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Abstract. Several results are presented for site percolation on quasi-transitive,

planar graphs G with one end, when properly embedded in either the Euclidean or

hyperbolic plane. If (G1, G2) is a matching pair derived from some quasi-transitive

mosaic M , then pu(G1) + pc(G2) = 1, where pc is the critical probability for the

existence of an infinite cluster, and pu is the critical value for the existence of a

unique such cluster. This fulfils and extends to the hyperbolic plane an observation

of Sykes and Essam in 1964.

It follows that pu(G) + pc(G∗) = pu(G∗) + pc(G) = 1, where G∗ denotes the

matching graph of G. In particular, pu(G) + pc(G) ≥ 1 and hence, when G is

amenable we have pc(G) = pu(G) ≥ 1
2 . When combined with the main result of

the companion paper by the same authors (“Percolation critical probabilities of

matching lattice-pairs”, 2022), we obtain for transitive G that the strict inequality

pu(G) + pc(G) > 1 holds if and only if G is not a triangulation.

A key technique is a method for expressing a planar site percolation process on

a matching pair in terms of a dependent bond process on the corresponding dual

pair of graphs. Amongst other things, the results reported here answer positively

two conjectures of Benjamini and Schramm (Conjectures 7 and 8, Electron. Comm.

Probab. 1 (1996) 71–82) in the case of quasi-transitive graphs.

1. Introduction

1.1. Percolation on planar graphs. Percolation was introduced in 1957 by Broad-
bent and Hammersley [12] as a model for the spread of fluid through a random
medium. Percolation provides a natural mathematical setting for such topics as
the study of disordered materials, magnetization, and the spread of disease. See
[18, 21, 36] for recent accounts of the theory. We consider here site percolation on a
graph G = (V,E), assumed to be infinite, locally finite, connected, and planar. The
current work has two linked objectives.
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Our major objective is to study the relationship between the percolation critical
point pc and the critical point pu marking the existence of a unique infinite cluster.
More specifically, we establish the formula psiteu (G1)+psitec (G2) = 1 for a matching pair
(G1, G2) of graphs arising from a quasi-transitive mosaic, appropriately embedded
in either the Euclidean or hyperbolic plane. See Section 1.2.

Setting (G1, G2) = (G,G∗) above, with G∗ the matching graph of G, we obtain

psiteu (G) + psitec (G∗) = psiteu (G∗) + psitec (G) = 1.

It follows that psiteu (G) + psitec (G) > 1 if and only if the strict inequality psitec (G∗) <
psitec (G) holds. A necessary and sufficient condition for the last inequality is es-
tablished in the companion paper [23]. When G is transitive, this implies that
psiteu (G) + psitec (G) > 1 if and only if G is not a triangulation.

Our second objective, which is achieved in the process of proving the above
formula, is to validate Conjectures 7 and 8 of Benjamini and Schramm [6] concerning
the existence of infinitely many infinite clusters. Details of these conjectures are found
in Section 1.3.

The organization of the paper is presented in Section 1.4.

1.2. Critical points of matching pairs. Since loops and multiple edges have no
effect on the existence of infinite clusters in site percolation, the graphs considered
in this article are generally assumed to be simple (whereas their dual graphs may
be non-simple). The main results proved in this paper are as follows (see Sections
2.1–2.2 for explanations of the standard notation used here).

The word ‘transitive’ shall mean ‘vertex-transitive’ throughout this work. We
denote by

G : all infinite, locally finite, planar, 2-connected, simple graphs,

T : the subset of G containing all such transitive graphs,

Q : the subset of G containing all such quasi-transitive graphs.

Since the work reported here concerns matching and dual graphs, the graphs in G
will be considered in their plane embeddings. The most interesting such graphs
turn out to be those with one end. We shall recall in Section 3.1 that one-ended
graphs in T have unique proper embeddings in the Euclidean/hyperbolic plane up
to homeomorphism, and hence their matching and dual graphs are uniquely defined.
The situation is more complicated for one-ended graphs in Q, in which case we fix
a plane embedding of G ∈ Q for which the dual graph G+ is quasi-transitive. Such
an embedding is called canonical ; if G has connectivity 2, a canonical embedding
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Figure 1.1. Two matching pairs derived from the square lattice Z2.
Each 3 × 3 grid is repeated periodically about Z2. The pair on the
right generates Z2 and its matching graph.

need not be unique (even up to homeomorphism), but its existence is guaranteed by
Theorem 3.1(c).

Matching pairs of graphs were introduced by Sykes and Essam [47] and explored
further by Kesten [32]. Let M ∈ Q be one-ended and canonically embedded in the
plane (we call M a mosaic following the earlier literature). Let F4 = F4(M) be the
set of faces of M bounded by n-cycles with n ≥ 4, and let F4 = F1 ∪ F2 be a quasi-
transitive partition of F4. The graph Gi is obtained from M by adding all diagonals
to all faces in Fi. The pair (G1, G2) is called a matching pair. The matching graph
G∗ of a one-ended graph G ∈ Q is obtained by adding all diagonals to all faces in
F4(G). Thus, (G,G∗) is an instance of a matching pair. Two examples of matching
pairs are given in Figure 1.1.

The notation pu denotes the critical value for the existence of a unique infinite
cluster. Further notation and background for percolation is deferred to Section 2.2.

Theorem 1.1.

(a) Let (G1, G2) be a matching pair derived from the mosaic M ∈ Q. We have
that

(1.1) psiteu (G1) + psitec (G2) = 1.

(b) Let G ∈ Q be one-ended. Then

(1.2) psiteu (G) + psitec (G) ≥ 1.

If G is transitive, equality holds in (1.2) if and only if G is a triangulation.

In the context of (1.1), Sykes and Essam [47, eqn (7.3)] presented motivation for
the exact formula

(1.3) psitec (G1) + psitec (G2) = 1,
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and this has been verified in a number of cases when G is amenable (see [8]). This
formula does not hold for non-amenable graphs.

Remark 1.2 (Strict inequality). Equation (1.2) follows from (1.1) with (G1, G2) =
(G,G∗), by the inequality psitec (G) ≥ psitec (G∗). This weak inequality holds trivially
since G is a subgraph of G∗. The corresponding strict inequality psitec (G) > psitec (G∗)
is investigated in the companion paper [23], where a necessary and sufficient condition
is presented for quasi-transitive graphs. By (1.1),

psiteu (G)− psiteu (G∗) = psitec (G)− psitec (G∗) ≥ 0,

so that strict inequality for psitec is equivalent to strict inequality for psiteu .

Remark 1.3 (Canonical embeddings). When G has connectivity 2, it may possess
more than one canonical embedding; by Theorem 1.1, psitec (G∗) and psiteu (G∗) are
independent of the choice of canonical embedding. This may be seen directly.

Remark 1.4 (Amenability). If G ∈ Q is one-ended and in addition amenable, by
the uniqueness of the infinite cluster [1, 13], we have psitec (G) = psiteu (G); in this case,
psitec (G) ≥ 1

2
by (1.2). If G is transitive, we have psitec (G) = 1

2
if and only if G is the

usual amenable, triangular lattice.

The dual graph of a plane graph G is denoted G+.

Remark 1.5 (Bond percolation). Theorem 1.1 may be compared with the corre-
sponding results for bond percolation. It is proved in [7, Thm 3.8] that

pbondc (G) + pbondu (G+) = 1

for any non-amenable, transitive G ∈ T . If, instead, G ∈ T is amenable, it is
standard that pbondu (G+) = pbondc (G+) = 1 − pbondc (G). These facts are extended to
quasi-transitive graphs in [36, Thm 8.31].

1.3. Existence of infinitely many infinite clusters. A number of problems for
percolation on non-amenable graphs were formulated by Benjamini and Schramm in
their influential paper [6], including the following two conjectures.

Conjecture 1.6 ([6, Conj. 7]). Consider site percolation on an infinite, connected,
planar graph G with minimal degree at least 7. Then, for any p ∈ (psitec , 1− psitec ), we
have Pp(N = ∞) = 1. Moreover, it is the case that psitec < 1

2
, so the above interval is

invariably non-empty.

It was proved in [28, Thm 2] that psitec < 1
2
for planar graphs with vertex-degrees

at least 7.
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Conjecture 1.7 ([6, Conj. 8]). Consider site percolation on a planar graph G sat-
isfying P 1

2
(N ≥ 1) = 1. Then P 1

2
(N = ∞) = 1.

Percolation in the hyperbolic plane was later studied by Benjamini and Schramm
[7]. In the current paper, we extend certain of the results of [7] to amenable planar
graphs and to site percolation, and we confirm Conjectures 1.6 and 1.7 for all planar,
quasi-transitive graphs.

Conjectures 1.6 and 1.7 were verified in [34] when G is a regular triangular tiling
(or ‘triangulation’) of the hyperbolic plane H for which each vertex has degree at
least 7. A significant property of a triangulation is that its matching graph is the
same as the original graph.

The next two theorems establish Conjectures 1.6 and 1.7 for planar, quasi-
transitive graphs.

Theorem 1.8. Consider site percolation on a graph G ∈ Q, each vertex of which
has degree 7 or more.

(a) For every p ∈ (psitec , 1 − psitec ), there exist, Pp-a.s., infinitely many infinite
1-clusters and infinitely many infinite 0-clusters.

(b) For every p ∈ [0, 1], there exists, Pp-a.s., at least one infinite cluster that is
either a 1-cluster or a 0-cluster.

Theorem 1.9. Consider site percolation on a graph G ∈ Q, and assume that
P 1

2
(N ≥ 1) = 1. Then, P 1

2
-a.s., there exist infinitely many infinite 1-clusters and

infinitely many infinite 0-clusters.

The approach to establishing Conjectures 1.6 and 1.7 is to classify Q according
to amenability and the number of ends, and then prove these conjectures for each
such subclass of graphs. We recall the following well-known theorem.

Theorem 1.10 ([30], [4, Prop. 2.1]). A graph G that is infinite, connected, locally
finite, and quasi-transitive has either one or two or infinitely many ends. If it has
two ends, then it is amenable. If it has infinitely many ends, then it is non-amenable.

Let G ∈ Q. By Theorem 1.10, only the following cases may occur.

(i) G is amenable and one-ended. This case includes the square lattice, for which
percolation has been studied extensively; see, for example, [21, 32].

(ii) G is non-amenable and one-ended. It is proved in [7] that psitec < psiteu and
pbondc < pbondu for this case.

(iii) G has two ends, in which case there is no percolation phase transition of
interest.
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(iv) G has infinitely many ends.

We shall study percolation on each class of graphs listed above. Matching graphs
and dual graphs will play important roles in our analysis.

1.4. Organization of material. Section 2 is devoted to basic notation for graphs
and percolation. In Section 3, we review certain known results that will be used to
prove the main results of Section 1.2. It is explained in Section 4 how a site per-
colation process on a planar graph may be expressed as a dependent bond process
on the dual graph; this allows a connection between site percolation on the match-
ing graph and bond percolation on the dual graph. We prove Theorem 1.1(a) for
amenable graphs in Section 5, and for non-amenable graphs in Section 6. Theorem
1.8 is proved in Section 7, and Theorem 1.9 in Section 8.

2. Notation

2.1. Graphical notation. Let Aut(G) be the automorphism group of the graph
G = (V,E). A graph G is called vertex-transitive, or simply transitive, if all the
vertices lie in the same orbit under the action of Aut(G). The graph G is called
quasi-transitive if the action of Aut(G) on V has only finitely many orbits. It is
called locally finite if all vertex-degrees are finite. An edge with endpoints u, v is
denoted ⟨u, v⟩, in which case we call u and v adjacent and we write u ∼ v. The
graph-distance dG(u, v) between vertices u, v is the minimal number of edges in a
path from u to v.

A graph G is planar if it can be embedded in the plane R2 in such a way that its
edges intersect only at their endpoints; a planar embedding of such G is called a plane
graph. A face of a plane graph G is an (arc-)connected component of the complement
R2 \ G. Note that faces are open sets, and may be either bounded or unbounded.
With a face F , we associate the set of vertices and edges in its boundary. The size
of a face is the number of edges in its boundary. While it may be helpful to think of
a face as being bounded by a cycle of G, the reality can be more complicated in that
faces are not invariably simply connected (if G is disconnected) and their boundaries
are not generally self-avoiding cycles or paths (if G is not 2-connected). A plane
graph G is called a triangulation it every face is bounded by a 3-cycle.

A manifold M is called plane if, for every self-avoiding cycle π of M , M \ π has
exactly two connected components. When a graph is drawn in a plane manifold M ,
the terms embedding and face mean the same as when embedded in the Euclidean
plane. We say that an embedded graph G ⊂ M is properly embedded if every compact
subset ofM contains only finitely many vertices ofG and intersects only finitely many
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edges. Henceforth, all embeddings will be assumed to be proper. The term plane
shall mean either the Euclidean plane or the hyperbolic plane, and each may be
denoted H when appropriate.

A cycle (or n-cycle) C of a simple graphG = (V,E) is a sequence v0, v1, . . . , vn+1 =
v0 of vertices vi such that n ≥ 3, ei := ⟨vi, vi+1⟩ satisfies ei ∈ E for i = 0, 1, . . . , n,
and v0, v1, . . . , vn are distinct. Let G be a plane graph, duly embedded properly in
H. In this case we write C◦ for the bounded component of R2 \ C, and C for the
closure of C◦. The ‘matching graph’ G∗ is obtained from G by adding all possible
diagonals to every face of G. That is, let F be such a face, and let ∂F be the set of
vertices lying in the boundary of F . We augment G by adding edges between any
distinct pair x, y ∈ V such that (i) there exists a face F such that x, y ∈ ∂F and (ii)
⟨x, y⟩ /∈ E. We write D for the set of diagonals, so that G∗ = (V,E ∪D). We recall
from [33, Thm 3] (see Remark 3.2(d)) that, for a 2-connected graph G, every face is
bounded by either a cycle or a doubly-infinite path, in which case G∗ has a simpler
form.

Next we define a matching pair. Let M ∈ Q be one-ended (we follow the earlier
literature by callingM a mosaic in this context). By the forthcoming Remark 3.2(d),
M has an embedding in the plane such that the dual graph M+ and the matching
graph M∗ are quasi-transitive, and furthermore every face of M is bounded by a
cycle. Let F4 = F4(M) be the set of faces of M bounded by n-cycles with n ≥ 4,
and let F4 = F1∪F2 be a partition of F4. The graph Gi is obtained fromM by adding
all diagonals to all faces in Fi, and we assume that Aut(M) has some subgroup Γ
that acts quasi-transitively on each Gi. The pair (G1, G2) is said to be a matching
pair derived from M .

The graph G is called amenable if its Cheeger constant satisfies

inf
K⊆V, |K|<∞

|∆K|
|K|

= 0,(2.1)

where ∆K is the subset of E containing edges with exactly one endpoint in K. If
the left side of (2.1) is strictly positive, the graph G is called non-amenable.

Each G ∈ T is quasi-isometric with one and only one of the following spaces: Z,
the 3-regular tree, the Euclidean plane, and the hyperbolic plane; see [4]. See [17, 31]
for background on hyperbolic geometry.

Recall that the number of ends of a connected graph is the supremum over its
finite subgraphs F of the number of infinite components that remain after removing
F , and recall Theorem 1.10. The number of ends of a graph is highly relevant to
properties of statistical mechanical models on the graph; see [22, 35], for example,
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for discussions of the relevance of the number of ends to the number and speed of
self-avoiding walks.

2.2. Percolation notation. Let G = (V,E) be a connected, simple graph with
bounded vertex-degrees. A site percolation configuration on G is an assignment
ω ∈ ΩV := {0, 1}V to each vertex of either state 0 or state 1. A cluster in ω is a
maximal connected set of vertices in which each vertex has the same state. A cluster
may be a 0-cluster or a 1-cluster depending on the common state of its vertices, and
it may be finite or infinite. We say that ‘percolation occurs’ in ω if there exists an
infinite 1-cluster in ω.

A bond percolation configuration ω ∈ ΩE := {0, 1}E is an assignment to each edge
in G of either state 0 or state 1. A bond percolation model may be considered as a site

percolation model on the so-called covering graph (or line graph) G̃ of G. Therefore,
we may use the term 1-cluster (respectively, 0-cluster) for a maximal connected set
of edges with state 1 (respectively, state 0) in a bond configuration. The size of a
cluster in site/bond percolation is the number of its vertices.

We call a vertex or an edge open if it has state 1, and closed otherwise. Let µ be
a probability measure on ΩV endowed with the product σ-field. The corresponding
site model is the probability space (ΩV , µ), with a similar definition for a bond
model (ΩE, µ). The central questions in percolation theory concern the existence
and multiplicity of infinite clusters viewed as functions of µ.

A percolation model (Ω, µ) is called invariant if µ is invariant under the action
of Aut(G). An invariant measure is called ergodic if there exists an automorphism
subgroup Γ acting quasi-transitively on G such that µ(A) ∈ {0, 1} for any Γ-invariant
event A. See, for example, [36, Prop. 7.3]. It is standard that the product measure
Pp is ergodic if G is infinite and quasi-transitive.

Site and bond configurations induce open graphs in the usual way, and we write
N for the number of infinite 1-clusters, and N for the number of infinite 0-clusters.
For site percolation on a graph G, we write N∗, N∗ for the corresponding quantities
on the matching graph G∗. A configuration is in one–one correspondence with the
set of elements (vertices or edges, as appropriate) that are open in the configuration.

Let p ∈ [0, 1]. We endow ΩV with the product measure Pp with density p. For
v ∈ V , let θv(p) be the probability that v lies in an infinite open cluster. It is
standard that there exists psitec (G) ∈ (0, 1] such that

for v ∈ V, θv(p)

{
= 0 if p < psitec (G),

> 0 if p > psitec (G),
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and psitec (G) is called the (site) critical probability of G.
More generally, consider (either bond or site) percolation on a graph G with prob-

ability measure Pp. The corresponding critical points may be expressed as follows.

psitec (G) := inf{p ∈ [0, 1] : Pp(N ≥ 1) = 1 for site percolation},
pbondc (G) := inf{p ∈ [0, 1] : Pp(N ≥ 1) = 1 for bond percolation},

and

psiteu (G) := inf{p ∈ [0, 1] : Pp(N = 1) = 1 for site percolation},
pbondu (G) := inf{p ∈ [0, 1] : Pp(N = 1) = 1 for bond percolation}.

By the Kolmogorov zero–one law, Pp(N ≥ 1) equals either 0 or 1.
The notation pc (respectively, pu) shall always mean the critical probability psitec

(respectively, psiteu ) of the site model. For background and notation concerning per-
colation theory, the reader is referred to the book [21].

3. Background

We review certain known results that will be used in the proofs of our main
results.

3.1. Embeddings of one-ended planar graphs. We say that the 2-sphere, the
Euclidean plane, and the hyperbolic plane constitute the natural geometries (see, for
example, Babai [4, Sect. 3.1]). The natural geometries are two-dimensional Riemann-
ian manifolds. An Archimedean tiling of a two-dimensional Riemannian manifold is
a tiling by regular polygons such that the group of isometries of the tiling acts tran-
sitively on the vertices of the tiling. An infinite, one-ended, transitive planar graph
can be characterized as a tiling of either the Euclidean plane or the hyperbolic plane,
and we henceforth denote by H the plane that is appropriate in a given case.

Theorem 3.1.

(a) [4, Thms 3.1, 4.2] If G ∈ T is one-ended, then G may be embedded in H as
an Archimedean tiling, and all automorphisms of G extend to isometries of
H. If G ∈ Q is one-ended and 3-connected, then G may be embedded in H
such that all automorphisms of G extend to isometries of H.

(b) [39, p. 42] Let G be a 3-connected graph, cellularly embedded in H such that
all faces are of finite size. Then G is uniquely embeddable in the sense that for
any two cellular embeddings ϕ1 : G → S1, ϕ2 : G → S2 into planar surfaces
S1, S2, there is a homeomorphism τ : S1 → S2 such that ϕ2 = τϕ1.
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(c) [36, Thm 8.25 and proof, pp. 288, 298] If G = (V,E) ∈ Q is one-ended, there
exists some embedding of G in H such that the edges coincide with geodesics,
the dual graph G+ is quasi-transitive, and all automorphisms of G extend to
isometries of H. Such an embedding is called canonical.

(d) [44] The automorphism group Aut(G) of a quasi-transitive graph G with qua-
dratic growth contains a subgroup isomorphic to Z2 that acts quasi-transitively
on G.

Remark 3.2. Some known facts concerning embeddings follow.

(a) [11, Props 2.2, 2.2] All one-ended, transitive, planar graphs are 3-connected,
and all proper embeddings of a one-ended, quasi-transitive, planar graph have
only finite faces.

(b) By Theorem 3.1(b), any one-ended G ∈ Q that is in addition transitive has
a unique proper cellular embedding in H up to homeomorphism. Hence, the
matching and dual graphs of G are independent of the embedding.

(c) The conclusion of part (b) holds for any one-ended, 3-connected G ∈ Q.
(d) For a one-ended, 2-connected G ∈ Q, we fix a canonical embedding (in the

sense of Theorem 3.1(c)). With this given, the dual graph G+ and the match-
ing graph G∗ are quasi-transitive, and furthermore (by [33, Thm 3]) the bound-
ary of every face is a cycle of G.

Remark 3.3 (Proper embedding). Theorem 3.1(a) implies in particular that every
such graph may be properly embedded in its natural geometry. Such an embedding
is called topologically locally finite (TLF) by Renault [40, Prop. 5.1], [41]. For a
related discussion in the case of non-amenable graphs, see [7, Prop. 2.1].

Remark 3.4 (Connectivity). Graphs with connectivity 1 have been excluded from
membership of G (and therefore from T and Q also). Percolation on such graphs
has little interest since any finite dangling ends may be removed without changing
the existence of an infinite cluster. Moreover, let F be a face of a mosaic M , such
that F contains some dangling end D. If (G1, G2) is a matching pair derived from
M , the critical values pc(Gi) are unchanged if D is deleted.

The representation of transitive, planar graphs as tilings of natural geometries
enables the development of universal techniques to study statistical mechanical mod-
els on all such graphs; see, for example, the study [22] of a universal lower bound for
connective constants on infinite, connected, transitive, planar, cubic graphs.

3.2. Percolation. We assume throughout this subsection that the graph G is infi-
nite, connected, and locally finite.
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Lemma 3.5 ([42, Cor. 1.2], [25]). Let G be quasi-transitive, and consider either site
or bond percolation on G. Let 0 < p1 < p2 ≤ 1, and assume that Pp1(N = 1) = 1.
Then Pp2(N = 1) = 1.

Definition 3.6. Let G = (V,E) be a graph. Given ω ∈ ΩV and a vertex v ∈ V ,
write Πvω = ω ∪ {v} (which is to say that v is declared open). For A ⊆ ΩV , we
write ΠvA = {Πvω : ω ∈ A}. A site percolation process (ΩV , µ) on G is called
insertion-tolerant if µ(ΠvA) > 0 for every v ∈ V and every event A ⊆ ΩV satisfying
µ(A) > 0.

A site percolation is called deletion-tolerant if µ(Π¬vA) > 0 whenever v ∈ V and
µ(A) > 0, where Π¬vω = ω \ {v} for ω ∈ ΩV , and Π¬vA = {Π¬vω : ω ∈ A}.

Similar definitions apply to bond percolation. We shall encounter weaker defini-
tions in Section 3.3.

Lemma 3.7 ([36, Thm 7.8], [5, Thm 8.1]). Let G = (V,E) be a connected, locally
finite, quasi-transitive graph, and let (Ω, µ) be an invariant (site or bond) percolation
on G. Assume either or both of the following two conditions hold:

(a) (Ω, µ) is insertion-tolerant,
(b) G is a non-amenable planar graph with one end.

Then µ(N ∈ {0, 1,∞}) = 1. If µ is ergodic, N is µ-a.s. constant.

The sufficiency of (a) is proved in [36, Thm 7.8] for transitive graphs, and the
same proof is valid for quasi-transitive graphs. The sufficiency of (b) is proved in [5,
Thm 8.1].

3.3. Planar duality. Let G = (V,E) be a plane graph, and write F for the set of
its faces. The dual graph G+ = (V +, E+) is defined as follows. The sets V + and F
are in one–one correspondence, written vf ↔ f . Two vertices vf , vg ∈ V + are joined
by nf,g parallel edges where nf,g is the number of edges of E common to the faces
f, g ∈ F . Thus, E+ and E are in one–one correspondence, written e+ ↔ e.

For a bond configuration ω ∈ ΩE, we define the dual configuration ω+ ∈ ΩE+ by:
for each dual pair (e, e+) ∈ E × E+ of edges, we have

ω(e) + ω+(e+) = 1.(3.1)

In the following, (ΩE, µ) is a bond percolation model on G = (V,E). Similar defini-
tions apply to site percolation.

Definition 3.8. A probability measure µ is called weakly insertion-tolerant if there
exists a function f : E × ΩE → ΩE such that
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(a) for all e and all ω ∈ ΩE, we have ω ∪ {e} ⊆ f(e, ω),
(b) for all e and all ω, the difference f(e, ω) \ [ω ∪ {e}] is finite, and
(c) for all e and each event A satisfying µ(A) > 0, the image of A under f(e, ·)

is an event of strictly positive probability.

Definition 3.9. A probability measure µ is called weakly deletion-tolerant if there
exists a function h : E × ΩE → ΩE such that

(a) for all e and all ω ∈ ΩE, we have ω \ {e} ⊇ h(e, ω),
(b) for all e and all ω, the difference [ω \ {e}] \ h(e, ω) is finite, and
(c) for all e and each event A satisfying µ(A) > 0, the image of A under h(e, ·)

is an event of strictly positive probability.

Lemma 3.10 ([36, Thm 8.30]). Let G = (V,E) ∈ Q be non-amenable and one-
ended, and consider G embedded canonically in the plane (such an embedding exists
by Theorem 3.1(c)). Let (ΩE, µ) be an invariant, ergodic, bond percolation on G,
assumed to be both weakly insertion-tolerant and weakly deletion-tolerant. Let N
be the number of infinite open components, and N+ the number of infinite open
components of the dual process. Then

µ
(
(N,N+) ∈ {(0, 1), (1, 0), (∞,∞)}

)
= 1.

3.4. Graphs with two or more ends. We summarise here the main results for
critical percolation probabilities on multiply-ended graphs.

Theorem 3.11 ([26, 43]). Let G ∈ Q have two ends. The critical percolation prob-
abilities satisfy

pbondc (G) = psitec (G) = pbondu (G) = psiteu (G) = 1.

Theorem 3.12. Let G ∈ Q have infinitely many ends. Then

pbondc (G) ≤ psitec (G) < pbondu (G) = psiteu (G) = 1.

The standard inequality pbondc ≤ psitec holds for all graphs, and was stated in [27].
The corresponding strict inequality was explored in [24, Thm 2] for bridgeless, quasi-
transitive graphs. The equalities pbondu = psiteu = 1 were proved for transitive graphs
in [43, eqn (3.7)] (see also [26]), and feature in [36, Exer. 7.9] for quasi-transitive
graphs. The inequality psitec < 1 for non-amenable graphs was given in [6, Thm 2].

3.5. FKG inequality. For completeness, we state the well-known FKG inequality.
See, for example, [21, Sect. 2.2] for further details.
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Theorem 3.13 (FKG inequality, [20, 29]). Let µ be a strictly positive probability
measure on ΩV satisfying the FKG lattice condition:

µ(ω1 ∨ ω2)µ(ω1 ∧ ω2) ≥ µ(ω1)µ(ω2), ω1, ω2 ∈ {0, 1}V .(3.2)

For any increasing events A,B ⊆ {0, 1}V , we have that µ(A ∩B) ≥ µ(A)µ(B).

4. Planar site percolation as a bond model

Let M = (V,E) ∈ Q be a mosaic, and let (G1, G2) be a matching pair derived
from M according to the partition F4(M) = F1 ∪ F2. If Fi ̸= ∅, then Gi is non-
planar. This is an impediment to consideration of the dual graph of Gi, which in
turn is overcome by the introduction of so-called facial sites.

Let F = F(M) be the set of faces of M (following [32], we include triangular
faces). The triangular faces of F do not appear in F1 ∪ F2 = F4, but we allocate
each such face arbitrarily to either F1 of F2 (for concreteness, we may add them all

to F1). One may replace the mosaic M by the triangulation M̂ obtained by placing
a facial site ϕ(F ) inside each face F ∈ F , and joining ϕ(F ) to each vertex in the
boundary of F . (See [32, Sec. 2.3] and [23, Sect. 4.2].)

When considering site percolation on M (respectively, M∗), one declares the

facial sites of M̂ to be invariably closed (respectively, open). Site percolation on Gi

is equivalent to site percolation on M̂ subject to:

(4.1) a facial site ϕ(F ) is declared open if F ∈ Fi and closed if F ∈ F \ Fi.

Note that, if F is a triangular face, the state of ϕ(F ) is independent of the connec-
tivity of other vertices.

Let Ĝi be obtained by adding to M the facial sites of Fi only, together with their

incident edges. We write Ĝi = (V ∪ Φi, E ∪ ηi) where Φi is the set of facial sites
of Gi and ηi is the set of edges incident to facial sites. We shall consider two site

percolation processes, namely, percolation of open sites on Ĝ1 and of closed sites on

Ĝ2. To this end, for ω ∈ ΩV , let ω1 (respectively, ω2) be the site configuration on Ĝ1

(respectively, Ĝ2) that agrees with ω on V and is open on Φ1 (respectively, closed on
Φ2).

Given ω ∈ ΩV , we construct a bond configuration βω1 ∈ ΩE∪η1 by

(4.2) βω1(e) =

{
1 if ω1(u) = ω1(v) = 1,

0 otherwise,

where e = ⟨u, v⟩ ∈ E∪η1. Let β
+
ω1

:= 1−βω1 be the corresponding dual configuration

on the dual graph Ĝ+
1 = (V +

1 , E+
1 ) of Ĝ1 as in (3.1), and let Ĝ+

1 (β
+
ω1
) be the graph
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with vertex-set V +
1 endowed with the open edges of β+

ω1
. Note that, if ω has law Pp,

then the law of βω1 is one-dependent. We may identify the vector βω1 with the set
of its open edges.

Lemma 4.1. Suppose ω ∈ ΩV has law Pp where p ∈ (0, 1). The law µ of βω1 is
weakly deletion-tolerant and weakly insertion-tolerant. Moreover, µ is ergodic.

Proof. Let e = ⟨u, v⟩ ∈ E ∪ η1 and ω ∈ ΩV . For w ∈ V , let Dw be the set of edges

of Ĝ1 of the form ⟨w, x⟩ with ω(x) = 1. Select an endvertex, u say, of e that is not
a facial site (such a vertex always exists), and define

f(e, βω1) = βω1 ∪ (Du ∪Dv ∪ {e}), h(e, βω1) = βω1 \ (Du ∪ {e}).
The edge-configuration f(e, βω1) (respectively, h(e, βω1)) is that obtained by setting
u and v to be open (respectively, u to be closed). With these functions f , h, the
conditions of Definitions 3.8 and 3.9 hold since G is locally finite. The ergodicity
holds by the assumed quasi-transitivity of G1 and the fact that Pp is a product
measure (see the comment in Section 2.2). □

For ω ∈ ΩV , let Ĝ1(ω) be the subgraph of Ĝ1 induced by the set of ω1-open

vertices (that is, the set of v with ω1(v) = 1), and define Ĝ2(ω) similarly in terms of

closed vertices of ω2 in Ĝ2.
We make some notes concerning the relationship between Ĝ1(ω), Ĝ2(ω), and

Ĝ+
1 (β

+
ω1
), as illustrated in Figure 4.1. A cutset of a graph H is a subset of edges

whose removal disconnects some previously connected component of H, and which
is minimal with this property. Recall that a face of a plane graph H is a connected
component of H \ F . A face F can be bounded or unbounded, and it need not be
simply connected. It has a boundary ∆F comprising edges of H; even when F is
bounded and simply connected, the set ∆F of edges need not be cycle of H unless
H is 2-connected.

Proposition 4.2. Let M = (V,E) ∈ Q be one-ended and embedded canonically in

H. Let ω ∈ ΩV , and let F be a face (either bounded or unbounded) of Ĝ1(ω).

(a) Let C be a cycle (respectively, doubly-infinite path) of Ĝ1(ω). The set of edges

of Ĝ+
1 intersecting C forms a finite (respectively, infinite) cutset of Ĝ+

1 .

(b) The set F ∩ V +
1 of dual vertices of Ĝ1 inside F , together with the set of open

edges of β+
ω1

lying inside F , forms a non-empty, connected component C1(F )

of Ĝ+
1 (β

+
ω1
).

(c) The set F ∩ (V ∪ Φ2) of vertices of Ĝ2 inside F forms a (possibly empty)

0-cluster C2(F ) of Ĝ2(ω).
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∆F

Figure 4.1. An illustration of the one–one correspondence between
C1(F ) and C2(F ) of Proposition 4.2. The black line is the boundary
of the face F ; the dashed lines are edges of M inside F ; the dotted
lines are edges of η1. The shaded regions are faces of M that belong
to F1; the black points are open vertices; the grey points are closed

vertices; the open points are dual vertices of Ĝ1. The green graph is

the 0-cluster C2(F ) of Ĝ2(ω) that corresponds to the red cluster C1(F )

of Ĝ+
1 (β

+
ω1
).

(d) Either each of F , C1(F ), C2(F ) is bounded or each is unbounded.

Proof. (a) This is immediate by the definition (4.2) of βω.
(b) Note first that every vertex w of M inside F satisfies ω(w) = 0. Since F is a

face of G(ω), it is a non-empty, disjoint union F =
⋃

i∈I Ai of faces Ai of Ĝ1 (more
precisely, the two sides of the equality differ on a set of Lebesgue measure 0). Since

Ĝ1 is one-ended, each Ai is bounded, and therefore contains a unique dual vertex di.
It is standard that the dual set D = {di : i ∈ I} induces a connected graph C1(F )
in F . Since no edge f of C1(F ) intersects ∆F , we have β+

ω (f) = 1 for all such f .
(c) It can be the case that F ∩ (V ∪ Φ2) = ∅, in which case we take C2(F ) to

be the empty graph (this is the situation when F is bounded by a 3-cycle of M).
Suppose henceforth that F ∩ (V ∪ Φ2) ̸= ∅ and note as above that ω(w) = 0 for
every w ∈ F ∩ (V ∪ Φ2). It is a standard property of matching pairs of graphs that

F ∩ (V ∪ Φ1) induces a connected subgraph C2(F ) of F ∩ Ĝ2.
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Parts (b) and (c) make use of two so-called ‘standard’ properties, full discussions
of which are omitted here. It suffices to prove the ‘standard’ property of matching
pairs, since the corresponding property for dual pairs then follows by passing to
covering (or line) graphs (see, for example, [32, Sec. 2.6]). For matching pairs, an
early reference is [47, App.], and a more detailed account is found in [32, Sec. 3,
App.] (see, in particular, Proposition A.1 of [32]). The latter assumes slightly more
than here on the mosaic M , but the methods apply notwithstanding.

(d) When F is finite, so must be C1(F ) and C2(F ), since the embedding of G is
proper. When F is infinite, the same holds of C1(F ) and C2(F ), since the faces of
G are uniformly bounded. □

For a graph H, let N(H) be the number of its infinite components.

Proposition 4.3. Let M = (V,E) ∈ Q be one-ended and embedded canonically in
H, and let ω ∈ ΩV . Then,

(4.3) N(Ĝ1(ω)) = N(Ĝ1(βω1)), N(Ĝ2(ω)) = N(Ĝ+
1 (β

+
ω1
)),

and hence

(4.4) N(G1(ω)) = N(G1(βω)), N(G2(ω)) = N(G+
1 (β

+
ω )).

Proof. Equation (4.3) holds by the definition of βω, and from Proposition 4.2 on

noting (for given ω) the one–one correspondence between infinite clusters of Ĝ2(ω)

and of Ĝ+
1 (β

+
ω ). Equation (4.4) holds since the facial site in any face F is a surrogate

for the diagonals of F . □

Remark 4.4 (Conformality). It was proved by Smirnov [46] that critical site percola-
tion on the triangular lattice T satisfies Cardy’s formula, and moreover has properties
of conformal invariance (see also [15, 16]). By the above construction, the depen-
dent bond process βω on T has similar properties, and also its dual process on the
hexagonal lattice.

5. Amenable planar graphs with one end

In this section, we prove Theorem 1.1(a) for amenable, one-ended graphs; see
Remark 1.2 for an explanation of part (b) of the theorem. It is standard that such
graphs are properly embeddable in the Euclidean plane, denoted H in this section.

Recall first that, for any infinite, quasi-transitive, amenable graph G, and in-
variant, insertion-tolerant measure µ, the number N of infinite percolation clusters
satisfies µ(N ≤ 1) = 1 (see [36, Thm 7.9] for the transitive case, the quasi-transitive
case is similar).
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Lemma 5.1. Let M = (V,E) ∈ Q be amenable, one-ended, and embedded canoni-
cally in H, and let (G1, G2) be a matching pair derived from M . Let (ΩV , µ) be an
ergodic, insertion-tolerant site percolation on M satisfying the FKG lattice condition
(3.2). Then

(5.1) µ
(
(N,N) = (1, 1)

)
= µ

(
(N(G1), N(G2)) = (1, 1)

)
= 0,

where N = N(M) and N = N(M).

A pair γ, γ′ of isometries of R2 is said to act in a doubly periodic manner on G (in
its canonical embedding) if they generate a subgroup of Aut(G) that is isomorphic to
Z2, and the embedding is called doubly periodic if such a pair exists. In preparation
for the proof of Lemma 5.1, we note the following.

Theorem 5.2. Let G ∈ Q be amenable and one-ended. A canonical embedding of G
in R2 is doubly periodic.

Proof. This may be proved in a number of ways, including using either Bieberbach’s
theorem on crystalline groups [9, 48] or Selberg’s lemma [2]. Instead, we use a more
direct route via the main theorem of Seifter and Trofimov [44] (see Theorem 3.1(d)).

Viewed as a graph, G has quadratic growth. This standard fact holds as follows.
By [4, Thm 1.1], G has either linear, or quadratic, or exponential growth. As noted
at [14, Thm 9.3(b)], being one-ended, it cannot have linear growth. Finally, we rule
out exponential growth. Since G is quasi-transitive, there exists R < ∞ such that,
for all edges ⟨x, y⟩ of G, the distance between x and y in R2 is no greater than R.
Therefore, the n-ball centred at vertex v is contained in Bn(v) := v + [−nR, nR]2.
By quasi-transitivity again, there exists A < ∞ such that, for all v, Bn(v) contains
no more than A(nR)2 vertices.

The theorem of [44] may now be applied to find that Aut(G) has a finite-index
subgroup F isomorphic to Z2. Thus F is generated by a pair of automorphisms
which, by Theorem 3.1(c), extend to isometries of the embedding of G. □

Proof of Lemma 5.1. By insertion-tolerance and ergodicity, the random variables N ,
N , N(G1), N(G2) are each µ-a.s. constant and take values in {0, 1}. By Theorem
5.2 and [19, Thm 1.5],

(5.2) µ
(
(N(G1), N(G2)) = (1, 1)

)
= 0.

Arguments related to but weaker than [19, Thm 1.5] are found in [10, 21, 37, 38, 45].
Note that [19, Thm 1.5] deals with bond percolation, whereas (5.2) is concerned with
site percolation. This difference may be handled either by adapting the arguments of
[19] to site models, or by applying [19, Thm 1.5] to the one-dependent bond model
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βω constructed in the manner described in Section 4 (see Proposition 4.3). The
remaining part of (5.1) follows from the fact that N(G2) = 1 µ-a.s. on the event
{N = 1}. □

Corollary 5.3. Let G ∈ Q be amenable and one-ended, and consider site percolation
on G. Then P 1

2
(N = 0) = 1.

Proof. Suppose that P 1
2
(N ≥ 1) > 0, so that P 1

2
(N ≥ 1) = 1 by ergodicity. By

amenability and symmetry, we have that P 1
2
(N = N = 1) = 1. This contradicts

Lemma 5.1. □

Lemma 5.4. Let M = (V,E) ∈ Q be amenable, one-ended, and embedded canoni-
cally in H, and let (G1, G2) be a matching pair derived from M . We have for site
percolation that Pp(N(G2) = 1) = 1 for p < psitec (G1).

Proof. Let p ∈ (0, psitec (G1)) be such that Pp(N(G2) = 1) < 1. By amenability and
ergodicity, we have that Pp(N(G2) = 0) = 1. Therefore, Pp(N(G1) = N(G2) = 0) =
1. There is a standard geometrical argument based on exponential decay that leads
to a contradiction, as follows.

Fix a vertex v0 of M = (V,E). Let n ≥ 1, and let Λn = {u ∈ V : dM(u, v0) ≤ n}.
By [32, Prop. 2.1], if ∂Λn ̸↔ ∞ in G2, there exists a closed circuit C of G1 with Λn

in its inside. As in [3, Thm 3] for example, there exist A, a > 0 such that

1 = Pp(∂Λn ̸↔ ∞ in G2) ≤
∑
k≥n

Ae−a(n+k).

This cannot hold for large n, and the lemma is proved. □

We turn to equation (1.1). In this amenable case, this is equivalent to the follow-
ing extension of classical results of Sykes and Essam [47] (see also [8]).

Theorem 5.5. Let M = (V,E) ∈ Q be amenable, one-ended, and embedded canon-
ically in H, and let (G1, G2) be a matching pair derived from M . Then

psitec (G1) + psitec (G2) = 1.

Proof. By Lemma 5.1, whenever p > psitec (G1), we have 1 − p ≤ psitec (G2), which
implies psitec (G1) + psitec (G2) ≥ 1. By Lemma 5.4, whenever p < psitec (G1), we have
1− p ≥ psitec (G2), which implies psitec (G1) + psitec (G2) ≤ 1. □

6. Non-amenable graphs with one end

In this section, we prove Theorem 1.1(a) for non-amenable, one-ended graphs
G = (V,E) ∈ Q; see Remark 1.2 for an explanation of part (b) of the theorem.
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Lemma 6.1. Let M ∈ Q be one-ended and embedded canonically in the hyperbolic
plane, and let (G1, G2) be a matching pair derived from M . Then

Pp

(
(N(G1), N(G2)) ∈ {(0, 1), (1, 0), (∞,∞)}

)
= 1.

Proof. We fix a canonical embedding of G. By Proposition 4.3,

N(G1(βω)) = N(G1(ω)), N(G+
2 (β

+
ω )) = N(G2(ω)).

By Lemma 4.1, the law of βω is weakly deletion-tolerant, weakly-insertion tolerant,
and ergodic, and the claim follows by Lemma 3.10. □

Proof of Theorem 1.1(a). By Lemmas 3.5 and 3.7, we have the following for site
percolation on either G1 or G2:

if p < pc, Pp(N = 0) = 0,

if pc < p < pu, Pp(N = ∞) = 1,

if p > pu, Pp(N = 1) = 1,

where pc, pu are the critical values appropriate to the graph in question.
By Lemma 6.1, N(G1) = 0 if and only if N(G2) = 1, whence pc(G) = 1−pu(G∗).

Moreover, N(G1) = 1 if and only if N(G2) = 0, whence pu(G1) = 1− pc(G2). □

Corollary 6.2. Let G ∈ Q be one-ended and embedded canonically in H, and suppose
G is non-amenable. Then

Pp

(
(N,N) ∈ {(0, 0), (0, 1), (1, 0), (0,∞), (∞, 0), (∞,∞)}

)
= 1.

Proof. We need to eliminate the vectors (1, 1), (1,∞), and (∞, 1). First, by Lemma
3.7, Pp-a.s. the pair (N,N) takes some given value in the set {0, 1,∞}2. If Pp((N,N) =
(1, 1)) > 0, then Pp(N = 1, N∗ ≥ 1) > 0, in contradiction of Lemma 6.1 applied to
the matching pair (G,G∗). Hence, Pp((N,N) ̸= (1, 1)) = 1.

If Pp((N,N) = (1,∞)) > 0, there is strictly positive probability of an infinite
component in G∗(ω), in contradiction of Lemma 6.1. By symmetry, Pp((N,N) ̸=
(∞, 1)) = 1, and the corollary follows. □

7. Proof of Theorem 1.8

Let G be a graph satisfying the assumptions of the theorem. We work with the
largest finite connected subgraph GB of G contained in a large box B (with boundary
∂B) of the natural geometry of G, and shall let B expand to fill the space. The
numbers of finite faces, vertices, edges of GB satisfy Euler’s formula: fB+vB = eB+1.
Since the smallest possible face is a triangle, we have fB ≤ 2

3
eB; since the degree of
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interior vertices is 7 or more, there exists c > 0 such that eB ≥ 7
2
(vB − c|∂B|). This

contradicts Euler’s formula unless eB/|∂B| is bounded above, which is to say that
the natural geometry is the hyperbolic plane. Hence, G is non-amenable. By [28,
Thm 2], we have psitec = psitec (G) < 1

2
.

By the symmetry of the interval (psitec , 1− psitec ) around 1
2
, it suffices to show that

Pp(N = ∞) = 1 for p ∈ (psitec , 1 − psitec ). This in turn is implied by Lemma 3.5 and
the inequality

(7.1) 1− psitec ≤ psiteu .

Inequality (7.1) holds by (1.2) with G non-amenable and one-ended. In the remaining
case when G has infinitely many ends, (7.1) is trivial since psiteu = 1 by Theorem 3.12.

8. Proof of Theorem 1.9

Let G be a graph satisfying the assumptions of the theorem, and embedded
canonically. By Lemma 3.7, symmetry, and the assumption P 1

2
(N ≥ 1) = 1,

(8.1) P 1
2

(
(N,N) ∈ {(1, 1), (∞,∞)}

)
= 1.

By Theorem 1.10, the following four cases may occur:

(a) G is amenable and one-ended. By Lemma 5.1, P 1
2
(N = 0) = 1. Hence, in

this case, the hypothesis of the theorem is invalid.
(b) G is non-amenable and one-ended. By Corollary 6.2 and (8.1), subject to the

percolation assumption, we have P 1
2
(N = N = ∞) = 1.

(c) G has two ends. By Theorem 3.11, psitec = 1. Hence P 1
2
(N = 0) = 1, and the

hypothesis is invalid.
(d) G has infinitely many ends. By Theorem 3.12, psiteu = 1. Under the hypothesis

of the theorem, it follows by symmetry that P 1
2
((N,N) = (∞,∞)) = 1.

Acknowledgements

ZL’s research was supported by National Science Foundation grant 1608896 and
Simons Collaboration Grant 638143.

References

[1] M. Aizenman, H. Kesten, and C. M. Newman, Uniqueness of the infinite cluster and continuity

of connectivity functions for short and long range percolation, Commun. Math. Phys. 111

(1987), 505–531.

[2] R. C. Alperin, An elementary account of Selberg’s lemma, Enseign. Math. (2) 33 (1987), 269–

273.



HYPERBOLIC SITE PERCOLATION 21
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math.cornell.edu/~kesten/kesten-book.html.

[33] B. Krön, Infinite faces and ends of almost transitive plane graphs, Hamburger Beiträge zur

Mathematik 257 (2006), https://preprint.math.uni-hamburg.de/public/hbm.html.

[34] Z. Li, Constrained percolation, Ising model, and XOR Ising model on planar lattices, Rand.

Struct. Alg. 57 (2020), 474–525.

[35] , Positive speed self-avoiding walks on graphs with more than one end, J. Combin. Th.,

Ser. A 175 (2020), paper 105257.

[36] R. Lyons and Y. Peres, Probability on Trees and Networks, Cambridge Univ. Press, 2016,

https://rdlyons.pages.iu.edu/prbtree/.

[37] M. V. Menshikov, Coincidence of critical points in percolation problems, Dokl. Akad. Nauk

SSSR 288 (1986), 1308–1311, Transl: Soviet Math. Dokl. 33 (1986), 856–859.

[38] M. V. Menshikov, S. A. Molchanov, and A. F. Sidorenko, Percolation theory and some ap-

plications, Probability theory. Mathematical statistics. Theoretical cybernetics, Itogi Nauki i

Tekhniki, vol. 24, 1986, pp. 53–110, Transl: J. Soviet Math. 42 (1988), 1766–1810.

[39] B. Mohar, Embeddings of infinite graphs, J. Combin. Th. Ser. B 44 (1988), 29–43.

[40] D. Renault, Étude des graphes planaires cofinis selon leurs groupes de symétries, Ph.D. thesis,

2004, Université de Bordeaux.
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