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Abstract. A stochastic model of susceptible/infected/removed (SIR) type, in-
spired by Covid-19, is introduced for the spread of infection through a spatially-
distributed population. Individuals are initially distributed at random in space,
and they move continuously according to independent random processes. The dis-
ease may pass from an infected individual to an uninfected individual when they are
sufficiently close. Infected individuals are permanently removed at some given rate
α. Two models are studied here, termed the ‘delayed diffusion’ and the ‘diffusion’
models. In the first, individuals are stationary until they are infected, at which
time they begin to move; in the second, all individuals start to move at the initial
time 0. Using a perturbative argument, conditions are established under which
the disease infects a.s. only finitely many individuals. It is proved for the delayed
diffusion model that there exists a critical value αc ∈ (0,∞) for the existence of a
pandemic.

1. Introduction

Numerous mathematical models have been introduced to describe the spread of
a disease about a population. Such models may be deterministic or stochastic, or
a mixture of each; they may incorporate a range of factors including susceptibility,
infectivity, recovery, and removal; the population members (termed ‘particles’) may
be distributed about some given space; and so on. Inspired in part by two aspects
of the Covid-19 pandemic of 2020—the spread of infection, and the mobile track &
trace app—we propose two models in which (i) the particles move randomly about
the space that they inhabit, (ii) infection may be passed between particles that
are sufficiently close to one another, and (iii) after the elapse of a random time
since infection, a particle is removed from the process. These models differ from
that of Beckman, Dinan, Durrett, Huo, and Junge [3] through the introduction
of the permanent ‘removal’ of particles, and this new feature brings a significant
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new difficulty to the analysis. (The degree of immunity of an individual previously
infected by Covid-19 is not known at the time of writing.)

We shall concentrate mostly on the case in which the particles inhabit the d-
dimensional reals Rd where d ≥ 2. Here is a concrete example of the processes
studied here.

(a) Particles are initially distributed in Rd in the manner of a Poisson process
with rate λ conditioned to contain a point at the origin 0.

(b) Particles move randomly within Rd according to independent Brownian mo-
tions with variance-parameter σ2. (When viewed in the context of Covid-19,
1/σ may be regarded as a measure of the degree of lockdown.)

(c) At time 0 the particle at the origin (the initial ‘infective’) suffers from an
infectious disease, which may be passed to others when sufficiently close.

(d) When two particles, labelled P and P ′, are within a given distance δ, and P
is already infected, then particle P ′ becomes infected.

(e) Each particle is infected for a total period of time having the exponential
distribution with parameter α ∈ [0,∞), and is then permanently removed.

The fundamental question is to determine for which vectors (λ, δ, σ, α) it is the case
that (with strictly positive probability) infinitely many particles become infected.
For simplicity, we shall assume henceforth that

(1.1) δ = σ = 1.

We shall generally assume α > 0. In the special case α = 0, (studied in [3]) a
particle once infected remains infected forever, and the subsequent analysis is greatly
facilitated by a property of monotonicity that is absent in the more challenging case
α > 0 considered in the current work.

Two protocols for movement feature in this article.

A. Delayed diffusion model. The initial infective starts to move at time 0, and
all other particles remain stationary until they are infected, at which times
they begin to move.

B. Diffusion model. All particles begin to move at time 0.

The main difficulty in studying these models arises from the fact that particles
are permanently removed after a (random) period of infectivity. This introduces
potentially a non-monotonicity into the model, namely that the presence of infected
particles may hinder the growth of the process through the creation of islands of
‘removed’ particles which can act as barriers to the further spread of infection. A re-
lated situation (but without the movement of particles) was considered by Kuulasma
[19] in a discrete setting, and the methods derived there are useful in our Section 3.6
(see also Alves et al. [1, p. 4]). This issue may be overcome for the delayed diffusion
model, but remains problematic in the case of the diffusion process.
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Let I denote the set of particles that are ever infected, and

(1.2) θ(λ, α) := Pλ,α(|I| =∞).

We say the process

becomes extinct if θ(λ, α) = 0,

survives if θ(λ, α) > 0.

Let λc denote the critical value of λ for the disk (or ‘Boolean’) percolation model
with radius 1 on Rd (see, for example, [21]). It is immediate for both models above
that

(1.3) θ(λ, α) > 0 if λ > λc and α ≥ 0,

since in that case the disease spreads instantaneously to the percolation cluster C
containing the initial infective, and in addition we have Pλ,α(|C| =∞) > 0.

We write θd (respectively, θdd) for the function θ of (1.2) in the case of the
diffusion model (respectively, delayed diffusion model). The following two theorems
are proved in Sections 3 and 4 as special cases of results for more general epidemic
models than those given above.

Theorem 1.1 (Brownian delayed diffusion model). Let d ≥ 2. There exists a non-
decreasing function αc : (0,∞)→ (0,∞] such that

(1.4) θdd(λ, α)

{
= 0 if α > αc(λ),

> 0 if α < αc(λ).

Furthermore, αc(λ) =∞ when λ > λc, and there exists λ ∈ (0, λc] such that αc(λ) <
∞ when 0 < λ < λ.

Theorem 1.2 (Brownian diffusion model). Let d ≥ 2. There exists λ ∈ (0, λc] and a
non-decreasing function αc : (0, λ) → (0,∞) such that θd(λ, α) = 0 when α > αc(λ)
and 0 < λ < λ.

For the diffusion model, we have no proof of survival for small positive α (that is,
θd(λ, α) > 0 for λ < λc and small positive α). See Section 4.3. The above theorems
are proved using a perturbative argument, and thus fall short of the assertion that
λ = λc.

The methods of proof may be made quantitative, leading to bounds for the numer-
ical values of the critical points αc. Such bounds are far from precise, and therefore
we do not explore them here. Our basic estimates for the growth of infection hold
if the intensity λ of the Poisson process is non-constant so long as it is bounded
uniformly between two strictly positive constants. The existence of the subcritical
phase may be proved for more general diffusions than Brownian motion.



4 GEOFFREY R. GRIMMETT AND ZHONGYANG LI

The related literature is somewhat ramified, and a spread of related problems
have been studied by various teams. We mention a selection of papers but do not
attempt a full review, and we concentrate on work associated with the lattices Zd
rather than with trees or complete graphs.

The delayed diffusion model may be viewed as a continuous-time version of the
‘frog’ random walk process studied in Alves et al. [1, 2], Ramirez and Sidoravicius
[24], Fontes et al. [6], Benjamini et al. [4], and Hoffman, Johnson, and Junge [14, 15].
See Popov [23] for an early review. Kesten and Sidoravicius [16, 17] considered the
frog model as a model for infection, both with and without recuperation (that is,
when infected frogs recover and become available for reinfection—see also Section
4.3 of the current work). The paper of Beckman et al. [3] is devoted to the delayed
diffusion model without removal (that is, with α = 0). Peres et al. [22] studied three
geometric properties of a Poissonian/Brownian cloud of particles, in work inspired in
part by the dynamic Boolean percolation model of van den Berg et al. [5]. Related
work has appeared in Gracar and Stauffer [8].

A number of authors have considered the frog model with recuperation under the
title ‘activated random walks’. The reader is referred to the review by Rolla [25],
and for recent work to Stauffer and Taggi [28] and Rolla et al. [26].

We write Z0 = {0, 1, 2, . . . } and 1A (or 1(A)) for the indicator function of an
event or set A. Let S(r) denote the closed r-ball of Rd with centre at the origin, and
S = S(1). The d-dimensional Lebesgue measure of a set A is written |A|d, and the
Euclidean norm ‖ · ‖d. The radius of M ⊆ Rd is defined by

rad(M) := sup{‖m‖d : m ∈M}.
We abbreviate Pλ,α (respectively, Eλ,α) to the generic notation P (respectively, E).

The contents of this paper are as follows. The two models are defined in Section
2 with a degree of generality that includes general diffusions and a more general
process of infection. The delayed diffusion model is studied in Section 3, and the
diffusion model in Section 4. Theorem 1.1 (respectively, Theorem 1.2) is contained
within Theorem 3.1 (respectively, Theorem 4.1).

2. General models

2.1. The general set-up. Let d ≥ 2. A diffusion process in Rd is a solution ζ to
the stochastic differential equation

(2.1) dζ(t) = a(ζ(t)) dt+B(ζ(t)) dWt,

where W is a standard Brownian motion in Rd. (We may write either Wt or W (t).)
For definiteness, we shall assume that: ζ(0) = 0; ζ has continuous sample paths;
the instantaneous drift vector a and variance matrix B are continuous. We do not
allow a, B to be time-dependent. We call the process ‘Brownian’ if ζ is a standard
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Brownian motion, which is to say that a is the zero vector and B is the identity
matrix.

Let ζ be such a diffusion, and let (ζi : i ∈ Z0) be independent copies of ζ. Let
α ∈ (0,∞), ρ ∈ [0,∞), and let µ : Rd → [0,∞) be integrable with

(2.2) Int(µ) :=

∫
Rd

µ(x) dx ∈ (0,∞).

We call µ radially decreasing if

(2.3) µ(rx) ≤ µ(x) x ∈ Rd, r ∈ [1,∞).

Let Π = (X0 = 0, X1, X2, . . . ) be a Poisson process on Rd (conditioned to possess
a point at the origin 0) with constant intensity λ ∈ (0,∞). At time 0, particles with
label-set P = {P0, P1, P2, . . . } are placed at the respective points X0 = 0, X1, X2, . . . .
We may refer to a particle Pi by either its index i or its initial position Xi.

We describe the process of infection in a somewhat informal manner (see also
Section 2.4). For i ∈ Z0, at any given time t particle Pi is in one of three states S
(susceptible), I (infected), and R (removed). Thus the state space is Ω = {S, I,R}Z0 ,
and we write ω(t) = (ωi(t) : i ∈ Z0) ∈ Ω for the state of the process at time t. Let
St (respectively, It, Rt) be the set of particles in state S (respectively, I, R) at time
t. We take

ωi(0) =

{
I if i = 0,

S otherwise,

so that I0 = {P0} and S0 = P \ {P0}. The only particle-transitions that may occur
are S → I and I → R. The transitions S → I occur at rates that depend on the
locations of the currently infected particles.

2.2. Delayed diffusion model. Each particle Pj is stationary if and only if it is in
state S. If it become infected (at some time Bj, see (2.5)), henceforth it follows the
diffusion Xj + ζj. We write

πj(t) =

{
Xj if t ≤ Bj,

Xj + ζj(t−Bj) if t > Bj,

for the position of Pj at time t.
A particle changes its state according to the following rates.

(S→ I) Let t > 0, and let Pj be a particle that is in state S at all times s < t. Each
Pi ∈ It (with i 6= j) infects Pj at rate ρµ(Xj − πi(t)). The aggregate rate at
which Pj becomes infected is

(2.4)
∑

i∈It, i 6=j

ρµ(Xj − πi(t)).
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(I→ R) An infected particle is removed at rate α.

Transitions of other types are not permitted. We take the sample path ω = (ω(t) :
t ≥ 0) to be pointwise right-continuous. The infection time Bj of particle Pj is given
by

(2.5) Bj = inf{t ≥ 0 : Pj ∈ It}.
The infection rates ρµ(Xj − πi(t)) of (2.4) are finite, and hence infections take

place at a.s. distinct times. We may thus speak of Pj as being ‘directly infected’ by
Pi. We speak of a point z ∈ Π as being directly infected by a point y ∈ Π when the
associated particles have that property. If Pj is infected directly by Pi, we call Pj a
child of Pi, and Pi the parent of Pj.

Following its infection, particle Pi remains infected for a further random time Ti,
called the lifetime of Pi, and is then removed. The times Ti are random variables
with the exponential distribution with parameter α > 0, and are independent of one
another and of the Xj and ζj.

In the above version of the delayed diffusion model, ρ is assumed finite. When
ρ =∞, we shall consider only situations in which

(2.6) ρ =∞, µ = 1M where M ⊆ Rd is compact.

In this situation, a susceptible particle Pj becomes infected at the earliest instant
that it belongs to πi(t) + M for some Pi ∈ It, i 6= j. This happens when either (i)
Xj ∈ Xi +M at the infection time Bi of Pi, or (ii) an infected particle Pi infects Pj
(or initiates a chain of instantaneous infections leading to Pj), while the former is
diffusing post-infection around Rd.

The role of the Boolean model of continuum percolation becomes clear when
ρ = ∞, and we illustrate this, subject to the simplifying assumption that M is
symmetric in the sense that x ∈M if and only if −x ∈M . Let Π = (Xi : i ∈ Z0) be
a Poisson process in Rd with constant intensity λ, and declare two points Xi, Xj to
be adjacent if and only if Xj −Xi ∈ M . This adjacency relation generates a graph
G with vertex-set Π. In the delayed diffusion process on the set Π, entire clusters of
the percolation process are infected simultaneously.

Since there can be many (even infinitely many) simultaneous infections at the
same time instant when ρ =∞, the notion of ‘direct infection’ requires amplification.
As particle P0 diffuses, it gives rise to the M -sausage Σt(ζ0) where

Σt(ζ) =
⋃
s∈[0,t]

[
ζ(s) +M

]
, t ≥ 0.

For j 6= 0, we say that Pj is directly infected by P0 if Pj is in state S at all times
s < Yj, where Yj = inf{t ≥ 0 : Xj ∈ Σt(ζ0)}, and in addition Yj < T0. Similarly, for
i 6= j, Pj is directly infected by Pi if Pi (respectively, Pj) is in state I (respectively,
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state S) at all times Yi,j − ε for ε ∈ (0, ε0) and some ε0 > 0, where Yi,j = Bi + inf{t ≥
0 : Xj ∈ Xi + Σt(ζi)}. The event of being directly infected by two or particles has
probability 0 and is overlooked in this informal description.

In either case ρ < ∞ or ρ = ∞, we write θdd(λ, ρ, α) for the probability that
infinitely many particles are infected. For concreteness, we note our special interest
in the case in which:

(a) ζ is a standard Brownian motion,
(b) µ = 1S with S the closed unit ball of Rd.

2.3. Diffusion model. The diffusion model differs from the delayed diffusion model
of Section 2.2 in that all particles begin to move at time t = 0. The location of Pj
at time t is Xj + ζj(t), and the transition rates are given as follows.

(S→ I) Let t > 0, and let Pj be susceptible at all times s < t. Each Pi ∈ It (with
i 6= j) infects Pj at rate ρµ(Xj + ζj(t)− ζi(t)). The aggregate rate at which
Pj becomes infected is

(2.7)
∑

i∈It, i 6=j

ρµ
(
Xj + ζj(t)− ζi(t)

)
.

(I→ R) An infected particle is removed at rate α.

As in Section 2.2, we may allow ρ =∞ and µ = 1M with M compact. In either
case ρ < ∞ or ρ = ∞ we write θd(λ, ρ, α) for the probability that infinitely many
particles are infected.

2.4. Construction. We shall not investigate the formal construction of the above
processes as strong Markov processes with right-continuous sample paths. The in-
terested reader may refer to the related model involving random walks on Zd (rather
than diffusions or Brownian motions on Rd) with α = 0, as considered in some depth
by Kesten and Sidoravicius in [16] and developed for the process with ‘recuperation’
in their sequel [17].

It is useful to build the processes in the following way. Let Π be the Poisson
process of initial positions, and let ζ = (ζi : i ∈ Z0) be independent copies of the
diffusion ζ. Furthermore, let δ = (δi : i ∈ Z0) be a family of independent Poisson
processes on (0,∞) with rate α, that are independent of the pair (Π, ζ). The triple
(Π, ζ, δ) enables graphical representations of the delayed diffusion and the diffusion
models, in which the points of δi mark the times of possible removal of Pi when
infected.

3. The delayed diffusion model

3.1. Main result. We consider the general delayed diffusion model of Section 2.2,
and we adopt the notation of that section. Recall the critical point λc of the Boolean
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continuum percolation on Rd in which a closed unit ball is placed at each point of a
rate-λ Poisson process.

Theorem 3.1. Consider the Brownian delayed diffusion model on Rd where d ≥ 2.

(a) Let ρ ∈ (0,∞). There exists a function αc : (0,∞)2 → (0,∞) such that

(3.1) θdd(λ, ρ, α)

{
= 0 if α > αc(λ, ρ),

> 0 if α < αc(λ, ρ).

The function θdd(λ, ρ, α) is non-increasing in α and non-decreasing in ρ.
Therefore, αc = αc(λ, ρ) is non-decreasing in ρ.

(b) Let ρ = ∞ and µ = 1S where S is the closed unit ball in Rd. There exists a
non-decreasing function αc : (0,∞)→ (0,∞] such that, for 0 < λ < λc,

(3.2) θdd(λ,∞, α)

{
= 0 if α > αc(λ),

> 0 if α < αc(λ).

Furthermore, there exists λ ∈ (0, λc] such that

αc(λ)

{
<∞ if 0 < λ < λ,

=∞ if λ > λc.

Moreover, the function θdd(λ,∞, α) is non-increasing in α.

This theorem extends Theorem 1.1. Its proof is found in Sections 3.2–3.6. When
d = 1, there is no phase transition.

Theorem 3.2. Suppose d = 1 and µ = 1S. Then θdd(λ, ρ, α) = 0 for all λ, α > 0
and ρ ∈ (0,∞].

Proof. We adapt the proof of [1, Thm 1.1]. The following proof is valid for all
ρ ∈ (0,∞]. Let Σ be a Poisson process on R with intensity λ, let (ζX : X ∈ Σ)
be independent standard Brownian motions, and let (TX : X ∈ Σ) be independent,
exponentially distributed random variables with parameter α > 0. Write Fx =
inf{t ≥ 0 : ζ(t) = x} for the first-passage time of a standard Brownian motion ζ
to the point x ∈ R, and let T be exponentially distributed with parameter α, and
independent of ζ.

Let
A =

⋂
X∈Σ∩(0,∞)

{GX > TX},

where GX is the first-passage time to 0 of X + ζX . Then

(3.3) P(A) ≥ P
(
Σ ∩ (0, 1) = ∅

)
E

 ∏
X∈Σ∩[1,∞)

(1− pX)

 ,



BROWNIAN SNAILS WITH REMOVAL 9

where px = P(Gx ≤ Tx) = P(Fx ≤ T ). There exists ε > 0 such that px < 1 − ε
for x ≥ 1, and therefore there exists c = c(ε) ∈ (0,∞) such that 1 − px ≥ e−cpx for
x ≥ 1. By (3.3) and Jensen’s inequality,

(3.4) P(A) ≥ e−λ exp

−cE( ∑
X∈Σ∩[1,∞)

pX

) .

By standard results for Poisson processes and first-passage times (see, for example,
[11, Thms 6.13.23, 13.4.5]),

E
( ∑
X∈Σ∩[1,∞)

pX

)
=

∫ ∞
x=1

λ dx

∫ ∞
t=0

αe−αt dt

∫ t

0

x√
2πu3

e−x
2/(2u) du(3.5)

≤ 1√
2α
.

By (3.4)–(3.5),

(3.6) P(A) ≥ exp
(
−λ− c/(

√
2α)
)
> 0.

For k ∈ Z, let Bk be the event that, for all X ∈ Σ, the Brownian motion X + ζX
hits the interval [k − 1, k + 1] only after time TX . By the above,

(3.7) P(Bk) ≥ e−2λP(A)2 > 0.

By the ergodic theorem, the limit

Λ := lim
n→∞

1

2n+ 1

n∑
k=−n

1Bk

exists a.s. and has mean at least e−2λP(A)2. Since Λ is translation-invariant and the
underlying probability measure is a product measure, we have Λ ≥ e−2λP(A)2 a.s.
Therefore, Bk occurs infinitely often a.s. This would imply the claim were it not for
the extra particle at 0 and its associated Brownian motion ζ0. However, the range
of ζ0, up to time T0, is a.s. bounded, and this completes the proof. �

Theorems 3.1 and 3.2 are stated for the case of a single initial infective. The proofs
are valid also with a finite number of initial infectives distributed at the points of some
arbitrary subset I0 of Rd. By the proof of the forthcoming Proposition 3.4, the set I
of ultimately infected particles is stochastically increasing in I0. The corresponding
argument for the diffusion model is false.
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3.2. Percolation representation of the delayed diffusion model. Consider the
delayed diffusion model with d ≥ 2. Suppose that either ρ ∈ (0,∞) with µ as in
(2.2), or ρ =∞ and

(3.8) µ(x) = 1S(x), x ∈ R2,

where S is the closed unit ball with centre at the origin. It turns out that the set of
infected particles may be considered as a type of percolation model on the random
set Π. This observation will be useful in exploring the phases of the former model.

The main result of this section, Proposition 3.3, is motivated in part by work
of Kuulasmaa [19] (see also [1, p. 4]). Recall the initial placements Π = (X0 =
0, X1, X2, . . . ) of particles Pi, with law denoted P (and corresponding expectation
E); we condition on Π.

Fix i ≥ 0, and consider the following infection process. The particle Pi is the
unique initially infected particle, and it diffuses according to ζi and has lifetime Ti.
All other particles Pj, j 6= i, are kept stationary for all time at their respective
locations Xj. As Pi moves around Rd, it infects other particles in the usual way;
newly infected particles are permitted neither to move nor to infect others. Let Ji
be the (random) set of particles infected by Pi in this process. Given Π, the set Ji
depends only on the pair (ζi, Ti) associated with Pi.

Let τi,j be the time of the first infection by Pi of Pj, assuming that Pi is never
removed. Write i → j if τi,j < Ti, which is to say that this infection takes place
before Pi is removed. Thus,

(3.9) Ji = {j : i→ j}.
Suppose first that ρ <∞. Given (Π, ζi, Ti), the vector τi = (τi,j : j 6= i) contains

conditionally independent random variables with respective distribution functions

(3.10) Fi,j(t) = 1− exp

(
−
∫ t

0

ρµ(Xj − ζi(s)) ds
)
, t ≥ 0,

and

(3.11) P(i→ j | Π, ζi, Ti) = Fi,j(Ti).

When ρ =∞, we have that

(3.12) τi,j = inf{t > 0 : Xj ∈ Xi + ζi(t) + S},
the first hitting time of Xj −Xi by the radius-1 Wiener sausage of ζi. As above, we
write i→ j if τi,j < Ti, with Ji and τi given accordingly.

One may thus construct sets Ji for all i ≥ 0; given Π, the set Ji depends only
on (ζi, Ti), and therefore the Ji are conditionally independent given Π. The sets

{Ji : i ≥ 0} generate a directed graph ~G = ~GΠ with vertex-set Z0 and directed

edge-set ~E = {[i, j〉 : i → j}. Write ~I for the set of vertices k of ~G such that there
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exists a directed path of ~G from 0 to k. To the edges of ~G we attach random labels,
with edge [i, j〉 receiving the label τi,j.

From the vector (τi, Ti : i ≥ 0), we can construct a copy of the general delayed
diffusion process by allowing an infection by Pi of Pj whenever Pj has not been
infected earlier by another particle. Let I denote the set of ultimately infected
particles in this coupled process.

Proposition 3.3. For ρ ∈ (0,∞], we have I = ~I.

By rescaling in space/time, we obtain the following. The full parameter-set of
the process is {λ, ρ, α, µ, σ}, where σ is the standard-deviation parameter of the
Brownian motion, and we shall sometimes write θdd(λ, ρ, α, µ, σ) accordingly.

Proposition 3.4. Let ρ ∈ (0,∞].

(a) For given λ ∈ (0,∞), the function θdd(λ, ρ, α) is non-decreasing in ρ and
non-increasing in α.

(b) We have that

(3.13) θdd(λ, ρ, α, µ, 1) = θdd(λ/rd, ρ/r2, α/r2, µr, 1), r ≥ 1,

where µr(x) := µ(x/r).
(c) If µ is radially decreasing (see (2.3)), then

αc(λ, ρ) ≥ r2αc(λ/r
d, ρ/r2), r ≥ 1.

(d) If ρ = ∞ and µ is radially decreasing, then θdd(λ,∞, α) and αc(λ,∞) are
non-decreasing in λ.

Proof of Proposition 3.3. This is a deterministic claim. Assume Π is given. If i ∈ I,
there exists a chain of direct infection from 0 to i, and this chain generates a directed
path of ~G from 0 to i. Suppose, conversely, that k ∈ ~I. Let Pk be the set of directed
paths of ~G from 0 to k. Let π ∈ Pk be a shortest such path (where the length of an
edge [i, j〉 is taken to be the label τi,j of that edge). We may assume that the τi,j,
for i→ j, are distinct; no essential difficulty emerges on the complementary null set.
Then the path π is a geodesic, in that every sub-path is the shortest directed path
joining its endvertices. Therefore, when infection is initially introduced at P0, it will
be transmitted directly along π to Pk. �

Proof of Proposition 3.4. (a) By Proposition 3.3, if the parameters are changed in
such a way that each Ji is stochastically increased (respectively, decreased), then the
set I is also stochastically increased (respectively, decreased). The claims follow by
(3.10)–(3.11) when ρ <∞, and by (3.12) when ρ =∞.

(b) Let r ≥ 1, and consider the effect of dilating space by the ratio r. After
stretching space by a factor r, the resulting stretched Poisson process rΠ has intensity
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λ/rd, the resulting Brownian motion rζi(t) is distributed as ζi(r
2t), and µ is replaced

by µr. Therefore,

(3.14) θdd(λ, ρ, α, µ, 1) = θdd(λ/rd, ρ, α, µr, r).

Next, we use the construction of the process in terms of the Ji given above
Proposition 3.3. If ρ <∞ then, by (3.11) and the change of variables u = r2s,

P(i→ j | Π, ζi, Ti) = 1− exp

(
−
∫ Ti

0

ρµ(Xj − ζi(s)) ds
)

d
= 1− exp

(
−
∫ Ti

0

ρµr(rXj − ζi(r2s)) ds

)
d
= 1− exp

(
−
∫ r2Ti

0

ρµr(rXj − ζi(u))
du

r2

)
,

where
d
= means equality in distribution. Since r2Ti is exponentially distributed with

parameter α/r2, the right side of (3.14) equals θdd(λ/rd, ρ/r2, α/r2, µr, 1), as claimed.
The same conclusion is valid for ρ =∞, by (3.12).

(c) Since µr ≥ µ by assumption, it follows by (3.13) that

θdd(λ, ρ, α, µ, 1) ≥ θdd(λ/rd, ρ/r2, α/r2, µ, 1), r ≥ 1.

By the monotonicity of θdd in α, if α > αc(λ, ρ) then α/r2 ≥ αc(λ/r
d, ρ/r2) as

claimed.
(d) This holds as in part (b).

�

Remark 3.5. In the forthcoming proof of Section 3.6.3 we shall use the following
consequence of Proposition 3.3. By part (a),

(3.15) θdd(λ, ρ, α) = E
(
QΠ(|~I| =∞)

)
,

where QΠ is the conditional law of ~G given Π. In proving survival, it therefore suffices
to prove the right side of (3.19) is strictly positive.

3.3. A condition for subcriticality when ρ < ∞. Consider the general delayed
diffusion model of Section 2.2, and assume first that ρ ∈ (0,∞). Let I0 = {0}. We
call y ∈ Π a first generation infected point up to time t if y is directly infected by
P0 at or before time t. Let I1,t be the set of all first generation infected points up
to time t. For n ≥ 2, we call z ∈ Π an nth generation infected point up to time t
if, at or before time t, z is directly infected by some y ∈ In−1,t, and we define In,t
accordingly. Write In = limt→∞ In,t, the set of all nth generation infected points,
and let I =

⋃
n In be the set of points that are ever infected.



BROWNIAN SNAILS WITH REMOVAL 13

In the following, we shall sometimes use the coupling of the delayed diffusion
model with the percolation-type system of the Section 3.2, and we shall use the
notation of that section. In particular, we have that I1 ⊆ J0, and by Proposition 3.3
that I = ~I.

Proposition 3.6. Let ρ ∈ (0,∞) and

(3.16) Lt(x) = E
(

1− exp

(
−
∫ t

0

ρµ(x− ζ(s)) ds

))
.

We have that E|I1,t| ≤ Rt and E|I1| ≤ R, where

Rt = λ

∫
Rd

[∫ t

0

Ls(x)αe−αs ds+ Lt(x)e−αt
]
dx,(3.17)

R = lim
t→∞

Rt = λ

∫
Rd

∫ ∞
0

Ls(x)αe−αs ds dx.(3.18)

The constant R in (3.18) is an upper bound for the so-called reproductive rate of
the process. In the notation of Section 3.2, we have R = E|J0|.

Proposition 3.7. Let ρ ∈ (0,∞).

(a) We have that E|In| ≤ Rn for n ≥ 0, where R is given in (3.18).
(b) If R < 1, then E|I| ≤ 1/(1−R), and hence θdd(λ, ρ, α) = 0.
(c) We have that R ≤ λρ Int(µ)/α.

Note that parts (b) and (c) imply that

(3.19) θdd(λ, ρ, α) = 0 if α > λρ Int(µ).

Proof of Proposition 3.6. Let F0(t) be the σ-field generated by (ζ0(s) : 0 ≤ s ≤ t).
Conditional on F0(t), for i ≥ 1, let Ai = (Aki : k ≥ 0) be a Poisson process on [0,∞)
with rate function

rXi
(s) := ρµ(Xi − ζ0(s)).

Assume the Ai are independent conditional on F0(t), and write Ni = |{k : Aki ≤ t}|.
We say that P0 ‘contacts’ Pi at the times {Aki : k ≥ 1}. Let Ut = {Xi : i ≥ 1, Ni ≥ 1}
be the set of points in Π that P0 contacts up to time t. Note that I1,t is dominated
stochastically by Ut. The domination is strict since there may exist Xi ∈ Ut such
that Pi is infected before time t by some previously infected Pj 6= P0.

Consider a particle, labelled Pj say, with initial position x ∈ Rd. Conditional on
F0(t), P0 contacts Pj up to time t with probability not exceeding

1− exp

(
−
∫ t

0

rx(s) ds

)
.
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Therefore,

(3.20) P
(
Xj ∈ I1,t

∣∣Xj = x, F0(t)
)
≤ E

(
1− exp

(
−
∫ t

0

rx(s) ds

) ∣∣∣∣F0(t)

)
.

By the colouring theorem for Poisson processes (see, for example, [11, Thm
6.13.14]), conditional on F0(t), Ut is a Poisson process with inhomogeneous intensity
function given by

Λt,ζ0(x) = λE
(

1− exp

(
−
∫ t

0

rx(s) ds

) ∣∣∣∣F0(t)

)
.

By Fubini’s theorem,

E|I1,t| ≤ E
(
E(|Ut|

∣∣T0)
)

(3.21)

=

∫
Rd

[
λ

∫ t

0

Ls(x)αe−αs ds+ Lt(x)P(T0 > t)

]
dx,

and (3.17) follows. Equation (3.18) follows as t→∞ by the monotone convergence
theorem. �

Proof of Proposition 3.7. (a) This may be proved directly, but it is more informative

to use the percolation representation of Section 3.2. Let ~G = ~GΠ be as defined there,
and note that, in the given coupling, we have In = {i ∈ Z0 : δ(0, i) = n} where δ

denotes graph-theoretic distance on ~G.
We write

|In| ≤
∑
i∈Z0

|Ji|1(i ∈ In−1).

By the independence of Ji and the event {i ∈ In−1},

E|In| ≤
∑
i∈Z0

E|Ji|P(i ∈ In−1) ≤ RE|In−1|,

and the claim follows.
(b) By part (a) and the assumption R < 1,

E|I| =
∞∑
n=0

E|In| ≤
1

1−R
<∞.

Therefore, θdd(λ, ρ, α) = P(|I| =∞) = 0.
(c) Since 1− e−z ≤ z for z ≥ 0, by (3.16) and Fubini’s theorem,∫

Rd

Lt(x) dx ≤ ρt Int(µ).
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By (3.18),

R ≤ λρ Int(µ)

∫ ∞
0

sαe−αs ds =
λρ

α
Int(µ),

as claimed. �

3.4. Infection with compact support. Suppose µ = 1M with M compact. The
dependence of R = R(ρ) (in (3.18)) on the infection rate ρ ∈ (0,∞) is highlighted in
the formula

(3.22) R(ρ) = λ

∫
Rd

∫ ∞
0

Ls(x)αe−αs ds dx,

where

(3.23) Lt(x) = E
(
1− exp (−ρQt(x))

)
,

and

Qt(x) =
∣∣{s ∈ [0, t] : x ∈ ζ(s) +M}

∣∣
1
.

Note that Qt(x) is the amount of time up to t at which x lies in the ‘sausage’

(3.24) Σt :=
⋃
s∈[0,t]

[
ζ(s) +M

]
, t ≥ 0.

Consider the limit ρ→∞. By (3.22) and dominated convergence,

(3.25) R(ρ) ↑ R := λ

∫
Rd

∫ ∞
0

Ls(x)αe−αs ds dx,

where

Lt(x) = P(Qt(x) > 0) = P(x ∈ Σt).

Therefore,

(3.26) R = λ

∫ ∞
0

E|Σs|d αe−αs ds,

where the integral is the mean volume of the sausage Σ up to time T0. This formula
is easily obtained from first principles applied to the ρ =∞ delayed diffusion process
(see Section 3.5).

Example 3.8 (Bounded motion). If, in addition to the assumptions above, each
particle is confined within some given distance ∆ < ∞ of its initial location, then
Σt ⊆ S(∆ + rad(M)). Therefore, by (3.25)–(3.26),

(3.27) R(ρ) ≤ R ≤ λ
∣∣S(∆ + rad(M))

∣∣
d
.

If the right side of (3.27) is strictly less than 1, then θdd(λ, ρ, α) = 0 for ρ ∈ (0,∞)
by Proposition 3.7. This is an improvement over (3.19) for large ρ.
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3.5. A condition for subcriticality when ρ =∞. Let d ≥ 2, ρ =∞, and µ = 1M
with M compact. The argument of Sections 3.3–3.4 is easily adapted subject to a
condition on the volume of the sausage Σ of (3.24), namely

(3.28) Cγ,σ: for t ≥ 0, E|Σt|d ≤ γeσt,

for some γ, σ ∈ [0,∞). Let

(3.29) R(∞) = λ

∫ ∞
0

E|Σs|d αe−αs ds,

in agreement with (3.25)–(3.26). Note that R(∞) equals the mean number of points
of the Poisson process Π \ {0} lying in the sausage ΣT , where T is independent of Σ
and is exponentially distributed with parameter α.

Theorem 3.9.

(a) If R(∞) < 1 then θdd(λ,∞, α) = 0.
(b) Assume condition Cγ,σ of (3.28) holds, and λ < λ := 1/γ. If α > α :=

σ/(1− λγ), then R(∞) < 1 for α > α.

Proof. (a) This holds by the argument of Proposition 3.7 adapted to the case ρ =∞.
(b) Subject to condition (3.28) with λγ < 1,

(3.30) R(∞) ≤ λ

∫ ∞
0

αγe−(α−σ)s ds =
λαγ

α− σ
, α > σ,

and the second claim follows. �

Example 3.10 (Brownian motion with d = 2). Suppose d = 2, ζ is a standard
Brownian motion, and M = S. By (3.29) and the results of Spitzer [27, p. 117],

R(∞) = λ|S|2 + λ

∫ ∞
0

αe−αs
∫
R2\S

P(x ∈ Σs) dx ds

= λπ + λ

∫
R2\S

K0(‖x‖2

√
2α)

K0(
√

2α)
dx = λZα,

where

(3.31) Zα = π +
2π√
α

K1(
√

2α)

K0(
√

2α)
= π +

2π√
α

+ o(α−
1
2 ) as α→∞.

Here, K1 (respectively, K0) is the modified Bessel function of the second kind of order
1 (respectively, order 0) given by

K0(x) =

∫ ∞
0

e−x cosh s ds, K1(x) =

∫ ∞
0

e−x cosh s cosh s ds.

Therefore, if λ < λ := 1/π, there exists α ∈ (0,∞) such that R(∞) < 1 when α > α.
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Example 3.11 (Brownian motion with d ≥ 5). Suppose d ≥ 5, ζ is a standard
Browian motion, and M = S. Getoor [7, Thm 2] has shown an explicit constant C
such that

E|Σt|d − tcd ↑ C as t→∞,
where cd is the Newtonian capacity of the closed unit ball S of Rd. By (3.29),

R(∞) ≤ λ
(cd
α

+ C
)
.

Therefore, if λ < λ := 1/C, there exists α ∈ (0,∞) such that R(∞) < 1 when
α > α. Related estimates are in principle valid for d = 3, 4, though the behaviour of
E|Σt| − tcd is more complicated (see [7]).

Example 3.12 (Brownian motion with constant drift). Let d ≥ 2, M = S, with
ζ a Brownian motion with constant drift. It is standard (with a simple proof using
subadditivity) that the limit γ := E|Σt|d/t exists and in addition is strictly positive
when the drift is non-zero. Thus, for ε > 0, there exists Cε such that

E|Σt|d ≤ Cε + (1 + ε)γt, t ≥ 0.

As in Example 3.11, if λ < λ := 1/Cε, there exists α ∈ (0,∞) such that R(∞) < 1
when α > α. See also [12, 13].

Example 3.13 (Ornstein–Uhlenbeck process). Let M = S and consider the Ornstein–
Uhlenbeck process in Rd satisfying

dζ(t) = Aζ(t) dt+ dWt

where W is standard Brownian motion in Rd, A is a d×d real matrix, and ζ(0) = 0.
It is an exercise that Cγ,σ holds for suitable γ, σ.

3.6. Proof of Theorem 3.1.

3.6.1. Existence of αc. Consider the Brownian delayed diffusion model with d ≥ 2,
ρ ∈ (0,∞]. When ρ =∞, we assume in addition that

(3.32) µ(x) = 1S(x), x ∈ R2,

where S is the closed unit ball with centre at the origin. Note that µ is radially
decreasing.

By Proposition 3.4, θdd(λ, ρ, α) is non-decreasing in ρ, and non-increasing in α,
and is moreover non-decreasing in λ if ρ =∞. With

αc(λ, ρ) := inf
{
α : θdd(λ, ρ, α) = 0

}
,

we have that

θdd(λ, ρ, α)

{
> 0 if α < αc(λ, ρ),

= 0 if α > αc(λ, ρ),
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and, furthermore, αc is non-decreasing in ρ.
In case (a) of the theorem, by Proposition 3.7, αc(λ, ρ) <∞ for all λ, ρ. In case

(b), by Theorem 3.9 and Example 3.12, there exists λ ∈ (0, λc] such that αc(λ,∞) <
∞ when λ ∈ (0, λ). As remarked after (1.2), αc(λ,∞) = 0 when λ > λc.

It remains to show that αc(λ, ρ) > 0 for all λ ∈ (0,∞), ρ ∈ (0,∞], and the rest
of this proof is devoted to that. This will be achieved by comparison with a directed
site percolation model on Z2

0 viewed as a directed graph with edges directed away
from the origin. When d = 2, the key fact is the recurrence of Brownian motion,
which permits a static block argument. This fails when d ≥ 3, in which case we
employ a dynamic block argument and the transience of Brownian motion.

3.6.2. The case d = 2. Assume first that d = 2, for which we use a static block
argument. Let ε > 0. We choose a > 0 such that

(3.33) P(Π ∩ aS 6= ∅) > 1− ε.
For x ∈ Z2, let Sx = 3ax+aS be the ball with radius a and centre at 3ax. We declare
x occupied if Π∩Sx 6= ∅, and vacant otherwise. Note that the occupied/vacant states
of different x are independent. If a given x 6= 0 is occupied, we let Qx ∈ Π ∩ Sx

be the earliest such point in the lexicographic ordering, and we set Q0 = 0. If x is
occupied, we denote by ζx the diffusion associated with the particle at Qx, and Tx
for the lifetime of this particle.

Let ζ be a standard Brownian motion on R2 with ζ(0) = 0, and let

(3.34) Wt(ζ) :=
⋃
s∈[0,t]

[
ζ(s) + S

]
, t ∈ [0,∞),

be the corresponding Wiener sausage.
Suppose for now that ρ = ∞; later we explain how to handle the case ρ < ∞.

First we explain what it means to say that the origin 0 is open. Let

F (ζ, z) = inf{t : z ∈ Wt(ζ)}, z ∈ R2,

be the first hitting time of z by W (ζ).
For y ∈ Z2, we define the event

K(ζ0,y) =
⋂
x∈Sy

{F (ζ0, z) < T0},

and
K(ζ0) =

⋂
y∈N

K(ζ0,y),

where N = {(0, 1), (1, 0)} is the neighbour set of 0 in the directed graph on Z2
0. By

the recurrence of ζ0, we may choose α such that

(3.35) pα(0) := P(K(ζ0)) satisfies pα(0) > 1− ε.
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We call 0 open if 0 is occupied, and in addition the event K(ζ0) occurs. If 0 is not
open, it is called closed.

We now explain what is meant by declaring x ∈ Z2 \ {0} to be open. Assume x
is occupied and pick Qx as above. For y ∈ x +N , we define the event

(3.36) K(ζx,y) =
⋂
z∈Sy

{F (Qx + ζx, z) < Tx},

and

K(ζx) =
⋂
y∈N

K(ζx,y).

By the recurrence of ζ, we may choose α such that

(3.37) pα(x) := P
(
K(ζx)

∣∣x is occupied
)

satisfies pα(x) > 1− ε.

We declare x ∈ Z2 open if x is occupied, and in addition the event K(ζx) occurs. A
vertex of Z2 which is not open is called closed. Conditional on the set of occupied
vertices, the open/closed states are independent.

The open/closed state of a vertex x ∈ Z2 depends only on the existence of
Qx and on the diffusion ζx, whence the open/closed states of different x ∈ Z2 are
independent. By (3.33)–(3.35), the configuration of open/closed vertices forms a
family of independent Bernoulli random variables with density at least (1 − ε)2.
Choose ε > 0 such that (1 − ε)2 exceeds the critical probability of directed site
percolation on Z2

0 (cf. [10, Thm 3.30]). With strictly positive probability, the origin
is the root of an infinite directed cluster of the latter process. Using the definition
of the state ‘open’ for the delayed diffusion model, we conclude that the graph ~G
contains an infinite directed path from the origin with strictly positive probability.
The corresponding claim of Theorem 3.1(b) follows by Lemma 3.3(a).

Suppose now that ρ ∈ (0,∞). We adapt the above argument by redefining the
times F (ζ, z) and the events K(ζ) as follows. Consider first the case of the origin,
assumed to be occupied. Let

(3.38) E(ζ, z, t) =
∣∣{s ∈ [0, t] : z ∈ ζ(s) + S}

∣∣
1
.

Pick F > 0 such that e−ρF < ε, and write

K(ζ0, t) =
⋂

y∈N, z∈Sx

{E(ζ0, z, t) > F}.

In words, K(ζ0, t) is the event that the Wiener sausage, started at 0 and run for time
t, contains every z ∈ S(0,1)∪S(1,0) for an aggregate time exceeding F . It follows that,
given that Qy ∈ Π∩Sy for some y ∈ N , then P0 infects Qy with probability at least
1− e−ρF > 1− ε.
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By elementary properties of a recurrent Brownian motion, we may pick t and
then α = α(t) such that (cf. (3.35))

(3.39) pα(0) := P
(
K(ζ0, t) ∩ {t < T0}

)
satisfies pα(0) > 1− ε.

Turning to general x ∈ Z2\{0}, a similar construction is valid for an eventK(ζx, t)
as in (3.39), and we replicate the above comparison with directed percolation with
(1− ε)2 replaced by (1− ε)3.

3.6.3. The case d ≥ 3. Let d = 3; the case d ≥ 4 is handled similarly. This time we
use a dynamic block argument, combined with Remark 3.5. The idea is the following.
Let ζ0 be the diffusion of particle P0. We track the projection of ζ0, denoted ζ0, on
the plane R2 × {0}. By the recurrence of ζ0, the Wiener sausage W (ζ0) a.s. visits
every line z × {0} infinitely often, for z ∈ R2. At such a visit, we choose a point
Qz of Π lying in W (ζ0) ‘near to’ the line z × {0}. The construction is then iterated
with Qz as the starting particle. We build this process in each of two independent
directions, and may choose the parameter values such that it dominates the cluster
at 0 of a supercritical directed site percolation process.

For A ⊆ R3, we write A for its projection onto the first two coordinates. That

is, R2
= R2 × {0} is the plane of the first two coordinates, and similarly Z2

=

Z2 × {0}, Z2

0 = Z2
0 × {0}, and S = S ∩ R2

. We abuse notation by identifying

x = (x1, x2, 0, . . . , 0) ∈ R2
(respectively, Z2

etc) with the 2-vector x = (x1, x2) ∈ R2

(respectively, Z2 etc).

For x ∈ Z2
, let Sx = 3ax + aS be the two-dimensional ball with radius a > 1

and centre at 3ax, and let Cx = Sx × R1 be the cylinder generated by x. Let
ζ = (ζ(i) : i = 1, 2, 3) be a standard Brownian motion in R3 with ζ(0) = 0 and
coordinate processes ζ(i), and let ζ = (ζ(1), ζ(2), 0) be its projection onto the first two

coordinates. Note that ζ is a recurrent process on R2
.

We declare the particle at 0 to be open, and let y ∈ N := {(1, 0), (0, 1)}. We shall
see that, with a probability to be bounded below, there exists a (random) particle
at some Qy ∈ Cy such that P0 infects this particle. If this occurs, we declare y to be
open. On the event that y is open, we may iterate the construction starting at Qy, to

find a number of further random vertices of ~G. By a comparison with a supercritical
directed site percolation model, we shall show (for large α) that ~G contains an infinite
directed cluster with root 0. The claim then follows by Proposition 3.3 and Remark
3.5.

Suppose for now that ρ =∞. Let ε > 0. With ζ a standard Brownian motion on
R3 with ζ(0) = 0, let Wt(ζ) be the corresponding Wiener sausage (3.34). We explain
next the state open/closed for a vertex y ∈ N . Let

(3.40) F (ζ0,y) = inf
{
t : (y × {0}) ∩Wt(ζ0) 6= ∅

}
.
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y

0

Cy

Figure 3.1. The Wiener sausage W (ζ0) stopped when it hits the line
y × R. The dark shaded areas constitute the region L(ζ0,y).

Since ζ0 is recurrent, we have F (ζ0,y) < ∞ a.s. Let T0 be the lifetime of P0, and
define the event

(3.41) K(ζ0,y) =
{
F (ζ0,y) < T0

}
.

We explain next how a is chosen (see Figure 3.1). By a geometrical observation,
there exists an absolute constant c > 0 such that the following holds. Let a > 1. For
y ∈ N , the intersection

L(ζ0,y) := WF (ζ0,y)(ζ0) ∩ Cy

has volume at least ca. We now pick a > 1 sufficiently large that

P
(
Ny | K(ζ0,y)

)
> 1− ε where Ny := {Π ∩ L(ζ0,y) 6= ∅}.

If Π ∩ L(ζ0,y) 6= ∅, we pick the earliest point in the intersection (in lexicographic
order) and denote it Qy, and we say that Qy has been occupied from 0. We call y
open if K(ζ0,y) ∩Ny occurs, and closed otherwise.

By the recurrence of ζ, we may choose α > 0 such that

(3.42) pα(y) := P(y is open) satisfies pα(0) > 1− ε.

In order to define the open/closed states of other x ∈ Z2
, it is necessary to

generalize the above slightly, and we do this next. Instead of considering a Brownian

motion ζ starting at ζ(0) = 0, we move the starting point to some q ∈ R2
. Thus ζ
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becomes q + ζ, and (3.40)–(3.41) become

F (ζ, q,y) = inf
{
t : (y × {0}) ∩ (q +Wt(ζ)) 6= ∅

}
,

K(ζ, q,y, T ) = {F (ζ, q,y) < T}.

By the recurrence of ζ, we may choose α such that

(3.43) pα(y) := inf
{
P(K(ζ0, q,y, T0) : q ∈ S

}
satisfies pα(y) > 1− ε.

The extra notation introduced above will be used at the next stage.

We construct a non-decreasing sequence pair (Vn,Wn) of disjoint subsets of Z2

0 in
the following way. The set Vn is the set of vertices known to be open at stage n of
the construction, and Wn is the set known to be closed.

The vertices of Z2

0 are ordered in L1 order: for x = (x1, x2), y = (y1, y2), we
declare

x < y if either x1 + x2 < y1 + y2, or x1 + x2 = y1 + y2 and x1 < y1.

We refer to a point x = (x1, x2) ∈ Z2
0 as belonging to generation n if x1 + x2 = n.

First, let
V0 = {0}, W0 = ∅.

We choose the least y ∈ N , and set:

if y is open: V1 = V0 ∪ {y}, W1 = W0,

otherwise: V1 = V0, W1 = W0 ∪ {y}.
In the first case, we say that ‘y is occupied from 0’.

For A ⊂ Z2

0, let ∆A be the set of vertices b ∈ Z2

0 \ A such that b has some
neighbour a ∈ A with a < b. Suppose (Vk,Wk) have been defined for k = 1, 2, . . . , n,
and define (Vn+1,Wn+1) as follows. Select the least z ∈ ∆Vn \Wn. If such z exists,
find the least x ∈ Vn such that z = x + y for some y ∈ N . Thus x is known to be
open, and there exists a vertex of ~G at the point Qx ∈ Cx.

As above,

L(ζx, Qx, z) := WF (ζx,Qx,y)(ζx) ∩ Cz,

Nz := {Π ∩ L(ζx, Qx,y) 6= ∅}.
If K(ζx, Qx, z, Tx)∩Nz occurs we call z open, and we say that z is occupied from x;
otherwise we say that z is closed.

If z is open: Vn+1 = Vn ∪ {z}, Wn+1 = Wn,

otherwise: Vn+1 = Vn, Wn+1 = Wn ∪ {z}.
By (3.42)–(3.43), the vertex z under current scrutiny is open with conditional prob-
ability at least (1− ε)2.
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This process is iterated until the earliest stage at which no such z exists. If this
occurs for some n < ∞, we declare Vm = Vn for m ≥ n, and in any case we set
V∞ = limm→∞ Vm.

The resulting set V∞ is the cluster at the origin of a type of dependent directed
site percolation process which is built by generation-number. Having discovered the
open vertices z in generation n together with the associated points Qz, the law of
the next generation is (conditionally) independent of the past and is 1-dependent.

By [20, Thm 0.0] (see also [9, Thm 7.65] and the references therein), there exists
η = η(ε), satisfying η(ε) → 0 as ε → 0, such that V∞ dominates stochastically
the cluster at the origin of a ‘normal’ directed site percolation process on Z2

0 with
density 1 − η(ε). Therefore, for sufficiently small ε > 0, P(|V∞| = ∞) > 0. By a
consideration of the geometry of the above construction, and the definition of the
local states open/occupied, by (3.15) this entails θdd(λ,∞, α) > 0.

When ρ ∈ (0,∞), we extend the earlier argument (around (3.41) and later).
Rather than presenting all the required details, we consider the special case of (3.41);
the general case is similar. Let y ∈ N andXt := Wt(ζ0)∩Cy. We develop the previous
reference to the first hitting time F (ζ0,y) with a consideration of the limit set X∞ =
limt→∞Xt. Since ζ0 is recurrent and ζ0 is transient, there exists a deterministic η > 0
such that:

(a) a.s., X∞ contains infinitely many disjoint closed connected regions, each with
volume exceeding 1

2
ca, and

(b) every point of R3 in the union of these regions belongs to X∞ for a total time
exceeding η.

Each such region contains a point of Π with probability at least 1 − e− 1
2
λca. Each

such point is infected by P0 with probability at least 1− e−ρη. Pick N such that, in
N independent trials each with probability of success 1− e− 1

2
λca − e−ρη, there exists

at least one success with probability exceeding 1− ε. Finally, pick the deterministic
time τ such that there is probability at least 1−ε that Xτ contains at least N disjoint
closed connected regions each with volume exceeding 1

2
ca.

Finally, we pick α such that

P(T0 > τ) ≥ 1− ε.
With these choices, the probability that Wτ (ζ0) ∩ Cy contains some particle that is
infected from 0 is at least (1 − ε)3. The required argument proceeds henceforth as
before.

4. The diffusion model

4.1. A condition for subcriticality. We consider the diffusion model in the gen-
eral form of Sections 2.1 and 2.3, and we adopt the notation of those sections. Recall



24 GEOFFREY R. GRIMMETT AND ZHONGYANG LI

the critical point λc of the Boolean continuum percolation on Rd in which a closed
unit ball is centred at each point of a rate-λ Poisson process on Rd. We prove the
existence of a subcritical phase.

Condition (3.28) is now replaced as follows. Let ζ ′ be an independent copy of ζ,
and define the sausage

(4.1) Σ′t :=
⋃
s∈[0,t]

[
ζ(s)− ζ ′(s) + S

]
, s ≥ 0.

We shall assume

(4.2) C ′γ,σ: for t ≥ 0, E|Σ′t|d ≤ γeσt,

for some γ, σ ∈ [0,∞), and we make a note about this condition in Remark 4.3.

Theorem 4.1. Consider the general diffusion model on Rd where d ≥ 1.

(a) Let ρ ∈ (0,∞). There exists a non-decreasing function αc : (0,∞)2 → (0,∞)
such that θd(λ, ρ, α) = 0 if α > αc(λ, ρ).

(b) Let ρ =∞ and µ = 1S. Assume in addition that condition C ′γ,σ of (4.2) holds.
Let αc(λ) = σ/(1−λγ) and λ = 1/γ. Then θd(λ,∞, α) = 0 if α > αc(λ) and
0 < λ < λ.

This theorem extends Theorem 1.2. Its proof is related to that given in Section
3.3 for the delayed diffusion model.

Proof. (a) Let λ ∈ (0,∞), and suppose that ρ <∞. We shall enhance the probability
space on which the diffusion model is defined. Let (Ti : i ∈ Z0) be random variables
with the exponential distribution with parameter α; these are independent of one
another and of all other random variables so far. We call Ti the ‘lifetime’ of Pi, and
it is the length of the period between infection and removal of Pi.

We introduce [0,∞)-valued Poisson processes Ai,j, and we say that Pi ‘contacts’
Pj at the times of Ai,j. The intensity functions of the Ai,j depend as follows on the
positions of Pi and Pj. Conditional on Π and the diffusions (ζi : i ∈ Z0), for i, j ∈ Z
with i 6= j and j 6= 0, let Ai,j = (Aki,j : k ∈ Z0) be independent Poisson processes on
[0,∞) with respective rate functions

ri,j(s) := ρµ
(
Xj + ζj(s)−Xi − ζi(s)

)
, s ≥ 0.

Suppose that Pi becomes infected at time τ . Let

Ai,j(τ) := inf{Aki,j > τ : k ∈ Z0},
and let Bi,j(τ) be the event that Ai,j(τ) < Ti and Pj is susceptible at all times
Ai,j(τ)− ε for ε > 0. The first contact by Pi of Pj after time τ results in an infection
if and only the event Bi,j(τ) occurs (in which case we say that Pi infects Pj directly).
Write Ai,j = Ai,j(0) and Bi,j = Bi,j(0).
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Proposition 3.6 holds with the same proof but with Lt(x) replaced by

(4.3) L̃t(x) = E
(

1− exp

(
−
∫ t

0

ρµ(x+ ζ(s)− ζ ′(s)) ds
))

,

where ζ ′ is an independent copy of ζ. By the Poisson colouring theorem, L̃t(x) equals
the probability that P0 contacts a particle started at x ∈ R up to time t. With this

new L̃t(x), the bound R = R(ρ) now satisfies

(4.4) R(ρ) = λ

∫
Rd

∫ ∞
0

L̃s(x)αe−αs ds dx ≤ λρ

α
Int(µ).

In other words, R(ρ) is the mean number of particles that P0 contacts during its
lifetime (it is not the mean total number of contacts by P0).

By an inductive definition as before, we define the nth generation In of infected
particles from 0. We claim that

(4.5) E|In| ≤ R(ρ)n, n ≥ 1.

By (4.5), E|I| <∞ whenever R(ρ) < 1, and the claim of part (a) follows by (4.4) as
in the proof of Proposition 3.7(b, c). We turn therefore to the proof of (4.5), which
we prove first with n = 1.

Recall that each label i ∈ Z0 corresponds to a point Xi ∈ Π, an associated
diffusion ζi, and a lifetime Ti. The lifetime Ti is the residual time to removal of Pi
after its first infection.

We have that

(4.6) |I1| =
∑

j∈Z0\{0}

1(B0,j) ≤
∑

j∈Z0\{0}

1(A0,j < T0),

whence, by the remark after (4.4),

(4.7) E|I1| ≤
∑

j∈Z0\{0}

P(A0,j < T0) = R(ρ),

as claimed.
Suppose next that n ≥ 2. We introduce some further notation. Let i0 = 0, and

let ~ı = (i1, i2, . . . , in) be an ordered vector of distinct members of Z0 \ {0}; we shall
consider ~ı as both a vector and a set. Define the increasing sequence (τj : 0 ≤ j ≤ n)
of times by

τ0 = 0, τ1 = Ai0,i1 , τ2 = Ai1,i2(≥ τ1), . . . , τj+1 = Aij ,ij+1
(≥ τj).

By iterating the argument leading to (4.6), we obtain

(4.8) |In| ≤ Wn,
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0 Xi1Xi2

τ1

τ2

Figure 4.1. The horizontal axis represents one-dimensional space R,
and the vertical exis represents time. This is an illustration of the
summand f(0, i1, i2) in (4.9) when d = 1. In this conceptual view,
infections occur where pairs of diffusions intersect, and times of removal
are marked by crosses.

where

(4.9) Wn =
∑
~ı

f(~ı),

and

(4.10) f(~ı) = 1(τ1 < Ti0)1(τ2 − τ1 < Ti1) · · · 1(τn − τn−1 < Tin−1).

Equations (4.8)–(4.9) are implied by the following observation: if Pin ∈ In, then
there exists a sequence i0 = 0, i1, . . . , in−1 such that, for 1 ≤ j < n, Pij infects Pij+1

directly at the time τj+1. See Figure 4.1.
By (4.9),

E(Wn) ≤
∑
~ı

E
[
P(C1 ∩ C2 ∩ · · · ∩ Cn | G(~ı))

]
,

where Cj = {τj − τj−1 < Tij−1
} and G(~ı) is the σ-field generated by the random

variables

(Xij , ζij , Tij) for 0 ≤ j < n− 1, Xin−1 , τn−1, (ζin−1(s) : s ∈ [0, τn−1]).

Note that C1, C2, . . . , Cn−1 are G(~ı)-measurable, so that

E(Wn) ≤
∑
~ı

E
[
1(C1 ∩ · · · ∩ Cn)P(Cn−1 | G(~ı))

]
.



BROWNIAN SNAILS WITH REMOVAL 27

and therefore

(4.11) E(Wn) ≤ E

 ∑
i1,...,in−1

1(C1 ∩ · · · ∩ Cn−1)
∑
in

P(Cn | G(~ı))


where the summations are over distinct i1, . . . , in 6= 0.

It is tempting to argue as follows. The diffusions (ζk : k /∈ {i0, . . . , in−1}) are
independent of G(~ı), and τn−1 is G(~ı)-measurable. By the Poisson displacement
theorem (see [18, Sec. 5.2]), the positions Π′ = (Xk + ζk(τn−1) : k /∈ {i0, . . . , in−1})
are a subset of a rate-λ Poisson process. It follows that

(4.12)
∑
in

P(Cn | G(~ı)) ≤ R(ρ).

By (4.9)–(4.12),

(4.13) E(Wn) ≤ E(Wn−1)R(ρ).

Inequality (4.5) follows by iteration and (4.8).
There is a subtlety in the argument leading to (4.12), namely that the distribution

of the subset (Xk : k /∈ {i1, . . . , in−1}) of Π will generally depend on the choice of
i1, . . . , in−1. This may be overcome as follows.

Let m be a positive integer and let Λm = [−m,m]d ∩ Zd; later we shall take the
limit as m→∞. Let Jm = {j : Xj ∈ Λm} be an index set of Πm := Π∩Λm. We now

define a random ordered set ~Sr for given r ≥ 1. If |Jm| < r, set ~Sr = ∅. Suppose

|Jm| ≥ r. Pick a uniformly random ordered r-set ~Sr of distinct elements of Jm. We

delete from Π the points {Xj : j ∈ ~Sr}, and add r new points {Zj : j ∈ ~Sr} chosen
independently and uniformly at random from Λm, independently of all other random
variables. The original Poisson process Π is thus transformed into a new process

Π(~Sn) :=
(
Π \ {Xj : j ∈ ~Sr}

)
∪ {Zj : j ∈ ~Sr}.

We make some remarks about the set Π(~Sr):

(a) by the conditional property of Poisson processes, [11, Thm 6.13.11], Π(~Sr) is
a Poisson process on Rd with intensity λ,

(b) the Poisson process Π(~Sr) is independent of the removed set {Xj : j ∈ ~Sr},
(c) the set Π, with {Xj : j ∈ ~Sr} removed, is a subset of Π(~Sr),

(d) for j ∈ ~Sr, we associate with Zj a copy ζj of the diffusion ζ0, such copies
being independent of all prior random variables,

(e) any event A defined in terms of the removed set (Xj, ζj, Tj : j ∈ ~Sr) is

independent of the new process Π(~Sr) together with its associated diffusions.
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Let n ≥ 2 and

(4.14) V m
n = E(f(~Sn)) =

(M − n)!

M !

∑
~ı⊆Λm

E(f(~ı)),

where f is given in (4.10) andM := |Λm|−1 denotes the cardinality of Λm\{0}. (Note

that f(~Sn) = 0 if |Jm| < n.) With ~Sn = (s1, s2, . . . , sn) and ~Sn−1 = (s1, s2, . . . , sn−1),
we have as in (4.11) that

V m
n = E

[
E(f(~Sn) | G(~Sn))

]
=

1

M − n+ 1

∑
s∈Λm\~Sn−1

E
[
f(~Sn−1)P

(
τs − τn−1 < Tin−1

∣∣G(~Sn)
)]
,

where τs := Ain−1,s
(τn−1). Now,∑

s∈Λm\~Sn−1

P
(
τs − τn−1 < Tin−1

∣∣G(~Sn)
)
≤ R(ρ) a.s.,

by the above remarks (a)–(e) about the Poisson process Π(~Sr) with r = n − 1, in
like manner to (4.12). By (4.14), on letting m → ∞, we deduce inequality (4.13),
and the proof is completed as before.

(b) Let ρ =∞. We repeat the argument in the proof of part (a) (cf. Section 3.5)
with R(∞) defined as the mean number of particles Pj for which there exists t < T0

with Xj + ζj(t) ∈ ζ0(t) + S. That is, with ζ ′ an independent copy of ζ,

R(∞) =

∫
Rd

λ dxP
(
x+ ζ ′(t)− ζ(t) ∈ S for some t < T0

)
(4.15)

=

∫
Rd

λ dx

∫ ∞
0

P(x ∈ Σ′s)αe
−αs ds

= λ

∫ t

0

E|Σ′s|d αe−αs ds,

where Σ′s is given in (4.1). As in Theorem 3.9(b) adapted to the diffusion model, we
have by C ′γ,σ that R(∞) < 1 if λ < λ := 1/γ and α > αc(λ) := σ/(1− λγ). By the
argument of the proof of part (a), θd(λ, ρ, α) = 0 for λ ∈ (0, λ) and α > αc(λ). �

Example 4.2 (Bounded motion). Let ρ = ∞ and µ = 1M as above, and suppose
in addition that each particle is confined within some given distance ∆ < ∞ of its
initial location. By (4.15),

R(∞) ≤ λ
∣∣S(2(∆ + rad(M))

)∣∣
d
.

If the right side is strictly less than 1, then θd(λ,∞, α) = 0 by Proposition 3.7(b)
adapted to the current context.
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Remark 4.3 (Condition C ′γ,σ). Let Mt = sup{‖ζ(s)‖d : s ∈ [0, t]}, the maximum
displacement of ζ up to time t, and let M ′

t be given similarly in terms of ζ ′. By
Minkowski’s inequality,

E|Σ′t|d ≤ E
(
[Mt +M ′

t + 1]d
)
≤
(
2‖Mt‖+ 1

)d
,

were ‖ · ‖ denotes the Ld norm. Therefore, C ′γ,σ holds for some γ, σ if ‖Mt‖ ≤ γ′eσ
′t

for suitable γ′, σ′.

4.2. The Brownian diffusion model. Suppose that ρ ∈ (0,∞], µ = 1S, and ζ is a
standard Brownian motion (one may allow it to have constant non-zero drift, but for
simplicity we set the drift to 0). Since (ζ− ζ ′)/

√
2 is a standard Brownian motion, it

is easily seen that E|Σ′s|d = E|W2s|d where W is the usual radius-1 Wiener sausage.
Therefore,

R(∞) = λ

∫ ∞
0

E|W2s|d αe−αs ds = λ

∫ ∞
0

E|Ws|d (α/2)e−αs/2 ds.

Hence, αc(λ) = 2αdd(λ) where αdd(λ) is the corresponding quantity α of Example
3.12 for the delayed diffusion model.

4.3. Survival. We close with some remarks on the missing ‘survival’ parts of The-
orems 1.2 and 4.1. An iterative construction similar to that of Section 3.6 may be
explored for the diffusion model. However, Proposition 3.3 is not easily extended or
adapted when the particles are permanently removed following infection.

The situation is different when either there is no removal (that is, α = 0, see [3]),
or ‘recuperation’ occurs in that particles become susceptible again post-infection. A
model of the latter type, but involving random walks rather than Brownian motions,
has been studied by Kesten and Sidoravicius in their lengthy and complex work [17].
Each of these variants has structure not shared with our diffusion model, including
the property that the set of infectives increases when the set of initially infected
particles increases. Heavy use is made of this property in [17]. Unlike the delayed
diffusion model (see the end of Section 3.1, and Proposition 3.4), the diffusion model
does not have this property (cf. [17, Remark 4]).
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