edges may intersect only at their endpoints. A face of G is a connected component
of R2 \ E. The boundary of a bounded face F is comprised of edges of G. The
matching graph of G, denoted G∗, is obtained from G by adding all diagonals to all
faces. See Figure 1.1. Evidently, G∗ = G when G is a triangulation. A graph with
connectivity 1 or 2 may have a multiplicity of non-homeomorphic planar embeddings,
and therefore there is potential ambiguity over the definition of its matching and dual
graphs (see Theorem 2.1(c)).

Remark 1.1. A face F of the above graph G may be unbounded, in which case its
boundary comprises infinitely many edges and vertices. Such F generates an infinite
complete subgraph of G∗, on which a percolation process is trivial. We shall usually
assume that all faces are bounded. Since our graphs are assumed quasi-transitive,
this is equivalent to assuming that G is one-ended. (See [14], [2, Prop. 2.1].) For
quasi-transitive graphs with two or infinitely many ends, see Remark 1.5.

Sykes and Essam presented motivation for the exact relationship

(1.1) psitec (G) + psitec (G∗) = 1,

and this has been verified in a number of cases when G is amenable (see [6, 16]).
Note that, since G is a subgraph of G∗, it is trivial that

(1.2) psitec (G∗) ≤ psitec (G).

It is less trivial to prove strict inequality in (1.2) for non-triangulations, and indeed
this sometimes fails to hold.

Suppose thatG is planar, quasi-transitive, one-ended, and possibly non-amenable.
If we are to embed G in a plane in an appropriate fashion, the plane in question may
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need to be hyperbolic rather than Euclidean. Site percolation in the hyperbolic plane
is the subject of the recent paper [13], where it is proved, amongst other things, that

(1.3) psiteu (G) + psitec (G∗) = 1,

where psiteu is the critical probability for the existence of a unique infinite open cluster.
When G is amenable, we have psitec (G) = psiteu (G), in agreement with (1.1) (see [18,
Chap. 7] for a discussion of critical points of quasi-transitive, amenable graphs).
By (1.2), we have psiteu (G) + psitec (G) ≥ 1, and it becomes desirable to know when
strict inequality holds. (When G is non-amenable, it is proved in [5] that psitec (G) <
psiteu (G).)

Let T (respectively, Q) be the set of all infinite, connected, locally finite, plane, 2-
connected, simple graphs that are in addition transitive (respectively, quasi-transitive).
(It is explained in [13, Rem. 3.4] that the assumption of 2-connectedness is innocent
in the context of site percolation.) A path (. . . , x−1, x0, x1, . . . ) of G∗ is called non-
self-touching if, for all i, j, two vertices xi and xj are adjacent if and only if |i−j| = 1.
Here is the main theorem of the current work, followed by a corollary.

Theorem 1.2. Let G ∈ Q be one-ended. Then psitec (G∗) < psitec (G) if and only if G∗
contains some doubly-infinite, non-self-touching path that includes some diagonal of
G.

Theorem 1.2 is proved in Section 5 using methods derived in Section 4.

Corollary 1.3. Let G ∈ Q be one-ended. Then psiteu (G) + psitec (G) ≥ 1, with strict
inequality if and only if the condition of Theorem 1.2 holds.

Proof of Corollary 1.3. The given (weak) inequality is proved at [13, Thm 1.1(b)],
and the strict inequality holds by (1.3) and Theorem 1.2. □

We turn to examples of Theorem 1.2 in action. Firstly, the condition of the
theorem is satisfied by all transitive, one-ended non-triangulations G ∈ T , as in the
next theorem.

Theorem 1.4. Let G ∈ T be one-ended but not a triangulation. Then G satisfes
the condition of Theorem 1.2, and therefore pc(G∗) < pc(G).

This is essentially the assertion of the forthcoming Theorem 3.1, which is proved
in Section 6.2 by the so-called metric method. The inequality of Theorem 1.4 then
holds by Theorem 1.2.

The situation for quasi-transitive graphs G is more complicated, and we have no
useful necessary and sufficient condition for the inequality pc(G∗) < pc(G). Instead,
we include in Section 3 a sufficient (but not necessary) condition. (Note added before
publication: the quasi-transitive case is treated in [12].)
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Remark 1.5. The above results are subject to the assumption that G is one-ended.
By [14] and [2, Prop. 2.1], the number η of ends of G ∈ Q lies in the set {1, 2,∞}. As
in Remark 1.1, we have that pc(G∗) = 0 if η ̸= 1. On the other hand, it is standard
that pc(G) ≥ 1/(∆− 1) where ∆ is the maximum vertex-degree of G. The inequality
pc(G∗) < pc(G) is thus trivial when η ̸= 1.

There follow some remarks about the proof of Theorem 1.2. The general approach
of the proof is to use the method of enhancements, as introduced and developed in
[1] (though there is earlier work of relevance, including [19]). While this approach is
fairly standard, and the above result natural, the proof turns out to have substantial
complexity arising from the generality of the assumptions on G, and the fact that we
are studying site (rather than bond) percolation (see [3]); the proof is, in contrast,
fairly immediate for the amenable, planar lattices mentioned above.

We remark that the version of (1.3) for bond percolation, namely

(1.4) pbondu (G) + pbondc (G+) = 1,

was proved by Benjamini and Schramm [5, Thm 3.8] for one-ended, non-amenable,
plane, transitive graphs. Here, G+ denotes the dual graph of G. (The amenable
case is standard.) The basic difference between the bond and site problems is the
following. In the study of bond percolation, one is interested in open self-avoiding
paths, whereas for site percolation we study open, non-self-touching paths — given
an infinite path (. . . , x−1, x0, x1, . . . ) such that, for some i + 1 < j, xi and xj are
adjacent, the states of vertices xi+1, . . . , xj−1 are independent of the event that the
path contains an infinite, open sub-path. That is, one can cut out the loop.

The central idea of the proof of Theorem 1.2 is as follows. Suppose G satisfies
the given assumptions, and write π for the given doubly-infinite path containing the
diagonal d. In order to apply the enhancement method, one needs to show that, if
z is a pivotal vertex for the existence of a long (but finite) open path of G∗ between
given regions A, B of space, after making local changes to the configuration one may
find a pivotal diagonal near z. This is achieved by a surgery of paths. First, one cuts
a finite subpath π′ from π containing the diagonal d. Then one inserts a translate
of π′ into an open path ν from A to B in which z is pivotal. Such insertion requires
‘adjustments’ near the interfaces of these two paths, and it must be achieved without
sacrifice of the non-self-touching property. It is an impediment to this surgery that
G∗ is non-planar (unless G is a triangulation), and thus one works instead with a

graph, denoted Ĝ, that is obtained from G by placing a new vertex within each
non-triangular face of G and joining this new vertex to each vertex of the face.

Turning to the contents of the current article, after the introductory Section 2,
we explain the relevance of Theorem 1.2 to transitive and quasi-transitive graphs in
Section 3. The proofs begin with some preliminary observations in Section 4, and
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the main theorem is proved in Section 5. The claim of Section 3 for quasi-transitive
graphs is proved in Section 6.

2. Notation and basic properties

2.1. Graph embeddings. We shall assume familiarity with basic graph theory and
its notation, and refer the reader to [13] for relevant definitions. Let Q be given as
prior to Theorem 1.2, and let T be the subset of Q comprising the transitive graphs.

An embedding of a graph G = (V,E) (with underling 1-complex denoted |G|) in a
surface S is a continuous map ϕ : |G| → S such that the induced map |G| → ϕ(|G|)
is a homeomorphism. An embedding ϕ is called cellular if S \ϕ(G) is a disjoint union
of spaces homeomorphic to an open disc. (See [20] and [21, Sect. 3.2].)

We are concerned here with embeddings of planar graphs in either the Euclidean
or hyperbolic planes, and we shall use H to denote either of these as appropriate for
the setting. A useful summary of hyperbolic geometry may be found in [8] (see also
[15]). An embedding of a graph G in H is called proper if every compact subset of
H contains only finitely many vertices of G and intersects only finitely many edges.
Henceforth, all embeddings will be assumed to be proper.

An Archimedean tiling (or uniform tiling) of a two-dimensional Riemannian man-
ifold is a tiling by regular polygons such that its isometry group (of the tiling) acts
transitively on its vertex-set. The edges of the tiling are geodesics. A discussion of
amenability may be found in [18, Sect. 6.1].

Some known facts concerning embeddings follow.

Theorem 2.1.

(a) [2, Thms 3.1, 4.2] If G ∈ T is one-ended, then G may be embedded in H as
an Archimedean tiling, and all automorphisms of G extend to isometries of
H. If G ∈ Q is one-ended and 3-connected, then G may be embedded in H
such that all automorphisms of G extend to isometries of H. Furthermore,
the target space H denotes the Euclidean plane if and only if G is amenable.

(b) [20, p. 42] Let G be a 3-connected graph, cellularly embedded in H such that
all faces are of finite size. Then G is uniquely embeddable in the sense that for
any two cellular embeddings ϕ1 : G → S1, ϕ2 : G → S2 into planar surfaces
S1, S2, there is a homeomorphism τ : S1 → S2 such that ϕ2 = τϕ1.

(c) [18, Thm 8.25 and Section 8.8] If G = (V,E) ∈ Q is one-ended, there exists
some embedding of G in H such that the edges coincide with geodesics, the dual
graph G+ is quasi-transitive, and all automorphisms of G extend to isometries
of H. Such an embedding is called canonical.

Remark 2.2.
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(a) All one-ended, transitive, planar graphs are 3-connected, and all embeddings
of a one-ended, quasi-transitive, planar graph have only finite faces.

(b) By Theorem 2.1(b), any one-ended G ∈ Q that is in addition transitive has a
unique cellular embedding in H up to homeomorphism. Hence, the matching
and dual graphs of G are independent of the embedding.

(c) The conclusion of part (b) holds for any one-ended, 3-connected G ∈ Q.
(d) For a one-ended, 2-connected G ∈ Q, we fix a canonical embedding (in the

sense of Theorem 2.1(c)). With this given, the dual graph G+ and the match-
ing graph G∗ are quasi-transitive, and furthermore the boundary of every face
is a cycle of G.

We give a formal definition of the matching graph of a planar graph G = (V,E).
Firstly, one embeds G in the plane in such a way that two edges intersect only
at their endpoints; such an embedded graph is called a plane graph. A face of a
plane graph G is a connected component of H \ E. In this work we shall treat only
one-ended graphs, for which all faces G are bounded with (topological) boundaries
∂F comprised of finitely many edges; the size of F is the number of edges in its
boundary. A cycle C of a simple graph G = (V,E) is a sequence v0, v1, . . . , vn+1 = v0
of vertices vi such that n ≥ 3, ei := ⟨vi, vi+1⟩ satisfies ei ∈ E for i = 0, 1, . . . , n, and
v0, v1, . . . , vn are distinct. Let G be a plane graph, duly embedded in the Euclidean
or hyperbolic plane. In this case we write C◦ for the bounded component of H \ C,
and C = C ∪ C◦ for the closure of C◦.

Let V (∂F ) be the set of vertices lying along the boundary of the face F . For each
face F and each non-adjacent pair x, y ∈ V (∂F ), we add an edge inside F between
x and y. We write G∗ = (V,E∗) for the ensuing matching graph of G. An edge
e ∈ E∗ \E is called a diagonal of G or of G∗, and it is denoted δ(a, b) where a, b are
its endvertices. If δ(a, b) is a diagonal, a and b are called ∗-neighbours.

Note that G∗ depends on the particular embedding of G. If G is 3-connected
then, by Theorem 2.1(b), it has a unique embedding up to homeomorphism. If
G is 2-connected but not 3-connected, we need to be definite about the choice of
embedding, and we require it henceforth to be ‘canonical’ in the sense of Theorem
2.1(c).

2.2. Further notation. A plane graph G is called a triangulation it every face is
bounded by a 3-cycle. The automorphism group of the graph G = (V,E) is denoted
Aut(G). The orbit of v ∈ V is written Aut(G)v, and we let

(2.1) ∆ = min
{
k : for v, w ∈ V, we have dG(Aut(G)v,Aut(G)w) ≤ k

}
,

where

dG(A,B) = min{dG(a, b) : a ∈ A, b ∈ B}, A,B ⊆ V,
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and dG denotes graph-distance in G. We write u ∼ v if u, v ∈ V are adjacent, which
is to say that dG(u, v) = 1. For any G, we fix some vertex denoted v0.

We shall work with one-ended graphs G ∈ Q. Since G is assumed one-ended and
2-connected, all its faces are bounded, with boundaries which are cycles of G (see
Remark 2.2(d)).

Definition 2.3. A path π = (. . . , x−1, x0, x1 . . . ) of a graph H is called non-self-
touching if dH(xi, xj) ≥ 2 when |j − i| ≥ 2. A cycle C = (v0, v1, . . . , vn, vn+1 = v0)
of H is called non-self-touching if dH(xi, xj) ≥ 2 whenever |i − j| ≥ 2 (with index-
arithmetic modulo n+ 1).

Non-self-touching paths and cycles arise naturally when studying site percolation
(such paths were called stiff in [1], and self-repelling in [11, p. 66]).

We shall consider non-self-touching paths in two graphs derived from a given

G ∈ Q, namely its matching graph G∗, and the graph Ĝ obtained by adding a site
within each face F of size 4 or more, and connecting every vertex of F to this new
site. The graph G∗ may possess parallel edges. The property of being non-self-
touching is indifferent to the existence of parallel edges, since it is given in terms of
the vertex-set of π and the adjacency relation of H.

Here is the fundamental property of graphs that implies strict inequality of critical
points. This turns out to be equivalent to a more technical ‘local’ property, as
described in Section 4.2; see Theorem 4.8. As a shorthand, henceforth we abbreviate
‘doubly-infinite non-self-touching path’ to ‘2∞-nst path’.

Definition 2.4. The graph G ∈ Q is said to have property Π if G∗ contains some
2∞-nst path that includes some diagonal of G.

For a graph G = (V,E), let

Λn(v) = ΛG,n(v) := {w ∈ V : dG(v, w) ≤ n}, ∂Λn(v) := Λn(v) \ Λn−1(v),

and, furthermore, Λn = ΛG,n := Λn(v0).

2.3. Percolation. Let G = (V,E) be a connected, locally finite graph with bounded
vertex-degrees. A site percolation configuration on G is an assignment ω ∈ Ω :=
{0, 1}V to each vertex of either state 0 or state 1. A vertex is called open if it has
state 1, and closed otherwise. An open cluster in ω is a maximal connected set of
open vertices.

Let p ∈ [0, 1]. We endow Ω with the product measure Pp with density p. For
v ∈ V , let θv(p) be the probability that v lies in an infinite open cluster. It is
standard that there exists pc(G) ∈ (0, 1] such that

for v ∈ V, θv(p)

{
= 0 if p < pc(G),

> 0 if p > pc(G),



8 GEOFFREY R. GRIMMETT AND ZHONGYANG LI

and pc(G) is called the critical probability of G.
For background and notation concerning percolation theory, the reader is referred

to the book [11], the article [13], and to Section 5.

3. Two criteria for property Π

In this section we present the ‘metric criterion’ for a one-ended graph G ∈ Q
to have the property Π of Definition 2.4. This criterion is valid for one-ended, non-
triangulations G ∈ T , and thus we arrive in particular at the following.

Theorem 3.1. Let G ∈ T be one-ended but not a triangulation. Then G has property
Π.

The criterion holds for a certain class of quasi-transitive graphs, and the outcome
is a sufficient but not necessary condition for a quasi-transitive graph G ∈ Q to have
property Π, namely Theorems 3.4.

The embedding results of Section 2 may be used in proofs of the existence of 2∞-
nst paths in one-ended graphs G ∈ Q satisfying the following forthcoming metric
criterion. First, recall the relevant embedding property. By Theorem 2.1(a, c), every
quasi-transitive, one-ended G ∈ Q has a canonical embedding in H.

Throughout this section we shall work with the Poincaré disk model of hyperbolic
geometry (also denoted H), and we denote by ρ the corresponding hyperbolic metric.
For definiteness, we consider only graphs G embedded in the hyperbolic plane; the
Euclidean case is similar, subject to the simplification that the geometry of the space
is Euclidean rather than hyperbolic.

Let G ∈ Q be one-ended and not a triangulation. By 2-connectedness and Re-
mark 2.2(d), the faces of G are bounded by cycles. As before, we restrict ourselves to
the case when G is non-amenable, and we embed G canonically in the Poincaré disk
H. The edges of G are hyperbolic geodesics, but its diagonals are not generally so.
The hyperbolic length of an edge e ∈ E∗ \E does not generally equal the hyperbolic
distance between its endvertices, denoted ρ(e).

For e ∈ E∗, let Γe denote the doubly-infinite hyperbolic geodesic of H passing
though the endvertices of e, and denote by π(x) = πe(x) the orthogonal projection
of x ∈ H onto Γe.

Definition 3.2. An edge e ∈ E∗ is called maximal if

(3.1) ρ(e) ≥ ρ(πe(x), πe(y)), for all f = ⟨x, y⟩ ∈ E.

The graph G is said to satisfy the metric criterion if G has a canonical embedding in
H for which some diagonal d ∈ E∗ \ E is maximal.
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Figure 3.1. The graph G is the tiling of the plane with copies of
this square. Taking into account the symmetries of the square, this
tiling is canonical after a suitable rescaling of the interior square. The
diagonals are indicated by dashed lines.

There always exists some maximal edge of E∗, but it is not generally unique, and
it may not be a diagonal. The following lemma is proved in the same manner as the
forthcoming Lemma 6.1.

Lemma 3.3. Let e ∈ argmax{ρ(f) : f ∈ E∗}. The edge e is maximal.

Here is the main theorem for quasi-transitive graphs using the metric method.

Theorem 3.4. Let G ∈ Q be one-ended but not a triangulation. Assume that
G satisfies the metric criterion of Definition 3.2. Then G has the property Π of
Definition 2.4.

See Sections 6.2 and 6.3 for the proofs of Theorem 3.1, Lemma 3.3, and Theorem
3.4 by the metric method.

Remark 3.5. The condition of Theorem 3.4 is sufficient but not necessary, as in-
dicated by the following example. Let G be the canonical tiling of R2 illustrated in
Figure 3.1. By inspection, no diagonal is maximal, whereas G has property Π. The
sufficient condition in question can be weakened as explained in Remark 6.4, and the
above example satisfes the weaker condition.

4. Some observations

4.1. Oxbow-removal. We begin by describing a technique of loop-removal (hence-
forth referred to as ‘oxbow-removal’). Let H be a simple graph embedded in the
Euclidean/hyperbolic plane H (possibly with crossings).

Lemma 4.1. Let H be a graph embedded in H.
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(a) Let C be a plane cycle of H that surrounds a point x /∈ H. There exists a non-
empty subset C ′ of the vertex-set of C that forms a plane, non-self-touching
cycle of H and surrounds x.

(b) Let π be a finite (respectively, infinite) path with endpoint v. There exists a
non-empty subset π′ of the vertex-set of π that forms a finite (respectively,
infinite) non-self-touching path of H starting at v. If π is finite, then π′ can
be chosen with the same endpoints as π.

Proof. (a) Let C = (v0, v1, . . . , vn, vn+1 = v0) be a plane cycle of H that surrounds
x /∈ H; we shall apply an iterative process of ‘loop-removal’ to C, and may assume
n ≥ 4. We start at v0 and move around C in increasing order of vertex-index. Let
J be the least j ≤ n such that there exists i ∈ {1, 2, . . . , j − 2} with vi ∼ vJ , and
let I be the earliest such i. Consider the two cycles C ′ = (vI , vI+1, . . . , vJ , vI) and
C ′′ = (vJ , vJ+1, . . . , v0, v1. . . . vI , vJ). (These cycles are called oxbows since they arise
through cutting across a bottleneck of the original cycle C.) Since C surrounds x, so
does at least one of C ′ and C ′′, and we suppose for concreteness that C ′′ surrounds
x. We replace C by C ′′. This process is iterated until no such oxbows remain.

(b) This part is proved by a similar argument. When the endpoints v0, vn of π are
not neighbours, we use oxbow-removal as above; otherwise, we set π′ = (v0, vn). □

Remark 4.2. Lemma 4.1 will be used in the following context. Firstly, one may
apply oxbow-removal to certain paths of a planar graph in order to obtain a non-self-
touching subpath (see the forthcoming Lemma 4.3). Similarly, oxbow-removal may
sometimes be used to generate a non-self-touching subpath of a concatenation of two
non-self-touching paths.

Path-surgery will be used in the forthcoming proofs: that is, the replacement
of certain paths by others. Consider a one-ended G ∈ Q, embedded canonically
in the hyperbolic plane H, which for concreteness we consider here in the Poincaré
disk model (see [8]), also denoted H. By Theorem 2.1(c), every automorphism of
G extends to an isometry of H. Let F be the set of faces of G. For F ∈ F and
x, y ∈ V (∂F ), let Lx,y be the set of rectifiable curves with endpoints x, y whose
interiors are subsets of F ◦ \ E, and write lx,y for the infimum of the hyperbolic
lengths of all l ∈ Lx,y. Let

diam(F ) = sup{lx,y : x, y ∈ V (∂F )},
and

(4.1) Φ = max{diam(F ) : F ∈ F}.
By the properties of G, and in particular Theorem 2.1(c), we have Φ <∞.

Let L be a geodesic of H with endpoints in the boundary of H. Denote by Lδ

the closed, hyperbolic δ-neighbourhood of L (see Figure 4.1); we call Lδ a hyperbolic
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∂+Lδ

∂−Lδ

Figure 4.1. An illustration of Lemma 4.3. The jagged (red) path
crosses Lδ in the long direction.

tube, and we say Lδ has width 2δ. Write ∂+Lδ and ∂−Lδ for the two boundary arcs
of Lδ. An arc γ of H is said to cross Lδ laterally if it intersects both ∂+Lδ and ∂

−Lδ.

A path π = (. . . , x−1, x0, x1, . . . ) of G (or Ĝ) is said to cross Lδ in the long direction
if, for any arc γ that crosses Lδ laterally and intersects no vertex of G, the number
of intersections between γ and π, if finite, is odd.

Lemma 4.3. Let G = (V,E) ∈ Q be one-ended and embedded canonically in the
Poincaré disk H, and let Lδ be a hyperbolic tube.

(a) If 2δ > Φ, then Lδ contains a 2∞-nst path of G, and a 2∞-nst path of G∗,
that cross Lδ in the long direction.

(b) There exists ζ = ζ(G) (depending on G and its embedding) such that, for
r > ζ and v ∈ V , the annulus Λr(v) \ Λr−ζ(v) contains a non-self-touching
cycle of G (respectively, G∗) denoted σr(v) (respectively, σ∗

r(v)) such that
v ∈ σr(v)

◦ (respectively, v ∈ σ∗
r(v)

◦).

A more refined result may be found in Section 6.

Proof. (a) Since all faces of G are bounded, there exist vertices of G in both com-
ponents of H \ Lδ. Now, Lδ fails to be crossed in the long direction if and only if it
contains some arc γ that traverses it laterally and that intersects no edge of G. To
see the ‘only if’ statement, let V − and V + be the subsets of V ∩ Lδ that are joined
in G∩Lδ to the two boundary points of L, respectively; if V − ∩ V + = ∅, then there
exists such γ separating V + and V − in Lδ. For this γ, there exists a face F and



12 GEOFFREY R. GRIMMETT AND ZHONGYANG LI

Figure 4.2. A square of the square lattice, its matching graph, and
with its facial site added.

points x, y ∈ V (∂F ), such that γ ⊆ λ for some λ ∈ Lx,y. Let ϵ ∈ (0, 2δ − Φ), and
find λ′ ∈ Lx,y with length not exceeding lx,y + ϵ. We may replace γ by some subarc
γ′ of λ′ ∩Lδ. The length of γ′ is no greater than Φ+ ϵ < 2δ, a contradiction since Lδ

has width 2δ. Therefore, Lδ contains some path π of G that crosses Lδ in the long
direction.

We apply oxbow-removal in G to π as described in the proof of Lemma 4.1. For
any arc γ that crosses Lδ laterally and intersects no vertex of G, the number of
intersections between γ and π, if finite, decreases by a non-negative, even number
whenever an oxbow is removed. It follows that the non-self-touching path π′ (ob-
tained after oxbow-removal) crosses Lδ in the long direction. The same conclusion
applies to G∗ on letting π be a path of G∗.
(b) Let ζ be such that ρ(u, v) ≥ 2Φ whenever dG(u, v) ≥ ζ. The proof of part (b)
follows that of part (a). □

4.2. Graph properties. The proofs of this article make heavy use of path-surgery
which, in turn, relies in part on the property of planarity.

Lemma 4.4. Let G ∈ Q, and let π be a (finite or infinite) non-self-touching path of
G∗.

(a) For every face F of G, π contains either zero or one or two vertices of F .
If π contains two such vertices u, v, then it contains also the corresponding
edge ⟨u, v⟩, which may be either an edge of G or a diagonal.

(b) The path π is plane when viewed as a graph.

Proof. Let F be a face. The path π cannot contain three or more vertices of F , since
that contradicts the non-self-touching property. Similarly, if π contains two such
vertices, it must contain also the corresponding edge. If π is non-plane, it contains
two or more diagonals of some face, which, by the above, cannot occur. □

As a device in the proof of Theorem 1.2, we shall work with the graph Ĝ obtained
from G = (V,E) by adding a vertex at the centre of each face F , and adding an edge
from every vertex in the boundary of F to this central vertex. These new vertices
are called facial sites, or simply sites in order to distinguish them from the vertices
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of G. The facial site in the face F is denoted ϕ(F ). See [17, Sec. 2.3], and also Figure
4.2. If ⟨v, w⟩ is a diagonal of G∗, it lies in some face F , and we write ϕ(v, w) = ϕ(F )
for the corresponding facial site.

The main reason for working with Ĝ is that it serves to interpolate between G
and G∗ in the sense of (5.2) below: we shall assign a parameter s ∈ [0, 1] to the facial
sites in such a way that s = 0 corresponds to G and s = 1 to G∗. It will also be

useful that Ĝ is planar whereas G∗ is not.

Next, we specify some desirable properties of the graphs G∗ and Ĝ. Recall the
property Π of Definition 2.4.

Definition 4.5. The graph G ∈ Q is said to have property Π̂ if Ĝ has a 2∞-nst path
including some facial site.

Lemma 4.6. Let G ∈ Q be one-ended. Then Π ⇒ Π̂.

Proof. Let G have property Π and let π be a 2∞-nst path of G∗. For any two
consecutive vertices u, v of Π such that δ(u, v) is a diagonal, we add between u and

v the facial site ϕ(u, v). The result is a doubly-infinite path π′ of Ĝ. By Lemma 4.4,

ν ′ is non-self-touching in Ĝ, whence G has property Π̂. □

The properties of Definition 4.5 are ‘global’ in that they concern the existence
of infinite paths. It is sometimes preferable to work in the proofs with finite paths,
and to that end we introduce corresponding ‘local’ properties.

Let ζ(G) be as in Lemma 4.3(b). We shall make reference to the non-self-touching
cycles σr(v), σ

∗
r(v) given in that lemma. We write σ̂r(v) for the non-self-touching

cycle of Ĝ obtained from σ∗
r(v) by replacing any diagonal by a path of length 2

passing via the appropriate facial site of Ĝ. We abbreviate the closure of the region
surrounded by σ∗

r (respectively, σ̂r) to σ∗
r (respectively, σ̂r). Let A(G) be the real

number given as

(4.2) A(G) = ζ(G) + max{dG(u,w) : ⟨u,w⟩ ∈ E∗ \ E}.
Definition 4.7. Let A ∈ Z, A > A(G), and let G ∈ Q be one-ended.

(a) The graph G is said to have property ΠA if there exists a vertex v ∈ V and a
non-self-touching path π = (x0, x1, . . . , xn) of G∗ such that
(i) every vertex of π lies in σ∗

A(v), and x0, xn ∈ σ∗
A(v),

(ii) there exists i such that xi = v,
(iii) the pair v, xi+1 forms a diagonal of G∗, which is to say that ϕ :=

ϕ(v, xi+1) is a facial site of Ĝ.

(b) The graph G is said to have property Π̂A if there exist vertices v, w ∈ V and

a non-self-touching path π = (x0, x1, . . . , xn) of Ĝ such that

(i) every vertex of π lies in σ̂A(v), and x0, xn ∈ σ̂A(v),
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v

σA(v)

π1

π2

Figure 4.3. An illustration of the property ΠA: a non-self-touching
path of G∗ containing a diagonal near its middle.

(ii) there exists i such that xi = v, xi+2 = w,

(iii) xi+1 is the facial site ϕ(v, w) of Ĝ.

That is to say, G has property ΠA (respectively, Π̂A) if G∗ (respectively, Ĝ) con-
tains a finite, non-self-touching path of sufficient length that contains some diagonal
(respectively, facial site). This definition is illustrated in Figure 4.3. Note that ΠA+1

(respectively, Π̂A+1) implies ΠA (respectively, Π̂A) for sufficiently large A.

Theorem 4.8. Let G ∈ Q be one-ended. There exists A′(G) ≥ A(G) such that, for

B > A′(G), we have Π ⇔ ΠB and Π ⇒ Π̂B.

The proof of this useful theorem utilises some methods of path-surgery that will
be important later, and it is given next.

4.3. Proof of Theorem 4.8. (a) Let A > A(G). First, we prove that Π ⇔ ΠA.
Evidently, Π ⇒ ΠA. Assume, conversely, that ΠA holds for some A > A(G). Let the
non-self-touching path π = (x0, x1, . . . , xn) of G∗, the vertex v = xi, and the diagonal
d = ⟨v, xi+1⟩ be as in Definition 4.7(a); think of π as a directed path from x0 to xn,
and note by Lemma 4.4 that π is a plane graph. We abbreviate σ∗

A(v) to σ
∗
A. Let

∂−σ∗
A = {y ∈ (σ∗

A)
◦ : dG∗(y, σ

∗
A) = 1}.

Let π1 be the subpath of π from v to x0, and π2 that from xi+1 to xn. Let ai be
the earliest vertex/site of πi lying in ∂−σA. See the central circle of Figure 4.4. We
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σA

v

a1 a2
b1

b2

Figure 4.4. In the easiest case when D ≥ 2, one finds (green) non-
touching subarcs σi

A of σA to which v may be connected by non-self-
touching paths. These subarcs may be connected to the boundary of
H using subpaths of a doubly-infinite path constructed using Lemma
4.3(a).

claim the following.

(4.3)

There exist two non-touching subpaths σ1, σ2 of σ∗
A, each of length at

least 1
2
|σ∗

A| − 4, such that: (i) for i = 1, 2, the subpath of πi leading

to ai may be extended beyond ai along σ
i to form a non-self-touching

path ending at any prescribed yi ∈ σi, and (ii) the composite path thus
created (after oxbow-removal if necessary) is non-self-touching.

The proof of (4.3) follows. Let

(4.4) Ai = {b ∈ σ∗
A : dG∗(ai, b) = 1}, D = max{dG∗(b1, b2) : b1 ∈ A1, b2 ∈ A2}.

Suppose D ≥ 2. Choose bi ∈ Ai such that dG∗(b1, b2) ≥ 2. As illustrated in the
centre of Figure 4.4, we may find a non-touching pair of non-self-touching subpaths
of σ∗

A such that the conclusion of (4.3) holds. Some oxbow-removal may be needed
at the junctions of paths (see Remark 4.2).

Suppose D = 1. We may picture σ∗
A as a (topological) circle with centre v, and for

concreteness we assume that a2 lies clockwise of a1 around σ∗
A (a similar argument

holds if not). See Figure 4.5.

A. Suppose the path π1, when continued beyond a1, passes at the next step to
some b1 ∈ A1, and add b1 to obtain a path denoted π′

1.
Since D = 1, the next step of π2 beyond a2 is not into A2. On following

π2 further, it moves inside (σ∗
A)

◦ until it arrives at some point a′2 ∈ ∂−σ∗
A

having some neighbour b′2 ∈ σ∗
A satisfying dG∗(b1, b

′
2) ≥ 2; we then include

the subpath of π2 between a2 and b′2 to obtain a path denoted π′
2.

We declare σ1 to be the subpath of σ∗
A starting at b1 and extending a total

distance 1
2
|σ∗

A| − 4 around σ∗
A anticlockwise. We declare σ2 similarly to start

at distance 2 clockwise of b1 and to have the same length as σ1.
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a1

a2

a′2

b1
b′2

θ
v xi+1

y1

y2

Figure 4.5. An illustration of the case D = 1. The green lines
indicate the subpaths σi

A. The rectangle is added in illustration of the
case θ ≥ 3

4
π.

Let θ ∈ (0, 2π) be the angle subtended by the vector
−−→
a2a

′
2 at the centre v.

If θ < 3
4
π, say, each π′

i may be extended along σi to end at any prescribed
yi ∈ σi. Therefore, claim (4.3) holds in this case.

The situation can be more delicate if θ ≥ 3
4
π, since then a′2 may be near to

σ1. By the planarity of π, the region R between π′
2 and σ

∗
A contains no point

of π′
1 (R is the shaded region in Figure 4.5). We position a hyperbolic tube

of width greater than Φ in such a way that it is crossed laterally by both π′
2

and the path σ2 (as illustrated in Figure 4.5). By Lemma 4.3(a), this tube
is crossed in the long direction by some path τ of G. The union of π′

2 and
τ contains a non-self-touching path π′′

2 of G∗ from xi+1 to σ2 (whose unique
vertex in σ2 is its second endpoint). Claim (4.3) follows in this situation.

B. Suppose the hypothesis of part A does not hold, but instead π2 passes from a2
directly into σ∗

A. In this case we follow A above with π1 and π2 interchanged.
C. Suppose neither πi passes from ai in one step into σ∗

A. We add b2 to the
subpath from xi+1 to a2, and continue as in part A above.

Suppose D = 0. Statement (4.3) holds by a similar argument to that above.

Having located the σi of (4.3), we position a hyperbolic tube as in Figure 4.4, to
deduce (after oxbow-removal, see Remark 4.2) the existence of a 2∞-nst path of G∗
that contains the diagonal d. Therefore, G has property Π, as required.

Hyperbolic tubes are superimposed on the graph at two steps of the argument
above, and it is for this reason that we need A to be sufficiently large, say A > A′(G).

(b) It remains to show that Π ⇒ Π̂A for large A. By Lemma 4.6, Π ⇒ Π̂, and it

is immediate that Π̂ ⇒ Π̂A for large A.
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5. Proof of Theorem 1.2

Consider site percolation on G with product measure Pp, and fix some vertex v0
of G. We write v ↔ w if there exists a path of G from v to w using only open sites
(such a path is called open), and v ↔ ∞ if there exists an infinite, open path starting
at v. The percolation probability is the function θ given by

(5.1) θ(p) = θ(p;G) = Pp(v0 ↔ ∞),

so that the (site) critical probability of G is pc(G) := sup{p : θ(p) = 0}. The
quantities θ(p;G∗) and pc(G∗) are defined similarly.

Remark 5.1. It is an old problem dating back to [4] to decide which graphs G satisfy
pc(G) < 1, and there has been a series of related results since. It was proved in [9,
Thm 1.3] that pc(G) < 1 for all quasi-transitive graphs G with super-linear growth
(see also [10]). This class includes all G ∈ Q with either one or infinitely many ends
(see [2, Sect. 1.4] and Theorem 2.1).

Theorem 5.2. Let G ∈ Q be one-ended.

(a) Let A0 ∈ Z. If, for every A > A0, G does not have property ΠA, then
pc(G∗) = pc(G).

(b) There exists A′(G) ≥ A(G) such that the following holds. Let A > A′(G). If

G has property Π̂A, then pc(Ĝ) < pc(G).

The constant A′(G) in part (b) depends on the embedded graph G, viewed as a
subset of H, rather on the graph G alone. In advance of giving the proof of Theorem
5.2, we explain how it implies Theorem 1.2.

Proof of Theorem 1.2 (assuming Theorem 5.2). If G does not have property Π, by
Theorem 4.8 for large A it does not have property ΠA, whence by Theorem 5.2(a),
pc(G∗) = pc(G). Conversely, if G has property Π, by Theorem 4.8 again it has

property Π̂A for large A, whence by Theorem 5.2(b), pc(Ĝ) < pc(G). The final claim

follows by the elementary inequality pc(G∗) ≤ pc(Ĝ); see (5.2). □

Proof of Theorem 5.2(a). Let A0 ∈ Z. Assume G has property ΠA for no A ≥ A0,
and let p > pc(G∗). Let π be an infinite open path of G∗ with some endpoint x. By
Lemma 4.1(b), there exists a subset π′ of π that forms a non-self-touching path of G∗
with endpoint x. Let A > A0. Since ΠA does not hold, every edge of π′ at distance
2A or more from x is an edge of G, so that there exists an infinite open path in G.
Therefore, p ≥ pc(G), whence pc(G∗) = pc(G). □

The rest of this section is devoted to the proof of Theorem 5.2(b). Let Ω̂ =

ΩV × ΩΦ where Φ is the set of facial sites and ΩΦ = {0, 1}Φ. For ω̂ = ω × ω′ ∈ Ω̂
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and ϕ ∈ Φ, we call ϕ open if ω′
ϕ = 1, and closed otherwise. Let Pp,s = Pp ×Ps be the

corresponding product measure on ΩV × ΩΦ, and

θ(p, s) = lim
n→∞

θn(p, s) where θn(p, s) = Pp,s(v0 ↔ ∂Λn in Ĝ),

so that

(5.2) θ(p, 0) = θ(p;G), θ(p, p) = θ(p; Ĝ), θ(p, 1) = θ(p;G∗),

where θ(p;H) denotes the percolation probability of the graph H. Note that θ(p, s)
is non-decreasing in p and s. The following proposition implies Theorem 5.2(b).

Proposition 5.3. There exists A′(G) < ∞ such that the following holds. Suppose

G ∈ Q is one-ended and has property Π̂A where A > A′(G). Let s ∈ (0, 1). There
exists ϵ = ϵ(s) > 0 such that θ(p, s) > 0 for pc(G)− ϵ < p < pc(G).

We do not investigate the details of how A′(G) depends on G. An explicit lower
bound on A′(G) may be obtained in terms of local properties of the embedding of
G, but it is doubtful whether this will be useful in practice.

The rest of this proof is devoted to an outline of that of Proposition 5.3. Full
details are not included, since they are very close to established arguments of [1],
[11, Sect. 3.3], and elsewhere.

Let n be large, and later we shall let n → ∞. Consider site percolation on Ĝ
with measure Pp,s. We call a vertex (respectively, facial site) z pivotal if it is pivotal

for the existence of an open path of Ĝ from v0 to ∂Λn (which is to say that such a
path exists if z is open, and not otherwise). Let Pin be the set of pivotal vertices,
and Din the set of pivotal facial sites. Proposition 5.3 follows in the ‘usual way’ (see
[11, Sect. 3.3]) from the following statement.

Lemma 5.4. Let p, s ∈ (0, 1). There exists M ≥ 1 and f : (0, 1)2 → (0,∞) such
that, for n > 4M and every z ∈ Λn,

(5.3) Pp,s(z ∈ Pin) ≤ f(p, s)Pp,s(Din ∩ ΛM(z) ̸= ∅).

Proof of Proposition 5.3 (assuming Lemma 5.4). On summing (5.3) over z ∈ Λn, we
obtain by Russo’s formula (see [11, Sec. 2.4]) that there exists g(p, s) <∞ such that

(5.4)
∂

∂p
θn(p, s) ≤ g(p, s)

∂

∂s
θn(p, s).

The derivation of Proposition 5.3 from the above differential inequality is ex-
plained in [1] and [11, p. 60]. It proceeds as follows. Let η > 0 be small, and find
γ ∈ (0,∞) such that g(p, s) ≤ 1/γ on [η, 1− η]2. Let ψ ∈ [0, 1

2
π) satisfy tanψ = γ−1.
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At the point (p, s) ∈ [η, 1 − η]2, the rate of change of θn(p, s) in the direction
(cosψ,− sinψ) satisfies

∇θn · (cosψ,− sinψ) =
∂θn
∂p

cosψ − ∂θn
∂s

sinψ(5.5)

≤ ∂θn
∂p

(cosψ − γ sinψ) = 0

by (5.4), since tanψ = γ−1.
Suppose now that (a, b) ∈ [2η, 1− 2η]2. Let

(a′, b′) = (a, b)− η(cosψ,− sinψ),

noting that (a′, b′) ∈ [η, 1 − η]2. By integrating (5.5) along the line segment joining
(a′, b′) to (a, b), we obtain that

θ(a′, b′) = lim
n→∞

θn(a
′, b′) ≥ lim

n→∞
θn(a, b) = θ(a, b).

Now let s ∈ [2η, 1 − 2η] and let ϵ ∈ (0, s) be small. Take (a, b) = (pc + ϵ, s − ϵ)
where pc = pc(G), and define (a′, b′) as above. We choose ϵ sufficiently small that
(a, b), (a′, b′) ∈ [2η, 1− 2η]2, and that a′ < pc. The above calculation yields that

θ(a′, b′) ≥ θ(pc + ϵ, s− ϵ) ≥ θ(pc + ϵ, 0) > 0,

as required. □

Here is an outline of the proof of Lemma 5.4 (a more formal proof follows this

outline). Let ω̂ ∈ Ω̂, z ∈ V ∩ Λn, and suppose

(5.6) z is open and pivotal in the configuration ω̂.

By making changes to the configuration ω̂ within the box Λ4M(z) for some fixed
M ,

(5.7)
we construct a configuration in which ΛM(z) contains a pivotal facial
site.

This implies (5.3) with f depending on the choice of z. Since Λ4M(z) is finite and
there are only finitely many types of vertex (by quasi-transitivity), f may be chosen
to be independent of z. The above is achieved in five stages.

Assume for now that ω̂ ∈ Ω̂ and the pivotal vertex z satisfies

(5.8) z ∈ Λn−2M \ Λ2M .

For clarity of exposition, our illustrations are drawn as if G is embedded properly in
the Euclidean rather than the hyperbolic plane. The principal effect of this is that
hyperbolic tubes are represented as Euclidean rectangles.
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Let G have property Π̂A. Let π = (xj), v = xi, be as in Definition 4.7(b), and
write ϕ = xi+1 = ϕ(v, xi+2). Find α ∈ Aut(G) such that v′ = αv satisfies dG(z, v

′) ≤
∆, where ∆ is given in (2.1). Let M = 2(A + ∆), so that ΛA(v

′) ⊆ ΛM/2(z). The
outline of the proof is as follows.

I. If there exist one or more open facial sites in ΛM(z), we declare them one-
by-one to be closed. If at some point in this process, some facial site is found
to be pivotal, then we have achieved (5.7), by changing ω̂ within a bounded
region. We may therefore assume that this never occurs, or equivalently that

(5.9) ω̂ has no open facial site in ΛM(z).

II. Find a non-self-touching open path ν in ω̂ from v0 to ∂Λn. This path passes
necessarily through the pivotal vertex z.

III. By making changes within Λ2M(z), we construct non-touching subpaths of ν
from v0 (respectively, ∂Λn) to ∂ΛM(z), that can be extended inside ΛM(z) in
a manner to be specified at Stage V. This, and especially the following, stage
resembles closely part of the proof in Section 4.3.

IV. We splice a copy (denoted π′ = απ) of π inside ΛA(v
′), and we make local

changes to obtain paths π1, π2 from the two endpoints of αϕ, respectively, to
∂ΛA(v

′) that can be extended outside ΛA(v
′) in a manner to be specified at

Stage V.
V. Between the contours ∂ΛA(v

′) and ∂ΛM(z), we arrange the configuration in
such a way that the retained parts of ν hook up with the endpoints of the πi.
In the resulting configuration, the facial site ϕ′ := αϕ is pivotal.

Some work is needed to ensure that ϕ′ can be made pivotal in the final configu-
ration. Lemma 4.3(b) will be used to traverse the annulus between the two contours
at Stage V. In making connections at junctions of paths, we shall make use of the

planarity of Ĝ. Rather than working with the boundaries of ΛM(z) and ΛA(v
′), we

shall work instead with the non-self-touching cycles σ̂M := σ̂M(z) and σ̂A := σ̂A(v
′)

of Ĝ given in Lemma 4.3(b). Let

∂+σ̂M = {y ∈ H \ σ̂M : dĜ(y, σ̂M) = 1},
∂−σ̂A = {y ∈ (σ̂A)

◦ : dĜ(y, σ̂A) = 1}.

Proof of Lemma 5.4. Stage I is first followed as stated above.

Stage II. By (5.6), we may find an open, non-self-touching path ν of Ĝ from v0
to ∂Λn, and we consider ν as thus directed. By (5.9), ν includes no facial site of
ΛM(z). The path ν passes necessarily through z, and we let u (respectively, w) be
the preceding (respectively, succeeding) vertex to z.
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z
v0

∂Λn

∂Λ2M(z)

σ̂M

u

w

a2

b2

a1

b1

Figure 5.1. An illustration of the construction at Stages II/III. The
non-self-touching path ν contains subpaths from v0 to σ̂M , and from
the latter set to ∂Λn. The subpaths σi

M of σ̂M are indicated in green.

For y ∈ V , and the given configuration ω̂ (satisfying (5.9)), let

Cy = {x ∈ V : y ↔ x in Ĝ \ {z}},

and write Cy also for the corresponding induced subgraph of Ĝ. By (5.6),

A. Cu and Cw are disjoint (and also non-touching),
B. the subpath of ν, denoted ν(u−), from v0 to u contains no facial site of ΛM(z),
C. the subpath of ν, denoted ν(w+), from w to ∂Λn contains no facial site of

ΛM(z),
D. the pair ν(z−), ν(z+) is non-touching.

Stage III. This is closely related to the proof of Theorem 4.8 given in Section 4.3.
Note that the intersection of ν(u−)∪ν(w+) and Λ2M(z) comprises a family of paths
rather than two single paths. See Figure 5.1.

We follow ν(u−) towards u, and ν(w+) backwards towards w, until we reach the
first vertices/sites, denoted a1, a2, respectively, lying in ∂

+σ̂M . Let ν1 be the subpath
of ν(u−) between v0 and a1, and ν2 that of ν(w+) between ∂Λn and a2. We now
change the states of certain vertices/sites x ∈ Λ2M(z) by declaring

(5.10) every x ∈ Λ2M(z) \ σ̂M is declared open if and only if x ∈ ν1 ∪ ν2.
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∂Λn

σ̂M

v0 a1

a2

a′2

a′2

ν′2

b1

∂Λ2M (z)

τ

τ

Figure 5.2. An illustration of the case D = 1 in the Stage III con-
struction. There are two subcases, depending on whether θ > 0 (solid
line) or θ < 0 (dashed line). The green lines indicate the subpaths
σi
M in the subcase θ > 0. The rectangle is added in illustration of the

hyperbolic tube used in the case θ ≥ 3
4
π.

We investigate next the subsets of σ̂M to which the ai may be connected within
σM . We shall show that:

(5.11)

there exist two non-touching subpaths σ1
M , σ2

M of σ̂M , each of length at
least 1

2
|σ̂M | − 4, such that, for i = 1, 2: (i) ai has a neighbour bi ∈ σi

M ,

(ii) for yi ∈ σi
M , the path νi may be extended from bi to yi along σ

i
M ,

thereby creating (after oxbow-removal if necessary) a non-self-touching
path from the other endpoint of νi, (iii) the composite path ν ′i thus
created is non-self-touching, and (iv) the pair ν ′1, ν

′
2 is non-touching.

An explanation follows. Let

(5.12) Ai = {b ∈ σ̂M : dĜ(ai, b) = 1}, D = max{dĜ(b1, b2) : b1 ∈ A1, b2 ∈ A2}.

Suppose D ≥ 2. Choose bi ∈ Ai such that dĜ(b1, b2) ≥ 2. Statement (5.11) follows
as illustrated in Figure 5.1.

Suppose D = 1. We may picture σM as a circle with centre z, and for concreteness
we assume that a2 lies clockwise of a1 around σ̂M (a similar argument holds if not)
See Figure 5.2.
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A. Suppose the path ν1, when continued along ν(z−) beyond a1, passes at the
next step to some b1 ∈ A1, and add b1 to ν1 (to obtain a path denoted ν ′1).
Since D = 1, the next step of ν(w+) beyond a2 is not to A2. On following

ν(w+) further, it moves insideH\σ̂M until it arrives at some point a′2 ∈ ∂+σ̂M
having some neighbour b′2 ∈ σ̂M satisfying dĜ(b1, b

′
2) ≥ 2; we then add to

ν2 the subpath of ν(w+) between a2 and b′2 (to obtain an extended path

ν ′2). Let θ(a′2) be the angle subtended by the vector
−−→
a2a

′
2 at the centre z,

counted positive if ν(w+) passes clockwise around z of σ̂M , and negative if
anticlockwise.
(i) There are two cases, depending on whether θ := θ(a′2) is positive or

negative. Assume first that θ > 0. If θ < 3
4
π, say, we declare σ1

M to be

the subpath of σ̂M starting at b1 and extending a total distance 1
2
|σ̂M |−4

around σM anticlockwise. We declare σ2
M similarly to start at distance

2 clockwise of b1 along σ̂M and to have the same length as σ1
M . Each ν ′i

may be extended along σi
M to end at any prescribed yi ∈ σi

M . Therefore,
claim (5.11) holds in this case.
The situation can be more delicate if θ ≥ 3

4
π, since then a′2 may be near

to σ1
M . By the planarity of ν, the region R between ν ′2 and σM contains

no point of ν ′1 (R is the shaded region in Figure 5.2). We position a
hyperbolic tube of width greater than Φ in such a way that it is crossed
laterally by both ν ′2 and the path σ2

M given above. By Lemma 4.3(a), this

tube is crossed in the long direction by some path τ of Ĝ. As illustrated
in Figure 5.2, the union of ν ′2 and τ contains (after oxbow-removal) a
non-self-touching path ν ′′2 from ∂Λn to σ2

M (whose unique vertex in σ2
M is

its second endpoint). We now declare each vertex/site of Λ2M(z)\ (σ̂M)◦

to be open if and only if it lies in ν ′1 ∪ ν ′′2 . Claim (5.11) follows in this
situation, with the σi

M given as above.
(ii) Assume θ < 0, in which case there arises a complication in the above

construction, as illustrated in Figure 5.3. In this case, there is a sub-
path L of ν ′2 from a2 to a′2, that passes anticlockwise around v0, and ν

′
1

contains no vertex/site outside the closed cycle comprising L followed by
the subpath of σ̂M from b′2 to b2. In order to overcome this problem, we
alter the path ν ′2 as follows. Let α denote the annulus ΛM(a2)\ΛM−ζ(a2),
with ζ as in Lemma 4.3(b). (We may assume M ≥ 2ζ.) By that lemma,

α contains a non-self-touching cycle β of Ĝ that surrounds a2. The union
of ν ′2 and β contains (after oxbow-removal) a non-self-touching path ν ′′2
of Ĝ from ∂Λn to a′2 that does not contain a2 (see Figure 5.3). We declare
every x ∈ ν ′′2 open and every x ∈ ν ′2 \ ν ′′2 closed. The subpaths σi

M of σ̂M
may now be defined as above.
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∂Λn

σ̂M

v0

a2

a′2

α

b′2

b1

a1

L
∂Λ2M (z)

β

Figure 5.3. When D = 1 and θ < 0, we adjust the path ν2 by
bypassing a subpath through a2.

σA

v′

σM

Figure 5.4. An illustration of the construction at Stages IV and V.

B. Suppose the hypothesis of part A does not hold, but instead ν2 passes from a2
into σ̂M . In this case we follow A with ν(u−) and ν(w+) interchanged. This
case is slightly shorter than A since the above complication cannot occur.

C. Suppose neither νi passes from ai directly into σ̂M . We add b2 to ν2 and
continue as in A above.

Suppose D = 0. Statement (5.11) holds by a similar argument to that of case (ii),

Stage IV. We next pursue a similar strategy within ΛA(v
′). The argument is essen-

tially that in proof of Theorem 4.8 given in Section 4.3, and the details of this are
omitted here. See Figures 4.5 and 5.4.



PERCOLATION CRITICAL PROBABILITIES 25

Stage V. Having located the subpaths σi
M of σ̂M , and the subpaths σi

A of σ̂A, we
prove next that there exists j ∈ {1, 2}, and non-self-touching paths µ1, µ2, such
that: (i) µ1, µ2 is a non-touching pair, (ii) µ1 has endpoints in σ1

M and σj
A, and µ2

has endpoints in σ2
M and σj′

A , where j
′ ∈ {1, 2}, j′ ̸= j, and (iii) apart from their

endpoints, µ1 and µ2 lie in (σ̂M)◦ \ σ̂A. This statement follows as in Figure 5.4 by
positioning two hyperbolic tubes of width exceeding Φ, and appealing to Lemma
4.3(a). It may be necessary to remove some oxbows at the junctions of paths.

Hyperbolic tubes are superimposed on σ̂A above, and it is for this reason that A
is assumed to be sufficiently large.

Having satisfied (5.7) subject to (5.8), we next explain how to remove the as-
sumption (5.8). Let the pivotal vertex v satisfy v ∈ Λ2M ; a similar argument applies

if v ∈ Λn \ Λn−2M . Let π be an infinite, non-self-touching open path of Ĝ starting
at v0, and declare closed every vertex of Λ4M not lying in π. (Such a π exists by
connectivity and oxbow-removal.) In the resulting configuration, every vertex/site
in the subpath of π from ∂Λ2M to ∂Λ4M is pivotal. We pick one such vertex and
apply the above arguments to obtain a pivotal facial site lying in Λ4M . □

6. Strict inequality using the metric method

6.1. Embeddings in the Poincaré disk. Throughout this section we shall work
with the Poincaré disk model of hyperbolic geometry (also denotedH), and we denote
by ρ the corresponding hyperbolic metric.

6.2. Proof of Theorem 3.1. Let Γ be a doubly-infinite geodesic in the Poincaré
disk. Pick a fixed but arbitrary total ordering < of Γ. Then Γ may be parametrized
by any function p : Γ → R satisfying p(v) = p(u) + ρ(u, v) for u, v ∈ Γ, u < v, and
we fix such p.

Any x /∈ Γ has an orthogonal projection π(x) onto Γ (for x ∈ Γ, we set π(x) = x).

Lemma 6.1. For x, y ∈ H, we have ρ(π(x), π(y)) ≤ ρ(x, y).

Proof. We assume for simplicity that x and y are distinct and lie in the same con-
nected component of H \ Γ; a similar proof holds if not. The points x, π(x), π(y), y
form a quadrilateral with two consecutive right angles (see Figure 6.1). Let z be the
orthogonal projection of x onto the geodesic containing y and π(y). The triple x, z, y
forms a right-angled triangle, and the quadruple x, z, π(y), π(x) forms a Lambert
quadrilateral. By the geometry of such shapes (see, for example, [15, Sect. III.5]),
we have that ρ(x, y) ≥ ρ(x, z) ≥ ρ(π(x), π(y)). □

Let G = (V,E) ∈ T be one-ended but not a triangulation. We shall consider only
the case when G is non-amenable, so that it is embedded as an Archimedean tiling
in the Poincaré disk; the Euclidean case is similar. For an edge e of G∗ = (V,E∗),
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x

y

π(x)

π(y)

z

Γ

Figure 6.1. An illustration of the proof of Lemma 6.1. The four
curved lines are geodesics.

let ρ(e) denote the hyperbolic distance between its endvertices; since every e of G∗
(in its embedding) is a geodesic, ρ(e) equals the hyperbolic length of e. Since the
embedding is Archimedean, every edge of G has the same hyperbolic length, and we
may therefore assume for simplicity that

(6.1) ρ(e) = 1, e ∈ E.

Each e ∈ E∗ is a sub-arc of a unique doubly-infinite geodesic, denoted Γe, of H.
Let r be the maximal number of edges in a face of G, and let F be a face of size

r. Since F is a regular r-gon, by (6.1), F has some diagonal d satisfying

(6.2) ρ(d) ≥ ρ(e) ≥ 1, e ∈ E∗,

and we choose d accordingly. By Lemma 6.1 applied to the geodesic Γd,

(6.3) ρ(π(e)) ≤ ρ(e) ≤ ρ(d), e ∈ E∗,

where π denote orthogonal projection onto Γd, and ρ(γ) is the hyperbolic distance
between the endpoints of an arc γ.

Let < and p be the ordering and parametrization of Γd given at the start of this
subsection. We extend the domain of p by setting

p(x) = p(π(x)), x ∈ H.

We construct next a doubly-infinite path of G∗ containing d and lying ‘close’ to Γd.
Write d = ⟨a, b⟩ where a < b. Let Γ+

d (respectively, Γ−
d ) be the sub-geodesic obtained

by proceeding along Γd from b in the positive direction (respectively, from a in the
negative direction). As we proceed along Γ+

d , we encounter edges and faces of G. If
e ∈ E is such that e ∩ Γ+

d ̸= ∅, then the intersection is either a point or the entire
edge e (this holds since both e and Γd are geodesics).
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x y
g

g
y

x

Γ+
d

Figure 6.2. The two cases that arise when Γ+
d meets an edge which

is either perpendicular or not.

Lemma 6.2. Let e = ⟨x, y⟩ ∈ E be an edge whose interior e◦ intersects Γ+
d at a

singleton g only, so that e◦ ∩ Γ+
d = {g}. Then,

(a) either p(x) = p(g) = p(y), or
(b) some endvertex z ∈ {x, y} of e satisfies p(z) > p(g).

Proof. The first case arises when e, viewed as a geodesic, is perpendicular to Γ+
d , and

the second when it is not. See Figure 6.2. □

In proceeding along Γ+
d , we make an ordered list (wi) of vertices as follows.

(a) Set w0 = b.
(b) Every time Γd passes into the interior of a face F ′, it exits either at a vertex

v′ or across the interior of some edge e′. In the first case we add v′ to the
list, and in the second, we add to the list an endvertex of e′ with maximal
p-value.

(c) If Γ+
d passes along an edge e ∈ E, we add both its endvertices to the list in

the order in which they are encountered.

The following lemma is proved after the end of the current proof.

Lemma 6.3. The infinite ordered list w = (w0, w1, . . . ) is a path of G∗ with the
property that p(wi) is strictly increasing in i.

We apply oxbow-removal, Lemma 4.1(b), to w to obtain an infinite, non-self-
touching path ν+ = (ν0, ν1, . . . ) of G∗ satisfying

(6.4) ν0 = b, p(ν0) < p(ν1) < · · · .
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By the same argument applied to Γ−
d , there exists an infinite, non-self-touching path

ν− = (ν−1, ν−2, . . . ) of G∗ satisfying

(6.5) ν−1 = a, p(ν−1) > p(ν−2) > · · · .

The composite path ν obtained by following ν− towards a, then d, then ν+, fails to be
non-self-touching in G∗ if and only if there exists s < 0 and t ≥ 0 with (s, t) ̸= (−1, 0)
such that e′′ := ⟨νs, νt⟩ ∈ E∗. If the last were to occur, by (6.4)–(6.5),

ρ(π(e′′)) = p(νt)− p(νs) > p(b)− p(a) = ρ(d),

in contradiction of (6.3). Thus ν is the required non-self-touching path. The above
may be regarded as a more refined version of part of Proposition 4.3.

Proof of Lemma 6.3. That w is a path of G∗ follows from its construction, and we
turn to the second claim. Let m ≥ 0, and consider w0, w1, . . . , wm as having been
identified. We claim that

(6.6) p(wm) < p(wm+1).

(a) Suppose wm ∈ Γ+
d .

(i) If Γ+
d includes next an entire edge of the form ⟨wm, g⟩ ∈ E, then wm+1 = g

and (6.6) holds.
(ii) Suppose Γ+

d enters next the interior of some face F ′. If it exits F ′ at
a vertex, then this vertex is wm+1 and (6.6) holds. Suppose it exits by
crossing the interior of an edge e′. If wm is an endvertex of e′, then wm+1

is its other endvertex and (6.6) holds; if not, then wm+1 is an endvertex
of e′ with maximal p-value (recall Lemma 6.2).

(b) Suppose wm is the endvertex of an edge e that is crossed (but not traversed
in its entirety) by Γ+

d , and let F ′ be the face thus entered. The next vertex
wm+1 is given as in (a)(ii) above, and (6.6) holds.

The proof is complete. □

Finally in this section, we prove Lemma 3.3.

Proof of Lemma 3.3. Let e = ⟨u, v⟩ ∈ E∗ satisfy e ∈ argmax{ρ(f) : f ∈ E∗}, and let
Γ be the doubly infinite geodesic through u and v. Then, for f = ⟨x, y⟩ ∈ E∗,

ρ(e) ≥ ρ(f) ≥ ρ(x, y) ≥ ρ(π(x), π(y)),

where π denotes projection onto Γ. The last inequality holds by Lemma 6.1. There-
fore, e is maximal. □
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6.3. The case of quasi-transitive graphs. Certain complexities arise in applying
the techniques of Section 6.2 to quasi-transitive graphs. In contrast to transitive
graphs, the faces are not generally regular polygons, and the longest edge need not
be a diagonal.

Let G ∈ Q be one-ended and not a triangulation. As before, we restrict ourselves
to the case when G is non-amenable, and we embed G canonically in the Poincaré
disk H. The edges of G are hyperbolic geodesics, but its diagonals need not be so.
The hyperbolic length of an edge e ∈ E∗ \E does not generally equal the hyperbolic
distance ρ(e) between its endvertices.

The proof is an adaptation of that of Section 6.2, and full details are omitted. In
identifying a path corresponding to the path w of Lemma 6.3, we use the fact that
edges of E are geodesics, and concentrate on the final departures of Γ+

d from the
faces whose interiors it enters.

Remark 6.4. The condition of Theorem 3.4 may be weakened as follows. In the
above proof of Theorem 3.1 is constructed a 2∞-nst path of G∗ (see the discussion
following Lemma 6.3). It suffices that, in the sense of that discussion, there exist
a diagonal d and s < 0, t ≥ 1 such that (i) the path (νs, νs+1, . . . , νt) is non-self-
touching in G∗, and (ii) for all e ∈ E we have p(νt)− p(νs) > p(π(e)). Cf. Theorem
4.8.

Note added before publication: the quasi-transitive case is treated in [12].
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