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Abstract. Several results are presented for site percolation on quasi-transitive,

planar graphs G with one end, when properly embedded in either the Euclidean

or hyperbolic plane. Firstly, if (G1, G2) is a matching pair derived from some

quasi-transitive mosaic M , then pu(G1) + pc(G2) = 1, where pc is the critical

probability for the existence of an infinite cluster, and pu is the critical value for

the existence of a unique such cluster. This fulfils and extends to the hyperbolic

plane an observation of Sykes and Essam in 1964. It follows that pu(G)+pc(G∗) =

pu(G∗) + pc(G) = 1, where G∗ denotes the matching graph of G. Furthermore,

when G is amenable we have pc ≥ 1
2 .

A key technique is a method for expressing a planar site percolation process on

a matching pair in terms of a dependent bond process on the corresponding dual

pair of graphs. Amongst other things, the results reported here answer positively

two conjectures of Benjamini and Schramm (Conjectures 7 and 8, Electron. Comm.

Probab. 1 (1996) 71–82) in the case of quasi-transitive graphs.

A necessary and sufficient condition is established for strict inequality between

the critical probabilities of site percolation on a quasi-transitive, plane graph G,

namely, pc(G∗) < pc(G). When G is transitive, strict inequality holds if and only

if G is not a triangulation, and thus in this case we have pu(G) + pc(G) > 1. The

basic approach is the method of enhancements, subject to complexities arising from

the hyperbolic space, the application to site (rather than bond) percolation, and

the generality of the assumption of quasi-transitivity.

1. Introduction

1.1. Percolation on planar graphs. Percolation was introduced in 1957 by Broad-
bent and Hammersley [14] as a model for the spread of fluid through a random
medium. Percolation provides a natural mathematical setting for such topics as
the study of disordered materials, magnetization, and the spread of disease. See
[20, 24, 39] for recent accounts of the theory. We consider here site percolation on a
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graph G = (V,E), assumed to be infinite, locally finite, connected, and planar. The
current work has a number of linked objectives.

Objective I. Our major objective is to study the relationship between the perco-
lation critical point pc and the critical point pu marking the existence of a unique
infinite cluster. More specifically, we establish the formula psite

u (G1) + psite
c (G2) = 1

for a matching pair (G1, G2) of graphs arising from a quasi-transitive mosaic, appro-
priately embedded in either the Euclidean or hyperbolic plane. See Section 1.2.

Objective II. Our second objective, which is achieved in the process of proving
the above formula, is to validate Conjectures 7 and 8 of Benjamini and Schramm
[8] concerning the existence of infinitely many infinite clusters. Details of these
conjectures are found in Section 1.3.

Objective III. Setting (G1, G2) = (G,G∗) in I above, with G∗ the matching graph
of G, we obtain

psite
u (G) + psite

c (G∗) = psite
u (G∗) + psite

c (G) = 1.

It follows that psite
u (G) + psite

c (G) > 1 if and only if the strict inequality psite
c (G∗) <

psite
c (G) holds. Our third objective is a necessary and sufficient condition for the last

inequality. When G is transitive, this implies that psite
u (G) + psite

c (G) > 1 if and only
if G is not a triangulation. See Section 1.4.

The organization of the paper is given in Section 1.5.

1.2. Critical points of matching pairs. Since loops and multiple edges have no
effect on the existence of infinite clusters in site percolation, the graphs considered
in this article are generally assumed to be simple (whereas their dual graphs may
be non-simple). The main results proved in this paper are as follows (see Sections
2.1–2.2 for explanations of the standard notation used here).

The word ‘transitive’ shall mean ‘vertex-transitive’ throughout this work. We
denote by

G : all infinite, locally finite, planar, 2-connected, simple graphs,

T : the subset of G containing all such transitive graphs,

Q : the subset of G containing all such quasi-transitive graphs.

Since the work reported here concerns matching and dual graphs, the graphs in G
will be considered in their plane embeddings. The most interesting such graphs
turn out to be those with one end. We shall recall in Section 3.1 that one-ended
graphs in T have unique proper embeddings in the Euclidean/hyperbolic plane up
to homeomorphism, and hence their matching and dual graphs are uniquely defined.
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Figure 1.1. Two matching pairs derived from the square lattice Z2.
Each 3 × 3 grid is repeated periodically about Z2. The pair on the
right generates Z2 and its covering graph.

The situation is more complicated for one-ended graphs in Q, in which case we fix
a plane embedding of G ∈ Q for which the dual graph G+ is quasi-transitive. Such
an embedding is called canonical ; if G has connectivity 2, a canonical embedding
need not be unique (even up to homeomorphism), but its existence is guaranteed by
Theorem 3.1(c).

Matching pairs of graphs were introduced by Sykes and Essam [51] and explored
further by Kesten [35]. Let M ∈ Q be one-ended and canonically embedded in the
plane (we call M a mosaic following the earlier literature). Let F4 = F4(M) be the
set of faces of M bounded by n-cycles with n ≥ 4, and let F4 = F1 ∪ F2 be a quasi-
transitive partition of F4. The graph Gi is obtained from M by adding all diagonals
to all faces in Fi. The pair (G1, G2) is called a matching pair. The matching graph
G∗ of a one-ended graph G ∈ Q is obtained by adding all diagonals to all faces of
G. Thus, (G,G∗) is an instance of a matching pair. Two examples of matching pairs
are given in Figure 1.1.

The notation pu denotes the critical value for the existence of a unique infinite
cluster. Further notation and background for percolation is deferred to Section 2.2.

Theorem 1.1.

(a) Let (G1, G2) be a matching pair derived from the one-ended mosaic M ∈ Q.
We have that

(1.1) psite
u (G1) + psite

c (G2) = 1.

(b) Let G ∈ Q be one-ended. Then

(1.2) psite
u (G) + psite

c (G) ≥ 1.

If G is transitive, equality holds in (1.2) if and only if G is a triangulation.
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In the context of (1.1), Sykes and Essam [51, eqn (7.3)] presented motivation for
the exact formula

(1.3) psite
c (G1) + psite

c (G2) = 1,

and this has been verified in a number of cases when G is amenable (see [10]). This
formula does not hold for non-amenable graphs.

Remark 1.2 (Strict inequality). Equation (1.2) follows from (1.1) with (G1, G2) =
(G,G∗), by the inequality psite

c (G) ≥ psite
c (G∗). This weak inequality holds trivially

since G is a subgraph of G∗; the corresponding strict inequality psite
c (G) > psite

c (G∗) is
of a fairly standard type, and is investigated in Section 1.4. A necessary and suffi-
cient condition for strict inequality is presented in Theorem 1.11 for quasi-transitive
graphs; see also Theorems 10.1, 10.4. and 10.8. By (1.1),

psite
u (G)− psite

u (G∗) = psite
c (G)− psite

c (G∗) ≥ 0,

so that strict inequality for psite
c is equivalent to strict inequality for psite

u .

Remark 1.3 (Canonical embeddings). When G has connectivity 2, it may possess
more than one canonical embedding; by Theorem 1.1, psite

c (G∗) and psite
u (G∗) are

independent of the choice of canonical embedding. This may be seen directly.

Remark 1.4 (Amenability). If G ∈ Q is one-ended and in addition amenable, by
the uniqueness of the infinite cluster [2, 15], we have psite

c (G) = psite
u (G); in this case,

psite
c (G) ≥ 1

2
by (1.2). If G is transitive, we have psite

c (G) = 1
2

if and only if G is the
usual amenable, triangular lattice.

The dual graph of a plane graph G is denoted G+.

Remark 1.5 (Bond percolation). Theorem 1.1 may be compared with the corre-
sponding results for bond percolation. It is proved in [9, Thm 3.8] that

pbond
c (G) + pbond

u (G+) = 1

for any non-amenable, transitive G ∈ T . If, instead, G ∈ T is amenable, it is
standard that pbond

u (G+) = pbond
c (G+) = 1 − pbond

c (G). These facts are extended to
quasi-transitive graphs in [39, Thm 8.31].

1.3. Existence of infinitely many infinite clusters. A number of problems for
percolation on non-amenable graphs were formulated by Benjamini and Schramm in
their influential paper [8], including the following two conjectures.
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Conjecture 1.6 ([8, Conj. 7]). Consider site percolation on an infinite, connected,
planar graph G with minimal degree at least 7. Then, for any p ∈ (psite

c , 1− psite
c ), we

have Pp(N =∞) = 1. Moreover, it is the case that psite
c < 1

2
, so the above interval is

invariably non-empty.

It was proved in [30, Thm 2] that psite
c < 1

2
for planar graphs with vertex-degrees

at least 7.

Conjecture 1.7 ([8, Conj. 8]). Consider site percolation on a planar graph G sat-
isfying P 1

2
(N ≥ 1) = 1. Then P 1

2
(N =∞) = 1.

Percolation in the hyperbolic plane was later studied by Benjamini and Schramm
[9]. In the current paper, we extend certain of the results of [9] to amenable planar
graphs and to site percolation, and we confirm Conjectures 1.6 and 1.7 for all planar,
quasi-transitive graphs.

Conjectures 1.6 and 1.7 were verified in [37] when G is a regular triangular tiling
(or ‘triangulation’) of the hyperbolic plane H for which each vertex has degree at
least 7. A significant property of a triangulation is that its matching graph is the
same as the original graph.

The next two theorems establish Conjectures 1.6 and 1.7 for planar, quasi-
transitive graphs.

Theorem 1.8. Consider site percolation on a graph G ∈ Q, each vertex of which
has degree 7 or more.

(a) For every p ∈ (psite
c , 1 − psite

c ), there exist, Pp-a.s., infinitely many infinite
1-clusters and infinitely many infinite 0-clusters.

(b) For every p ∈ [0, 1], there exists, Pp-a.s., at least one infinite cluster that is
either a 1-cluster or a 0-cluster.

Theorem 1.9. Consider site percolation on a graph G ∈ Q, and assume that
P 1

2
(N ≥ 1) = 1. Then, P 1

2
-a.s., there exist infinitely many infinite 1-clusters and

infinitely many infinite 0-clusters.

The approach to establishing Conjectures 1.6 and 1.7 is to classify Q according
to amenability and the number of ends, and then prove these conjectures for each
such subclass of graphs. We recall the following well-known theorem.

Theorem 1.10 ([32], [5, Prop. 2.1]). A graph G that is infinite, connected, locally
finite, and quasi-transitive has either one or two or infinitely many ends. If it has
two ends, then it is amenable. If it has infinitely many ends, then it is non-amenable.

Let G ∈ Q. By Theorem 1.10, only the following cases may occur.
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(i) G is amenable and one-ended. This case includes the square lattice, for which
percolation has been studied extensively; see, for example, [24, 35].

(ii) G is non-amenable and one-ended. It is proved in [9] that psite
c < psite

u and
pbond

c < pbond
u for this case.

(iii) G has two ends, in which case there is no percolation phase transition of
interest.

(iv) G has infinitely many ends.

We shall study percolation on each class of graphs listed above. Matching graphs
and dual graphs will play important roles in our analysis.

1.4. Strict inequality for critical points. Let G be a planar graph with matching
graph G∗. Since G is a subgraph of G∗, it is trivial that

(1.4) psite
c (G∗) ≤ psite

c (G).

The proof of strict inequality in (1.4) for non-triangulations is much more demanding,
and indeed this fails to hold for some quasi-transitive graphs.

A path (. . . , x−1, x0, x1, . . . ) of G∗ is called non-self-touching if, for all i, j, two
vertices xi and xj are adjacent if and only if |i − j| = 1. Here is the main theorem
of the current section.

Theorem 1.11. Let G ∈ Q be one-ended. Then psite
c (G∗) < psite

c (G) if and only if
G∗ contains some doubly-infinite, non-self-touching path that includes some diagonal
of G.

The condition of one-endedness is evidently necessary for the conclusion, since
strict inequality fails for a tree. Transitive graphs invariably satisfy the given condi-
tion.

Theorem 1.12. Every one-ended G ∈ T has the required property of Theorem 1.11.

This is restated and proved at Theorem 10.1. The situation is more complicated
for quasi-transitive graphs; two sufficient conditions for the required property are
given at Theorems 10.4 and 10.8.

The general approach of the proof of Theorem 1.11 is to use the method of
enhancements, as introduced and developed in [1] (though there is earlier work of
relevance, including [41]). While this approach is fairly standard, and the above
result natural, the proof turns out to have substantial complexity arising from the
generality of the assumptions on G, and the fact that we are studying site (rather
than bond) percolation (see [6]); the proof is, in contrast, fairly immediate for the
usual amenable, planar lattices such as the Archimedean tilings.
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1.5. Organization of material. Section 2 is devoted to basic notation for graphs
and percolation. In Section 3, we review certain known results that will be used to
prove the main results of Section 1.2. It is explained in Section 4 how a site per-
colation process on a planar graph may be expressed as a dependent bond process
on the dual graph; this allows a connection between site percolation on the match-
ing graph and bond percolation on the dual graph. We prove Theorem 1.1(a) for
amenable graphs in Section 5, and for non-amenable graphs in Section 6. Theorem
1.8 is proved in Section 7, and Theorem 1.9 in Section 8.

Turning to strict inequalities between critical points, we explain the application of
Theorem 1.11 to transitive and quasi-transitive graphs in Section 10. Two methods
are given there, the ‘metric method’ and the ‘combinatorial method’. Each can
be used to study transitive graphs. When working with quasi-transitive graphs,
they lead to different sufficient (but not necessary) conditions for the required strict
inequality. The proofs of these results begin with some preliminary observations in
Section 11, and the main theorem is proved in Section 12. The claims of Section 10
for quasi-transitive graphs are proved (respectively) by the metric method in Section
13 and by the combinatorial method in Section 14.

2. Notation

2.1. Graphical notation. Let Aut(G) be the automorphism group of the graph
G = (V,E). A graph G is called vertex-transitive, or simply transitive, if all the
vertices lie in the same orbit under the action of Aut(G). The graph G is called
quasi-transitive if the action of Aut(G) on V has only finitely many orbits. It is
called locally finite if all vertex-degrees are finite. An edge with endpoints u, v is
denoted 〈u, v〉, in which case we call u and v adjacent and we write u ∼ v. The
graph-distance dG(u, v) between vertices u, v is the minimal number of edges in a
path from u to v.

A graph G is planar if it can be embedded in the plane R2 in such a way that its
edges intersect only at their endpoints; a planar embedding of such G is called a plane
graph. A face of a plane graph G is an (arc-)connected component of the complement
R2 \ G. Note that faces are open sets, and may be either bounded or unbounded.
With a face F , we associate the set of vertices and edges in its boundary. The size
of a face is the number of edges in its boundary. While it may be helpful to think of
a face as being bounded by a cycle of G, the reality can be more complicated in that
faces are not invariably simply connected (if G is disconnected) and their boundaries
are not generally self-avoiding cycles or paths (if G is not 2-connected). A plane
graph G is called a triangulation it every face is bounded by a 3-cycle.
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A manifold M is called plane if, for every self-avoiding cycle π of M , M \ π has
exactly two connected components. When a graph is drawn in a plane manifold M ,
the terms embedding and face mean the same as when embedded in the Euclidean
plane. We say that an embedded graph G ⊂M is properly embedded if every compact
subset of M contains only finitely many vertices of G and intersects only finitely many
edges. Henceforth, all embeddings will be assumed to be proper. The term plane
shall mean either the Euclidean plane or the hyperbolic plane, and each may be
denoted H when appropriate.

A cycle (or n-cycle) C of a simple graphG = (V,E) is a sequence v0, v1, . . . , vn+1 =
v0 of vertices vi such that n ≥ 3, ei := 〈vi, vi+1〉 satisfies ei ∈ E for i = 0, 1, . . . , n,
and v0, v1, . . . , vn are distinct. Let G be a plane graph, duly embedded properly in
H. In this case we write C◦ for the bounded component of R2 \ C, and C for the
closure of C◦. The ‘matching graph’ G∗ is obtained from G by adding all possible
diagonals to every face of G. That is, let F be such a face, and let ∂F be the set of
vertices lying in the boundary of F . We augment G by adding edges between any
distinct pair x, y ∈ V such that (i) there exists a face F such that x, y ∈ ∂F and (ii)
〈x, y〉 /∈ E. We write D for the set of diagonals, so that G∗ = (V,E ∪D). We recall
from [36, Thm 3] (see Remark 3.2(d)) that, for a 2-connected graph G, every face is
bounded by either a cycle or a doubly-infinite path, in which case G∗ has a simpler
form.

Next we define a matching pair. Let M ∈ Q be one-ended (we follow the earlier
literature by calling M a mosaic in this context). By the forthcoming Remark 3.2(d),
M has an embedding in the plane such that the dual graph M+ and the matching
graph M∗ are quasi-transitive, and furthermore every face of M is bounded by a
cycle. Let F4 = F4(M) be the set of faces of M bounded by n-cycles with n ≥ 4,
and let F4 = F1∪F2 be a partition of F4. The graph Gi is obtained from M by adding
all diagonals to all faces in Fi, and we assume that Aut(M) has some subgroup Γ
that acts quasi-transitively on each Gi. The pair (G1, G2) is said to be a matching
pair derived from M .

The graph G is called amenable if its Cheeger constant satisfies

inf
K⊆V, |K|<∞

|∆K|
|K|

= 0,(2.1)

where ∆K is the subset of E containing edges with exactly one endpoint in K. If
the left side of (2.1) is strictly positive, the graph G is called non-amenable.

Each G ∈ T is quasi-isometric with one and only one of the following spaces: Z,
the 3-regular tree, the Euclidean plane, and the hyperbolic plane; see [5]. See [19, 33]
for background on hyperbolic geometry.



HYPERBOLIC SITE PERCOLATION 9

Recall that the number of ends of a connected graph is the supremum over its
finite subgraphs F of the number of infinite components that remain after removing
F , and recall Theorem 1.10. The number of ends of a graph is highly relevant to
properties of statistical mechanical models on the graph; see [25, 38], for example,
for discussions of the relevance of the number of ends to the number and speed of
self-avoiding walks.

2.2. Percolation notation. Let G = (V,E) be a connected, simple graph with
bounded vertex-degrees. A site percolation configuration on G is an assignment
ω ∈ ΩV := {0, 1}V to each vertex of either state 0 or state 1. A cluster in ω is a
maximal connected set of vertices in which each vertex has the same state. A cluster
may be a 0-cluster or a 1-cluster depending on the common state of its vertices, and
it may be finite or infinite. We say that ‘percolation occurs’ in ω if there exists an
infinite 1-cluster in ω.

A bond percolation configuration ω ∈ ΩE := {0, 1}E is an assignment to each edge
in G of either state 0 or state 1. A bond percolation model may be considered as a site

percolation model on the so-called covering graph (or line graph) G̃ of G. Therefore,
we may use the term 1-cluster (respectively, 0-cluster) for a maximal connected set
of edges with state 1 (respectively, state 0) in a bond configuration. The size of a
cluster in site/bond percolation is the number of its vertices.

We call a vertex or an edge open if it has state 1, and closed otherwise. Let µ be
a probability measure on ΩV endowed with the product σ-field. The corresponding
site model is the probability space (ΩV , µ), with a similar definition for a bond
model (ΩE, µ). The central questions in percolation theory concern the existence
and multiplicity of infinite clusters viewed as functions of µ.

A percolation model (Ω, µ) is called invariant if µ is invariant under the action
of Aut(G). An invariant measure is called ergodic if there exists an automorphism
subgroup Γ acting quasi-transitively on G such that µ(A) ∈ {0, 1} for any Γ-invariant
event A. See, for example, [39, Prop. 7.3]. It is standard that the product measure
Pp is ergodic if G is infinite and quasi-transitive.

Site and bond configurations induce open graphs in the usual way, and we write
N for the number of infinite 1-clusters, and N for the number of infinite 0-clusters.
For site percolation on a graph G, we write N∗, N∗ for the corresponding quantities
on the matching graph G∗. A configuration is in one–one correspondence with the
set of elements (vertices or edges, as appropriate) that are open in the configuration.

Let p ∈ [0, 1]. We endow ΩV with the product measure Pp with density p. For
v ∈ V , let θv(p) be the probability that v lies in an infinite open cluster. It is
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standard that there exists psite
c (G) ∈ (0, 1] such that

for v ∈ V, θv(p)

{
= 0 if p < psite

c (G),

> 0 if p > psite
c (G),

and psite
c (G) is called the (site) critical probability of G.

More generally, consider (either bond or site) percolation on a graph G with prob-
ability measure Pp. The corresponding critical points may be expressed as follows.

psite
c (G) := inf{p ∈ [0, 1] : Pp(N ≥ 1) = 1 for site percolation},

pbond
c (G) := inf{p ∈ [0, 1] : Pp(N ≥ 1) = 1 for bond percolation},

and

psite
u (G) := inf{p ∈ [0, 1] : Pp(N = 1) = 1 for site percolation},

pbond
u (G) := inf{p ∈ [0, 1] : Pp(N = 1) = 1 for bond percolation}.

By the Kolmogorov zero–one law, Pp(N ≥ 1) equals either 0 or 1.
The notation pc (respectively, pu) shall always mean the critical probability psite

c

(respectively, psite
u ) of the site model. For background and notation concerning per-

colation theory, the reader is referred to the book [24] and to Section 12.

3. Background

We review certain known results that will be used in the proofs of our main
results.

3.1. Embeddings of one-ended planar graphs. We say that the 2-sphere, the
Euclidean plane, and the hyperbolic plane constitute the natural geometries (see, for
example, Babai [5, Sect. 3.1]). The natural geometries are two-dimensional Riemann-
ian manifolds. An Archimedean tiling of a two-dimensional Riemannian manifold is
a tiling by regular polygons such that the group of isometries of the tiling acts tran-
sitively on the vertices of the tiling. An infinite, one-ended, transitive planar graph
can be characterized as a tiling of either the Euclidean plane or the hyperbolic plane,
and we henceforth denote by H the plane that is appropriate in a given case.

Theorem 3.1.

(a) [5, Thms 3.1, 4.2] If G ∈ T is one-ended, then G may be embedded in H as
an Archimedean tiling, and all automorphisms of G extend to isometries of
H. If G ∈ Q is one-ended and 3-connected, then G may be embedded in H
such that all automorphisms of G extend to isometries of H.
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(b) [43, p. 42] Let G be a 3-connected graph, cellularly embedded in H such that
all faces are of finite size. Then G is uniquely embeddable in the sense that for
any two cellular embeddings φ1 : G → S1, φ2 : G → S2 into planar surfaces
S1, S2, there is a homeomorphism τ : S1 → S2 such that φ2 = τφ1.

(c) [39, Thm 8.25 and proof, pp. 288, 298] If G = (V,E) ∈ Q is one-ended, there
exists some embedding of G in H such that the edges coincide with geodesics,
the dual graph G+ is quasi-transitive, and all automorphisms of G extend to
isometries of H. Such an embedding is called canonical.

(d) [48] The automorphism group Aut(G) of a quasi-transitive graph G with qua-
dratic growth contains a subgroup isomorphic to Z2 that acts quasi-transitively
on G.

Remark 3.2. Some known facts concerning embeddings follow.

(a) [13, Props 2.2, 2.2] All one-ended, transitive, planar graphs are 3-connected,
and all proper embeddings of a one-ended, quasi-transitive, planar graph have
only finite faces.

(b) By Theorem 3.1(b), any one-ended G ∈ Q that is in addition transitive has
a unique proper cellular embedding in H up to homeomorphism. Hence, the
matching and dual graphs of G are independent of the embedding.

(c) The conclusion of B holds for any one-ended, 3-connected G ∈ Q.
(d) For a one-ended, 2-connected G ∈ Q, we fix a canonical embedding (in the

sense of Theorem 3.1(c)). With this given, the dual graph G+ and the match-
ing graph G∗ are quasi-transitive, and furthermore (by [36, Thm 3]) the bound-
ary of every face is a cycle of G.

Remark 3.3 (Proper embedding). Theorem 3.1(a) implies in particular that every
such graph may be properly embedded in its natural geometry. Such an embedding
is called topologically locally finite (TLF) by Renault [44, Prop. 5.1], [45]. For a
related discussion in the case of non-amenable graphs, see [9, Prop. 2.1].

Remark 3.4 (Connectivity). Graphs with connectivity 1 have been excluded from
membership of G (and therefore from T and Q also). Percolation on such graphs
has little interest since any finite dangling ends may be removed without changing
the existence of an infinite cluster. Moreover, let F be a face of a mosaic M , such
that F contains some dangling end D. If (G1, G2) is a matching pair derived from
M , the critical values pc(Gi) are unchanged if D is deleted.
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The representation of transitive, planar graphs as tilings of natural geometries
enables the development of universal techniques to study statistical mechanical mod-
els on all such graphs; see, for example, the study [25] of a universal lower bound for
connective constants on infinite, connected, transitive, planar, cubic graphs.

3.2. Percolation. We assume throughout this subsection that the graph G is infi-
nite, connected, and locally finite.

Lemma 3.5 ([46, Cor. 1.2], [27]). Let G be quasi-transitive, and consider either site
or bond percolation on G. Let 0 < p1 < p2 ≤ 1, and assume that Pp1(N = 1) = 1.
Then Pp2(N = 1) = 1.

Definition 3.6. Let G = (V,E) be a graph. Given ω ∈ ΩV and a vertex v ∈ V ,
write Πvω = ω ∪ {v} (which is to say that v is declared open). For A ⊆ ΩV , we
write ΠvA = {Πvω : ω ∈ A}. A site percolation process (ΩV , µ) on G is called
insertion-tolerant if µ(ΠvA) > 0 for every v ∈ V and every event A ⊆ ΩV satisfying
µ(A) > 0.

A site percolation is called deletion-tolerant if µ(Π¬vA) > 0 whenever v ∈ V and
µ(A) > 0, where Π¬vω = ω \ {v} for ω ∈ ΩV , and Π¬vA = {Π¬vω : ω ∈ A}.

Similar definitions apply to bond percolation. We shall encounter weaker defini-
tions in Section 3.3.

Lemma 3.7 ([39, Thm 7.8], [7, Thm 8.1]). Let G = (V,E) be a connected, locally
finite, quasi-transitive graph, and let (Ω, µ) be an invariant (site or bond) percolation
on G. Assume either or both of the following two conditions hold:

(a) (Ω, µ) is insertion-tolerant,
(b) G is a non-amenable planar graph with one end.

Then µ(N ∈ {0, 1,∞}) = 1. If µ is ergodic, N is µ-a.s. constant.

The sufficiency of (a) is proved in [39, Thm 7.8] for transitive graphs, and the
same proof is valid for quasi-transitive graphs. The sufficiency of (b) is proved in [7,
Thm 8.1].

3.3. Planar duality. Let G = (V,E) be a plane graph, and write F for the set of
its faces. The dual graph G+ = (V +, E+) is defined as follows. The sets V + and F
are in one–one correspondence, written vf ↔ f . Two vertices vf , vg ∈ V + are joined
by nf,g parallel edges where nf,g is the number of edges of E common to the faces
f, g ∈ F . Thus, E+ and E are in one–one correspondence, written e+ ↔ e.
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For a bond configuration ω ∈ ΩE, we define the dual configuration ω+ ∈ ΩE+ by:
for each dual pair (e, e+) ∈ E × E+ of edges, we have

ω(e) + ω+(e+) = 1.(3.1)

In the following, (ΩE, µ) is a bond percolation model on G = (V,E). Similar defini-
tions apply to site percolation.

Definition 3.8. A probability measure µ is called weakly insertion-tolerant if there
exists a function f : E × ΩE → ΩE such that

(a) for all e and all ω ∈ ΩE, we have ω ∪ {e} ⊆ f(e, ω),
(b) for all e and all ω, the difference f(e, ω) \ [ω ∪ {e}] is finite, and
(c) for all e and each event A satisfying µ(A) > 0, the image of A under f(e, ·)

is an event of strictly positive probability.

Definition 3.9. A probability measure µ is called weakly deletion-tolerant if there
exists a function h : E × ΩE → ΩE such that

(a) for all e and all ω ∈ ΩE, we have ω \ {e} ⊇ h(e, ω),
(b) for all e and all ω, the difference [ω \ {e}] \ h(e, ω) is finite, and
(c) for all e and each event A satisfying µ(A) > 0, the image of A under h(e, ·)

is an event of strictly positive probability.

Lemma 3.10 ([39, Thm 8.30]). Let G = (V,E) ∈ Q be non-amenable and one-
ended, and consider G embedded canonically in the plane (such an embedding exists
by Theorem 3.1(c)). Let (ΩE, µ) be an invariant, ergodic, bond percolation on G,
assumed to be both weakly insertion-tolerant and weakly deletion-tolerant. Let N
be the number of infinite open components, and N+ the number of infinite open
components of the dual process. Then

µ
(
(N,N+) ∈ {(0, 1), (1, 0), (∞,∞)}

)
= 1.

3.4. Graphs with two or more ends. We summarise here the main results for
critical percolation probabilities on multiply-ended graphs.

Theorem 3.11 ([28, 47]). Let G ∈ Q have two ends. The critical percolation prob-
abilities satisfy

pbond
c (G) = psite

c (G) = pbond
u (G) = psite

u (G) = 1.

Theorem 3.12. Let G ∈ Q have infinitely many ends. Then

pbond
c (G) ≤ psite

c (G) < pbond
u (G) = psite

u (G) = 1.
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The standard inequality pbond
c ≤ psite

c holds for all graphs, and was stated in [29].
The corresponding strict inequality was explored in [26, Thm 2] for bridgeless, quasi-
transitive graphs. The equalities pbond

u = psite
u = 1 were proved for transitive graphs

in [47, eqn (3.7)] (see also [28]), and feature in [39, Exer. 7.9] for quasi-transitive
graphs. The inequality psite

c < 1 for non-amenable graphs was given in [8, Thm 2].

3.5. FKG inequality. For completeness, we state the well-known FKG inequality.
See, for example, [24, Sect. 2.2] for further details.

Theorem 3.13 (FKG inequality, [23, 31]). Let µ be a strictly positive probability
measure on ΩV satisfying the FKG lattice condition:

µ(ω1 ∨ ω2)µ(ω1 ∧ ω2) ≥ µ(ω1)µ(ω2), ω1, ω2 ∈ {0, 1}V .(3.2)

For any increasing events A,B ⊆ {0, 1}V , we have that µ(A ∩B) ≥ µ(A)µ(B).

4. Planar site percolation as a bond model

Let M = (V,E) ∈ Q be one-ended, and let (G1, G2) be a matching pair derived
from M according to the partition F4(M) = F1 ∪ F2. If Fi 6= ∅, then Gi is non-
planar. This is an impediment to consideration of the dual graph of Gi, which in
turn is overcome by the introduction of so-called facial sites.

Let F = F(M) be the set of faces of M (following [35], we include triangular
faces). The triangular faces of F do not appear in F1 ∪ F2 = F4, but we allocate
each such face arbitrarily to either F1 of F2 (for concreteness, we may add them all

to F1). One may replace the mosaic M by the triangulation M̂ obtained by placing
a facial site φ(F ) inside each face F ∈ F , and joining φ(F ) to each vertex in the
boundary of F . (See [35, Sec. 2.3] and Section 11.2 of the current work.)

When considering site percolation on M (respectively, M∗), one declares the

facial sites of M̂ to be invariably closed (respectively, open). Site percolation on Gi

is equivalent to site percolation on M̂ subject to:

(4.1) a facial site φ(F ) is declared open if F ∈ Fi and closed if F ∈ F \ Fi.

Note that, if F is a triangular face, the state of φ(F ) is independent of the connec-
tivity of other vertices.

Let Ĝi be obtained by adding to M the facial sites of Fi only, together with their

incident edges. We write Ĝi = (V ∪ Φi, E ∪ ηi) where Φi is the set of facial sites
of Gi and ηi is the set of edges incident to facial sites. We shall consider two site

percolation processes, namely, percolation of open sites on Ĝ1 and of closed sites on

Ĝ2. To this end, for ω ∈ ΩV , let ω1 (respectively, ω2) be the site configuration on Ĝ1
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(respectively, Ĝ2) that agrees with ω on V and is open on Φ1 (respectively, closed on
Φ2).

Given ω ∈ ΩV , we construct a bond configuration βω1 ∈ ΩE∪η1 by

(4.2) βω1(e) =

{
1 if ω1(u) = ω1(v) = 1,

0 otherwise,

where e = 〈u, v〉 ∈ E∪η1. Let β+
ω1

:= 1−βω1 be the corresponding dual configuration

on the dual graph Ĝ+
1 = (V +

1 , E
+
1 ) of Ĝ1 as in (3.1), and let Ĝ+

1 (β+
ω1

) be the graph
with vertex-set V +

1 endowed with the open edges of β+
ω1

. Note that, if ω has law Pp,
then the law of βω1 is one-dependent. We may identify the vector βω1 with the set
of its open edges.

Lemma 4.1. Suppose ω ∈ ΩV has law Pp where p ∈ (0, 1). The law µ of βω1 is
weakly deletion-tolerant and weakly insertion-tolerant. Moreover, µ is ergodic.

Proof. Let e = 〈u, v〉 ∈ E ∪ η1 and ω ∈ ΩV . For w ∈ V , let Dw be the set of edges

of Ĝ1 of the form 〈w, x〉 with ω(x) = 1. Select an endvertex, u say, of e that is not
a facial site (such a vertex always exists), and define

f(e, βω1) = βω1 ∪ (Du ∪Dv ∪ {e}), h(e, βω1) = βω1 \ (Du ∪ {e}).

The edge-configuration f(e, βω1) (respectively, h(e, βω1)) is that obtained by setting
u and v to be open (respectively, u to be closed). With these functions f , h, the
conditions of Definitions 3.8 and 3.9 hold since G is locally finite. The ergodicity
holds by the assumed quasi-transitivity of G1 and the fact that Pp is a product
measure (see the comment in Section 2.2). �

For ω ∈ ΩV , let Ĝ1(ω) be the subgraph of Ĝ1 induced by the set of ω1-open

vertices (that is, the set of v with ω1(v) = 1), and define Ĝ2(ω) similarly in terms of

closed vertices of ω2 in Ĝ2.
We make some notes concerning the relationship between Ĝ1(ω), Ĝ2(ω), and

Ĝ+
1 (β+

ω1
), as illustrated in Figure 4.1. A cutset of a graph H is a subset of edges

whose removal disconnects some previously connected component of H, and which
is minimal with this property. Recall that a face of a plane graph H is a connected
component of H \ F . A face F can be bounded or unbounded, and it need not be
simply connected. It has a boundary ∆F comprising edges of H; even when F is
bounded and simply connected, the set ∆F of edges need not be cycle of H unless
H is 2-connected.
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∆F

Figure 4.1. An illustration of the one–one correspondence between
C1(F ) and C2(F ) of Proposition 4.2. The black line is the boundary
of the face F ; the dashed lines are edges of M inside F ; the dotted
lines are edges of η1. The shaded regions are faces of M that belong
to F1; the black points are open vertices; the grey points are closed

vertices; the open points are dual vertices of Ĝ1. The green graph is

the 0-cluster C2(F ) of Ĝ2(ω) that corresponds to the red cluster C1(F )

of Ĝ+
1 (β+

ω1
).

Proposition 4.2. Let M = (V,E) ∈ Q be one-ended and embedded canonically in

H. Let ω ∈ ΩV , and let F be a face (either bounded or unbounded) of Ĝ1(ω).

(a) Let C be a cycle (respectively, doubly-infinite path) of Ĝ1(ω). The set of edges

of Ĝ+
1 intersecting C forms a finite (respectively, infinite) cutset of Ĝ+

1 .

(b) The set F ∩ V +
1 of dual vertices of Ĝ1 inside F , together with the set of open

edges of β+
ω1

lying inside F , forms a non-empty, connected component C1(F )

of Ĝ+
1 (β+

ω1
).

(c) The set F ∩ (V ∪ Φ2) of vertices of Ĝ2 inside F forms a (possibly empty)

0-cluster C2(F ) of Ĝ2(ω).
(d) Either each of F , C1(F ), C2(F ) is bounded or each is unbounded.

Proof. (a) This is immediate by the definition (4.2) of βω.
(b) Note first that every vertex w of M inside F satisfies ω(w) = 0. Since F is a

face of G(ω), it is a non-empty, disjoint union F =
⋃
i∈I Ai of faces Ai of Ĝ1 (more
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precisely, the two sides of the equality differ on a set of Lebesgue measure 0). Since

Ĝ1 is one-ended, each Ai is bounded, and therefore contains a unique dual vertex di.
It is standard that the dual set D = {di : i ∈ I} induces a connected graph C1(F )
in F . Since no edge f of C1(F ) intersects ∆F , we have β+

ω (f) = 1 for all such f .
(c) It can be the case that F ∩ (V ∪ Φ2) = ∅, in which case we take C2(F ) to

be the empty graph (this is the situation when F is bounded by a 3-cycle of M).
Suppose henceforth that F ∩ (V ∪ Φ2) 6= ∅ and note as above that ω(w) = 0 for
every w ∈ F ∩ (V ∪ Φ2). It is a standard property of matching pairs of graphs that

F ∩ (V ∪ Φ1) induces a connected subgraph C2(F ) of F ∩ Ĝ2.
Parts (b) and (c) make use of two so-called ‘standard’ properties, full discussions

of which are omitted here. It suffices to prove the ‘standard’ property of matching
pairs, since the corresponding property for dual pairs then follows by passing to
covering (or line) graphs (see, for example, [35, Sec. 2.6]). For matching pairs, an
early reference is [51, App.], and a more detailed account is found in [35, Sec. 3,
App.] (see, in particular, Proposition A.1 of [35]). The latter assumes slightly more
than here on the mosaic M , but the methods apply notwithstanding.

(d) When F is finite, so must be C1(F ) and C2(F ), since the embedding of G is
proper. When F is infinite, the same holds of C1(F ) and C2(F ), since the faces of
G are uniformly bounded. �

For a graph H, let N(H) be the number of its infinite components.

Proposition 4.3. Let M = (V,E) ∈ Q be one-ended and embedded canonically in
H, and let ω ∈ ΩV . Then,

(4.3) N(Ĝ1(ω)) = N(Ĝ1(βω1)), N(Ĝ2(ω)) = N(Ĝ+
1 (β+

ω1
)),

and hence

(4.4) N(G1(ω)) = N(G1(βω)), N(G2(ω)) = N(G+
1 (β+

ω )).

Proof. Equation (4.3) holds by the definition of βω, and from Proposition 4.2 on

noting (for given ω) the one–one correspondence between infinite clusters of Ĝ2(ω)

and of Ĝ+
1 (β+

ω ). Equation (4.4) holds since the facial site in any face F is a surrogate
for the diagonals of F . �

Remark 4.4 (Conformality). It was proved by Smirnov [50] that critical site percola-
tion on the triangular lattice T satisfies Cardy’s formula, and moreover has properties
of conformal invariance (see also [17, 18]). By the above construction, the depen-
dent bond process βω on T has similar properties, and also its dual process on the
hexagonal lattice.
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5. Amenable planar graphs with one end

In this section, we prove Theorem 1.1(a) for amenable, one-ended graphs; see
Remark 1.2 for an explanation of part (b) of the theorem. It is standard that such
graphs are properly embeddable in the Euclidean plane, denoted H in this section.

Recall first that, for any infinite, quasi-transitive, amenable graph G, and in-
variant, insertion-tolerant measure µ, the number N of infinite percolation clusters
satisfies µ(N ≤ 1) = 1 (see [39, Thm 7.9] for the transitive case, the quasi-transitive
case is similar).

Lemma 5.1. Let M = (V,E) ∈ Q be amenable, one-ended, and embedded canoni-
cally in H, and let (G1, G2) be a matching pair derived from M . Let (ΩV , µ) be an
ergodic, insertion-tolerant site percolation on M satisfying the FKG lattice condition
(3.2). Then

(5.1) µ
(
(N,N) = (1, 1)

)
= µ

(
(N(G1), N(G2)) = (1, 1)

)
= 0,

where N = N(M) and N = N(M).

A pair γ, γ′ of isometries of R2 is said to act in a doubly periodic manner on G (in
its canonical embedding) if they generate a subgroup of Aut(G) that is isomorphic to
Z2, and the embedding is called doubly periodic if such a pair exists. In preparation
for the proof of Lemma 5.1, we note the following.

Theorem 5.2. Let G ∈ Q be amenable and one-ended. A canonical embedding of G
in R2 is doubly periodic.

Proof. This may be proved in a number of ways, including using either Bieberbach’s
theorem on crystalline groups [11, 52] or Selberg’s lemma [3]. Instead, we use a more
direct route via the main theorem of Seifter and Trofimov [48] (see Theorem 3.1(d)).

Viewed as a graph, G has quadratic growth. This standard fact holds as follows.
By [5, Thm 1.1], G has either linear, or quadratic, or exponential growth. As noted
at [16, Thm 9.3(b)], being one-ended, it cannot have linear growth. Finally, we rule
out exponential growth. Since G is quasi-transitive, there exists R < ∞ such that,
for all edges 〈x, y〉 of G, the distance between x and y in R2 is no greater than R.
Therefore, the n-ball centred at vertex v is contained in Bn(v) := v + [−nR, nR]2.
By quasi-transitivity again, there exists A < ∞ such that, for all v, Bn(v) contains
no more than A(nR)2 vertices.

The theorem of [48] may now be applied to find that Aut(G) has a finite-index
subgroup F isomorphic to Z2. Thus F is generated by a pair of automorphisms
which, by Theorem 3.1(c), extend to isometries of the embedding of G. �
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Proof of Lemma 5.1. By insertion-tolerance and ergodicity, the random variables N ,
N , N(G1), N(G2) are each µ-a.s. constant and take values in {0, 1}. By Theorem
5.2 and [22, Thm 1.5],

(5.2) µ
(
(N(G1), N(G2)) = (1, 1)

)
= 0.

Arguments related to but weaker than [22, Thm 1.5] are found in [12, 24, 40, 42, 49].
Note that [22, Thm 1.5] deals with bond percolation, whereas (5.2) is concerned with
site percolation. This difference may be handled either by adapting the arguments of
[22] to site models, or by applying [22, Thm 1.5] to the one-dependent bond model
βω constructed in the manner described in Section 4 (see Proposition 4.3). The
remaining part of (5.1) follows from the fact that N(G2) = 1 µ-a.s. on the event
{N = 1}. �

Corollary 5.3. Let G ∈ Q be amenable and one-ended, and consider site percolation
on G. Then P 1

2
(N = 0) = 1.

Proof. Suppose that P 1
2
(N ≥ 1) > 0, so that P 1

2
(N ≥ 1) = 1 by ergodicity. By

amenability and symmetry, we have that P 1
2
(N = N = 1) = 1. This contradicts

Lemma 5.1. �

Lemma 5.4. Let M = (V,E) ∈ Q be amenable, one-ended, and embedded canoni-
cally in H, and let (G1, G2) be a matching pair derived from M . We have for site
percolation that Pp(N(G2) = 1) = 1 for p < psite

c (G1).

Proof. Let p ∈ (0, psite
c (G1)) be such that Pp(N(G2) = 1) < 1. By amenability and

ergodicity, we have that Pp(N(G2) = 0) = 1. Therefore, Pp(N(G1) = N(G2) = 0) =
1. There is a standard geometrical argument based on exponential decay that leads
to a contradiction, as follows.

Fix a vertex v0 of M = (V,E). Let n ≥ 1, and let Λn = {u ∈ V : dM(u, v0) ≤ n}.
By [35, Prop. 2.1], if ∂Λn 6↔ ∞ in G2, there exists a closed circuit C of G1 with Λn

in its inside. As in [4, Thm 3] for example, there exist A, a > 0 such that

1 = Pp(∂Λn 6↔ ∞ in G2) ≤
∑
k≥n

Ae−a(n+k).

This cannot hold for large n, and the lemma is proved. �

We turn to equation (1.1). In this amenable case, this is equivalent to the follow-
ing extension of classical results of Sykes and Essam [51] and van den Berg [10].
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Theorem 5.5. Let M = (V,E) ∈ Q be amenable, one-ended, and embedded canon-
ically in H, and let (G1, G2) be a matching pair derived from M . Then

psite
c (G1) + psite

c (G2) = 1.

Proof. By Lemma 5.1, whenever p > psite
c (G1), we have 1 − p ≤ psite

c (G2), which
implies psite

c (G1) + psite
c (G2) ≥ 1. By Lemma 5.4, whenever p < psite

c (G1), we have
1− p ≥ psite

c (G2), which implies psite
c (G1) + psite

c (G2) ≤ 1. �

6. Non-amenable graphs with one end

In this section, we prove Theorem 1.1(a) for non-amenable, one-ended graphs
G = (V,E) ∈ Q; see Remark 1.2 for an explanation of part (b) of the theorem.

Lemma 6.1. Let M ∈ Q be one-ended and embedded canonically in the hyperbolic
plane, and let (G1, G2) be a matching pair derived from M . Then

Pp
(
(N(G1), N(G2)) ∈ {(0, 1), (1, 0), (∞,∞)}

)
= 1.

Proof. We fix a canonical embedding of G. By Proposition 4.3,

N(G1(βω)) = N(G1(ω)), N(G+
2 (β+

ω )) = N(G2(ω)).

By Lemma 4.1, the law of βω is weakly deletion-tolerant, weakly-insertion tolerant,
and ergodic, and the claim follows by Lemma 3.10. �

Proof of Theorem 1.1(a). By Lemmas 3.5 and 3.7, we have the following for site
percolation on either G1 or G2:

if p < pc, Pp(N = 0) = 0,

if pc < p < pu, Pp(N =∞) = 1,

if p > pu, Pp(N = 1) = 1,

where pc, pu are the critical values appropriate to the graph in question.
By Lemma 6.1, N(G1) = 0 if and only if N(G2) = 1, whence pc(G) = 1−pu(G∗).

Moreover, N(G1) = 1 if and only if N(G2) = 0, whence pu(G1) = 1− pc(G2). �

Corollary 6.2. Let G ∈ Q be one-ended and embedded canonically in H, and suppose
G is non-amenable. Then

Pp
(
(N,N) ∈ {(0, 0), (0, 1), (1, 0), (0,∞), (∞, 0), (∞,∞)}

)
= 1.

Proof. We need to eliminate the vectors (1, 1), (1,∞), and (∞, 1). First, by Lemma
3.7, Pp-a.s. the pair (N,N) takes some given value in the set {0, 1,∞}2. If Pp((N,N) =
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(1, 1)) > 0, then Pp(N = 1, N∗ ≥ 1) > 0, in contradiction of Lemma 6.1 applied to
the matching pair (G,G∗). Hence, Pp((N,N) 6= (1, 1)) = 1.

If Pp((N,N) = (1,∞)) > 0, there is strictly positive probability of an infinite
component in G∗(ω), in contradiction of Lemma 6.1. By symmetry, Pp((N,N) 6=
(∞, 1)) = 1, and the corollary follows. �

7. Proof of Theorem 1.8

Let G be a graph satisfying the assumptions of the theorem. We work with the
largest finite connected subgraph GB of G contained in a large box B (with boundary
∂B) of the natural geometry of G, and shall let B expand to fill the space. The
numbers of finite faces, vertices, edges of GB satisfy Euler’s formula: fB+vB = eB+1.
Since the smallest possible face is a triangle, we have fB ≤ 2

3
eB; since the degree of

interior vertices is 7 or more, there exists c > 0 such that eB ≥ 7
2
(vB − c|∂B|). This

contradicts Euler’s formula unless eB/|∂B| is bounded above, which is to say that
the natural geometry is the hyperbolic plane. Hence, G is non-amenable. By [30,
Thm 2], we have psite

c = psite
c (G) < 1

2
.

By the symmetry of the interval (psite
c , 1− psite

c ) around 1
2
, it suffices to show that

Pp(N = ∞) = 1 for p ∈ (psite
c , 1 − psite

c ). This in turn is implied by Lemma 3.5 and
the inequality

(7.1) 1− psite
c ≤ psite

u .

Inequality (7.1) holds by (1.2) with G non-amenable and one-ended. In the remaining
case when G has infinitely many ends, (7.1) is trivial since psite

u = 1 by Theorem 3.12.

8. Proof of Theorem 1.9

Let G be a graph satisfying the assumptions of the theorem, and embedded
canonically. By Lemma 3.7, symmetry, and the assumption P 1

2
(N ≥ 1) = 1,

(8.1) P 1
2

(
(N,N) ∈ {(1, 1), (∞,∞)}

)
= 1.

By Theorem 1.10, the following four cases may occur:

(a) G is amenable and one-ended. By Lemma 5.1, P 1
2
(N = 0) = 1. Hence, in

this case, the hypothesis of the theorem is invalid.
(b) G is non-amenable and one-ended. By Corollary 6.2 and (8.1), subject to the

percolation assumption, we have P 1
2
(N = N =∞) = 1.

(c) G has two ends. By Theorem 3.11, psite
c = 1. Hence P 1

2
(N = 0) = 1, and the

hypothesis is invalid.
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(d) G has infinitely many ends. By Theorem 3.12, psite
u = 1. Under the hypothesis

of the theorem, it follows by symmetry that P 1
2
((N,N) = (∞,∞)) = 1.

9. Strict inequality: further notation

Recall the matching graph G∗ = (V,E∗) of a planar graph G = (V,E); see Section
2.1. An edge e ∈ E∗ \ E is called a diagonal of G or of G∗, and it is denoted δ(a, b)
where a, b are its endvertices. If δ(a, b) is a diagonal, a and b are called ∗-neighbours.
Note that G∗ depends on the particular embedding of G. If G is 3-connected then,
by Theorem 3.1(b), it has a unique embedding up to homeomorphism. If G is 2-
connected but not 3-connected, we need to be definite about the choice of embedding,
and we require it henceforth to be ‘canonical’ in the sense of Theorem 3.1(c).

The orbit of v ∈ V is written Aut(G)v, and we let

(9.1) ∆ = min
{
k : for v, w ∈ V, we have dG(Aut(G)v,Aut(G)w) ≤ k

}
,

where

dG(A,B) = min{dG(a, b) : a ∈ A, b ∈ B}, A,B ⊆ V,

and dG denotes graph-distance in G. For any G, we fix some vertex denoted v0.
We shall work with one-ended graphs G ∈ Q. Since G is assumed one-ended and

2-connected, all its faces are bounded, with boundaries which are cycles of G (see
Remark 3.2(d)).

Definition 9.1. A path π = (. . . , x−1, x0, x1 . . . ) of a graph H is called non-self-
touching if dH(xi, xj) ≥ 2 when |j − i| ≥ 2. A cycle C = (v0, v1, . . . , vn, vn+1 = v0)
of H is called non-self-touching if dH(xi, xj) ≥ 2 whenever |i − j| ≥ 2 (with index-
arithmetic modulo n+ 1).

Non-self-touching paths and cycles arise naturally when studying site percolation
(such paths were called stiff in [1], and self-repelling in [24, p. 66]).

We shall consider non-self-touching paths in two graphs derived from a given

G ∈ Q, namely its matching graph G∗, and the graph Ĝ obtained by adding a site
within each face F of size 4 or more, and connecting every vertex of F to this new
site. The graph G∗ may possess parallel edges. The property of being non-self-
touching is indifferent to the existence of parallel edges, since it is given in terms of
the vertex-set of π and the adjacency relation of H.

Here is the fundamental property of graphs that implies strict inequality of critical
points. This turns out to be equivalent to a more technical ‘local’ property, as de-
scribed in Section 11.2; see Theorem 11.7. As a shorthand, henceforth we abbreviate
‘doubly-infinite non-self-touching path’ to ‘2∞-nst path’.
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Definition 9.2. The graph G ∈ Q is said to have property Π if G∗ contains some
2∞-nst path that includes some diagonal of G.

For a graph G = (V,E), let

Λn(v) = ΛG,n(v) := {w ∈ V : dG(v, w) ≤ n}, ∂Λn(v) := Λn(v) \ Λn−1(v),

and, furthermore, Λn = ΛG,n := Λn(v0). The set Λn(v) will generally have bounded
‘holes’, which we fill in as follows. Let ∆n(v) be the set of all edges e = 〈u, v〉 ∈ E
such that u ∈ Λn(v) and v lies in an infinite path of G \ Λn(v). Let Λn(v) be the
bounded subgraph of G after deletion of ∆n(v). Let

∂Λn(v) := Λn(v) \ Λn−1(v),

and, furthermore, Λn = ΛG,n := Λn(v0). Finally, we write u ∼ v if u, v ∈ V are
adjacent.

10. Applications of Theorem 1.11

10.1. Transitive graphs have property Π. We investigate two classes of graphs
with the property Π of Definition 9.2, and to which Theorem 1.11 may be applied.
These are the transitive graphs, and subclasses of quasi-transitive graphs.

Theorem 10.1. Let G ∈ T be one-ended but not a triangulation. Then G has
property Π, and therefore satisfies pc(G∗) < pc(G).

We shall give two proofs of this result, using what we call the metric method and
the combinatorial method. Each proof may be extended to a certain class of quasi-
transitive graphs, the two such classes being different. In each case, the outcome is
a sufficient but not necessary condition for a quasi-transitive graph G ∈ Q to have
property Π, namely Theorems 10.4 and 10.8.

10.2. The metric method. The embedding results of Section 9 may be used to
show the existence of 2∞-nst paths in transitive, one-ended G ∈ T that are not
triangulations, and for certain quasi-transitive, one-ended G ∈ Q. First, recall the
relevant embedding properties. By Theorem 3.1(a), every transitive, one-ended G ∈
T may be embedded in H as an Archimedean tiling. By parts (a, c) of the same
theorem, every quasi-transitive, one-ended G ∈ Q has a canonical embedding in H.

Throughout this section we shall work with the Poincaré disk model of hyperbolic
geometry (also denoted H), and we denote by ρ the corresponding hyperbolic metric.
For definiteness, we consider only graphs G embedded in the hyperbolic plane; the
Euclidean case is easier.
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Figure 10.1. The graph G is the tiling of the plane with copies of
this square. Taking into account the symmetries of the square, this
tiling is canonical after a suitable rescaling of the interior square. The
diagonals are indicated by dashed lines.

Let G ∈ Q be one-ended and not a triangulation. By 2-connectedness and Re-
mark 3.2(d), the faces of G are bounded by cycles. As before, we restrict ourselves to
the case when G is non-amenable, and we embed G canonically in the Poincaré disk
H. The edges of G are hyperbolic geodesics, but its diagonals are not generally so.
The hyperbolic length of an edge e ∈ E∗ \E does not generally equal the hyperbolic
distance between its endvertices, denoted ρ(e).

For e ∈ E∗, let Γe denote the doubly-infinite hyperbolic geodesic of H passing
though the endvertices of e, and denote by π(x) the orthogonal projection of x ∈ H
onto Γe.

Definition 10.2. An edge e ∈ E∗ is called maximal if

(10.1) ρ(e) ≥ ρ(π(x), π(y)), f = 〈x, y〉 ∈ E.

It is easily seen that any diagonal whose interior is surrounded by some triangle
of G is not maximal; cf. the forthcoming Definition 10.6 of the term 4-empty. There
always exists some maximal edge of E∗, but it is not generally unique. The following
lemma is proved in the same manner as the forthcoming Lemma 13.1.

Lemma 10.3. Let f ∈ argmax{ρ(e) : e ∈ E∗}. The edge f is maximal.

Here is the main theorem for quasi-transitive graphs using the metric method.

Theorem 10.4. Let G ∈ Q be one-ended but not a triangulation. Assume that G
has a canonical embedding in H for which some diagonal d ∈ E∗ \ E is maximal.
Then G has the property Π of Definition 9.2, whence pc(G∗) < pc(G).
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Figure 10.2. A doubly periodic family of faces of the triangular lat-
tice are decorated as above, and the resulting graph is not 4-empty.
Since no triangle can be connected to infinity by two paths π1, π2 satis-
fying dG(π1, π2) ≥ 2, the configuration on the interor I of this triangle
is independent of the existence of an infinite open path starting at a
vertex not in I.

See Sections 13.2 and 13.3 for the proofs of Theorems 10.1 and 10.4 by the metric
method.

Remark 10.5. The condition of Theorem 10.4 is sufficient but not necessary, as
indicated by the following example. Let G be the canonical tiling of Figure 10.1.
By inspection, no diagonal is maximal, whereas G has property Π. The sufficient
condition in question can be weakened as explained in Remark 13.4, and the above
example satisfes the weaker condition.

10.3. The combinatorial method. We begin with some notation.

Definition 10.6. The plane graph G = (V,E) is said to have property � if every
vertex of G lies in the boundary of some face of size 4 or more. A cycle C is said to
surround a point x ∈ H if H \C has a bounded component containing x. The graph
G is said to be 4-empty if no 3-cycle C surrounds any vertex v.

Figure 10.2 is an illustration of part of a 2-connected, quasi-transitive graph that
is not 4-empty. It turns out that all transitive graphs are 4-empty.

Lemma 10.7. A transitive, properly embedded, plane graph G = (V,E) ∈ T is
4-empty, and furthermore it has property � if and only if it is not a triangulation.

Proof. Let G = (V,E) ∈ T be properly embedded and plane, but not 4-empty. Let
v1 ∈ V . By transitivity, v1 lies in the interior of some 3-cycle C1. Let v2 be a vertex
of C1. Then v2 lies in the interior of some 3-cycle C2; since G is plane, C1 ⊆ C2. On
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iterating this construction we obtain an infinite sequence (vi, Ci) of pairs of vertices
and 3-cycles such that: vi is a vertex of Ci, Ci ⊆ Ci+1, and vi ∈ C◦i+1. If the Ci
are uniformly bounded, the sequence (vi) has a limit point, in contradiction of the
assumption of proper embedding; if not, it contradicts the fact that the edge-lengths
of G are uniformly bounded. From this contradiction we deduce that G is 4-empty.
The second statement of the lemma is immediate. �

We henceforth assume that G is 4-empty. If this were false, let W be the set
of all vertices lying in the interior of some 3-cycle. Let C be a 3-cycle of G that
surrounds some vertex. The event that there exists an infinite open path starting
in V \W and passing through C is independent of the states of vertices in C◦; this
holds since every pair of vertices of C are joined by an edge. See Figure 10.2. One
may therefore remove all vertices in W without altering the existence or not of an
infinite open path.

Here is the main theorem of this section; it is proved in Section 14 by the com-
binatorial method.

Theorem 10.8. Let G ∈ Q be one-ended and 4-empty. If G has property �, then
G has property Π also.

Proof of Theorem 10.1 using the combinatorial method. Let G ∈ T be one-ended. If
G is a triangulation, then G∗ = G, so that pc(G∗) = pc(G). Suppose conversely that
G is not a triangulation. By [13, Prop. 2.2] (see Remark 3.2(a)), G is 3-connected.
By Lemma 10.7, G is 4-empty and has property �, and therefore by Theorem 10.8
property Π also. The final claim follows by Theorem 1.11. �

11. Some observations

11.1. Oxbow-removal. We begin by describing a technique of loop-removal (hence-
forth referred to as ‘oxbow-removal’). Let H be a simple graph embedded in the
Euclidean/hyperbolic plane H (possibly with crossings).

Lemma 11.1. Let H be a graph embedded in H.

(a) Let C be a plane cycle of H that surrounds a point x /∈ H. There exists a non-
empty subset C ′ of the vertex-set of C that forms a plane, non-self-touching
cycle of H and surrounds x.

(b) Let π be a finite (respectively, infinite) path with endpoint v. There exists a
non-empty subset π′ of the vertex-set of π that forms a finite (respectively,
infinite) non-self-touching path of H starting at v. If π is finite, then π′ can
be chosen with the same endpoints as π.
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Proof. (a) Let C = (v0, v1, . . . , vn, vn+1 = v0) be a plane cycle of H that surrounds
x /∈ H; we shall apply an iterative process of ‘loop-removal’ to C, and may assume
n ≥ 4. We start at v0 and move around C in increasing order of vertex-index. Let
J be the least j ≤ n such that there exists i ∈ {1, 2, . . . , j − 2} with vi ∼ vJ , and
let I be the earliest such i. Consider the two cycles C ′ = (vI , vI+1, . . . , vJ , vI) and
C ′′ = (vJ , vJ+1, . . . , v0, v1. . . . vI , vJ). (These cycles are called oxbows since they arise
through cutting across a bottleneck of the original cycle C.) Since C surrounds x, so
does either or both of C ′ and C ′′, and we suppose for concreteness that C ′′ surrounds
x. We replace C by C ′′. This process is iterated until no such oxbows remain.

(b) This part is proved by a similar argument. When the endpoints v0, vn of π are
not neighbours, we use oxbow-removal as above; otherwise, we set π′ = (v0, vn). �

Path-surgery will be used in the forthcoming proofs: that is, the replacement
of certain paths by others. Consider a one-ended G ∈ Q, embedded properly and
canonically in the hyperbolic plane H, which for concreteness we consider here in
the Poincaré disk model (see [19]), also denoted H. By Theorem 3.1(c), every au-
tomorphism of G extends to an isometry of H. Let F be the set of faces of G. For
F ∈ F and x, y ∈ V (∂F ), let Lx,y be the set of rectifiable curves with endpoints x, y
whose interiors are subsets of F ◦ \E, and write lx,y for the infimum of the hyperbolic
lengths of all l ∈ Lx,y. Let

diam(F ) = sup{lx,y : x, y ∈ V (∂F )},

and

(11.1) ρ = max{diam(F ) : F ∈ F}.

By the properties of G, and in particular Theorem 3.1(c), we have ρ <∞.
Let L be a geodesic of H with endpoints in the boundary of H. Denote by Lδ the

closed, hyperbolic δ-neighbourhood of L (see Figure 11.1); we call Lδ a hyperbolic
tube, and we say Lδ has width 2δ. Write ∂+Lδ and ∂−Lδ for the two boundary arcs
of Lδ. An arc γ of H is said to cross Lδ laterally if it intersects both ∂+Lδ and ∂−Lδ.

A path π = (. . . , x−1, x0, x1, . . . ) of G (or Ĝ) is said to cross Lδ in the long direction
if, for any arc γ that crosses Lδ laterally and intersects no vertex of G, the number
of intersections between γ and π, if finite, is odd.

Lemma 11.2. Let G = (V,E) ∈ Q be one-ended and duly embedded in the Poincaré
disk H, and let Lδ be a hyperbolic tube.

(a) If 2δ > ρ, then Lδ contains a 2∞-nst path of G, and a 2∞-nst path of G∗,
that cross Lδ in the long direction.
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∂+Lδ

∂−Lδ

Figure 11.1. An illustration of Lemma 11.2. The jagged (red) path
crosses Lδ in the long direction.

(b) There exists ζ = ζ(G) (depending on G and its embedding) such that, for
r > ζ and v ∈ V , the annulus Λr(v) \ Λr−ζ(v) contains a non-self-touching
cycle of G (respectively, G∗) denoted σr(v) (respectively, σ∗r(v)) such that
v ∈ σr(v)◦ (respectively, v ∈ σ∗r(v)◦).

A more refined result may be found in Section 13.

Proof. (a) Since all faces of G are bounded, there exist vertices of G in both com-
ponents of H \ Lδ. Now, Lδ fails to be crossed in the long direction if and only if it
contains some arc γ that traverses it laterally and that intersects no edge of G. To
see the ‘only if’ statement, let V − and V + be the subsets of V ∩ Lδ that are joined
in G∩Lδ to the two boundary points of L, respectively; if V − ∩ V + = ∅, then there
exists such γ separating V + and V − in Lδ. For this γ, there exists a face F and
points x, y ∈ V (∂F ), such that γ ⊆ λ for some λ ∈ Lx,y. For ε ∈ (0, 2δ− ρ), we may
replace γ by some γ′ := λ′∩Lδ where λ′ ∈ Lx,y has length not exceeding lx,y + ε. The
length of γ′ is no greater than ρ + ε < 2δ, a contradiction. Therefore, Lδ contains
some path π of G that crosses Lδ in the long direction.

We apply oxbow-removal in G to π as described in the proof of Lemma 11.1.
For any arc γ that crosses Lδ laterally and intersects no vertex of G, the number of
intersections between γ and π, if finite, decreases by a non-negative, even number
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Figure 11.2. A square of the square lattice, its matching graph, and
with its facial site added.

whenever an oxbow is removed. It follows that the non-self-touching path π′ (ob-
tained after oxbow-removal) crosses Lδ in the long direction. The same conclusion
applies to G∗ on letting π be a path of G∗.

The proof of (b) is similar. �

11.2. Graph properties. The proofs of this article make heavy use of path-surgery
which, in turn, relies on planarity of paths.

Lemma 11.3. Let G ∈ Q, and let π be a (finite or infinite) non-self-touching path
of G∗.

(a) For every face F of G, π contains either zero or one or two vertices of F .
If π contains two such vertices u, v, then it contains also the corresponding
edge 〈u, v〉, which may be either an edge of G or a diagonal.

(b) The path π is plane when viewed as a graph.

Proof. Let F be a face. The path π cannot contain three or more vertices of F , since
that contradicts the non-self-touching property. Similarly, if π contains two such
vertices, it must contain also the corresponding edge. If π is non-plane, it contains
two or more diagonals of some face, which, by the above, cannot occur. �

As a device in the proof of Theorem 1.11, we shall work with the graph Ĝ obtained
from G = (V,E) by adding a vertex at the centre of each face F , and adding an edge
from every vertex in the boundary of F to this central vertex. As in Section 4, these
new vertices are called facial sites, or simply sites in order to distinguish them from
the vertices of G. The facial site in the face F is denoted φ(F ). See [34, Sec. 2.3],
and also Figure 11.2. If 〈v, w〉 is a diagonal of G∗, it lies in some face F , and we
write φ(v, w) = φ(F ) for the corresponding facial site. We note that two vertices

u, v ∈ V are connected in G∗ if and only if they are connected in Ĝ.

The main reason for working with Ĝ is that it serves to interpolate between G
and G∗ in the sense of (12.2): we shall assign a parameter s ∈ [0, 1] to the facial sites
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in such a way that s = 0 corresponds to G and s = 1 to G∗. It will also be useful

that Ĝ is planar whereas G∗ is not.

Next, we specify some desirable properties of the graphs G∗ and Ĝ. The property
Π was already the subject of Definition 9.2.

Definition 11.4. The graph G ∈ Q is said to have property

Π if G∗ has a 2∞-nst path including some diagonal,

Π̂ if Ĝ has a 2∞-nst path including some facial site.

Lemma 11.5. Let G ∈ Q be one-ended. Then Π⇒ Π̂.

Proof. Let G have property Π and let π be a 2∞-nst path of G∗. For any two
consecutive vertices u, v of Π such that δ(u, v) is a diagonal, we add between u and

v the facial site φ(u, v). The result is a doubly-infinite path π′ of Ĝ. By Lemma

11.3, ν ′ is non-self-touching in Ĝ, whence G has property Π̂. The converse argument
fails. �

The properties of Definition 11.4 are ‘global’ in that they concern the existence
of infinite paths. It is sometimes preferable to work in the proofs with finite paths,
and to that end we introduce corresponding ‘local’ properties.

Let ζ(G) be as in Lemma 11.2(b). We shall make reference to the non-self-
touching cycles σr(v), σ∗r(v) given in that lemma. We write σ̂r(v) for the non-self-

touching cycle of Ĝ obtained from σ∗r(v) by replacing any diagonal by a path of

length 2 passing via the appropriate facial site of Ĝ. We abbreviate the closure of
the region surrounded by σ∗r (respectively, σ̂r) to σ∗r (respectively, σ̂r). Let A(G) be
the real number given as

(11.2) A(G) = ζ(G) + max{dG(u,w) : 〈u,w〉 ∈ E∗ \ E}.

Definition 11.6. Let A ∈ Z, A > A(G), and let G ∈ Q be one-ended.

(a) The graph G is said to have property ΠA if there exists a vertex v ∈ V and a
non-self-touching path π = (x0, x1, . . . , xn) of G∗ such that
(i) every vertex of π lies in σ∗A(v), and x0, xn ∈ σ∗A(v),

(ii) there exists i such that xi = v,
(iii) the pair v, xi+1 forms a diagonal of G∗, which is to say that φ :=

φ(v, xi+1) is a facial site of Ĝ.

(b) The graph G is said to have property Π̂A if there exist vertices v, w ∈ V and

a non-self-touching path π = (x0, x1, . . . , xn) of Ĝ such that

(i) every vertex of π lies in σ̂A(v), and x0, xn ∈ σ̂A(v),
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v

σA(v)

π1

π2

Figure 11.3. An illustration of the property ΠA: a non-self-touching
path of G∗ containing a diagonal near its middle.

(ii) there exists i such that xi = v, xi+2 = w,

(iii) xi+1 is the facial site φ(v, w) of Ĝ.

That is to say, G has property ΠA (respectively, Π̂A) if G∗ (respectively, Ĝ) con-
tains a finite, non-self-touching path of sufficient length that contains some diagonal
(respectively, facial site). This definition is illustrated in Figure 11.3. Note that

ΠA+1 (respectively, Π̂A+1) implies ΠA (respectively, Π̂A) for sufficiently large A.

Theorem 11.7. Let G ∈ Q be one-ended. There exists A′(G) ≥ A(G) such that, for

A > A′(G), we have Π⇔ ΠA and Π⇒ Π̂A,.

The proof of this useful theorem utilises some methods of path-surgery that will
be important later, and it is deferred to Section 11.3.

11.3. Proof of Theorem 11.7. (a) First, we prove that Π ⇔ ΠA. Evidently,
Π⇒ ΠA for all A > A(G), where A(G) is given in (11.2). Assume, conversely, that
ΠA holds for some A > A(G). Let the non-self-touching path π = (x0, x1, . . . , xn)
of G∗, the vertex v = xi, and the diagonal d = 〈v, xi+1〉 be as in Definition 11.6(a);
think of π as a directed path from x0 to xn, and note by Lemma 11.3 that π is a
plane graph. We abbreviate σ∗A(v) to σ∗A. Let

∂−σ∗A = {y ∈ (σ∗A)◦ : dG∗(y, σ
∗
A) = 1}.

Let π1 be the subpath of π from v to x0, and π2 that from xi+1 to xn. Let ai be
the earliest vertex/site of πi lying in ∂−σA. See the central circle of Figure 11.4. We
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σA

v

a1 a2

Figure 11.4. In the easiest case when D ≥ 2, one finds (green) non-
touching subarcs σiA of σA to which v may be connected by non-self-
touching paths. These subarcs may be connected to the boundary of
H using subpaths of a doubly-infinite path constructed using Lemma
11.2(a).

claim the following.

(11.3)

There exist two non-touching subpaths σ1, σ2 of σ∗A, each of length at
least 1

2
|σ∗A| − 4, such that: (i) for i = 1, 2, the subpath of πi leading

to ai may be extended beyond ai along σi to form a non-self-touching
path ending at any prescribed yi ∈ σi, and (ii) the composite path thus
created (after oxbow-removal if necessary) is non-self-touching.

The proof of (11.3) follows. Let

(11.4) Ai = {b ∈ σ∗A : dG∗(ai, b) = 1}, D = max{dG∗(b1, b2) : b1 ∈ A1, b2 ∈ A2}.

Suppose D ≥ 2. Choose bi ∈ Ai such that dG∗(b1, b2) ≥ 2. As illustrated in the
centre of Figure 11.4, we may find a non-touching pair of non-self-touching subpaths
of σ∗A such that the conclusion of (11.3) holds. Some oxbow-removal may be needed
at the junctions of paths.

Suppose D = 1. We may picture σ∗A as a (topological) circle with centre v, and for
concreteness we assume that a2 lies clockwise of a1 around σ∗A (a similar argument
holds if not). See Figure 11.5.

A. Suppose the path π1, when continued beyond a1, passes at the next step to
some b1 ∈ A1, and add b1 to obtain a path denoted π′1.

Since D = 1, the next step of π2 beyond a2 is not into A2. On following
π2 further, it moves inside (σ∗A)◦ until it arrives at some point a′2 ∈ ∂−σ∗A
having some neighbour b′2 ∈ σ∗A satisfying dG∗(b1, b

′
2) ≥ 2; we then include

the subpath of π2 between a2 and b′2 to obtain a path denoted π′2.
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a1

a2

a′2

b1
b′2

θ
v xi+1

y1

y2

Figure 11.5. An illustration of the case D = 1. The green lines
indicate the subpaths σiA. The rectangle is added in illustration of the
case θ ≥ 3

4
π.

We declare σ1 to be the subpath of σ∗A starting at b1 and extending a total
distance 1

2
|σ∗A| − 4 around σ∗A anticlockwise. We declare σ2 similarly to start

at distance 2 clockwise of b1 and to have the same length as σ1.

Let θ ∈ (0, 2π) be the angle subtended by the vector
−−→
a2a

′
2 at the centre v.

If θ < 3
4
π, say, each π′i may be extended along σi to end at any prescribed

yi ∈ σi. Therefore, claim (11.3) holds in this case.
The situation can be more delicate if θ ≥ 3

4
π, since then a′2 may be near to

σ1. By the planarity of π, the region R between π′2 and σ∗A contains no point
of π′1 (R is the shaded region in Figure 11.5). We position a hyperbolic tube
of width greater than ρ in such a way that it is crossed laterally by both π′2
and the path σ2 (as illustrated in Figure 11.5). By Lemma 11.2(a), this tube
is crossed in the long direction by some path τ of G. The union of π′2 and
τ contains a non-self-touching path π′′2 of G∗ from xi+1 to σ2 (whose unique
vertex in σ2 is its second endpoint). Claim (11.3) follows in this situation.

B. Suppose the hypothesis of part A does not hold, but instead π2 passes from a2

directly into σ∗A. In this case we follow A above with π1 and π2 interchanged.
C. Suppose neither πi passes from ai in one step into σ∗A. We add b2 to the

subpath from xi+1 to a2, and continue as in part A above.

Suppose D = 0. Statement (11.3) holds by a similar argument to that above,

Having located the σi of (11.3), we position a hyperbolic tube as in Figure 11.4,
to deduce (after oxbow-removal) the existence of a 2∞-nst path of G∗ that contains
the diagonal d. Therefore, G has property Π, as required.

Hyperbolic tubes are superimposed on the graph at two steps of the argument
above, and it is for this reason that we need A to be sufficiently large, say A > A′(G).
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(b) It remains to show that Π ⇒ Π̂A. By Lemma 11.5, Π ⇒ Π̂, and it is

immediate that Π̂⇒ Π̂A for large A.

12. Proof of Theorem 1.11

Consider site percolation on G with product measure Pp, and fix some vertex v0

of G. We write v ↔ w if there exists a path of G from v to w using only open sites
(such a path is called open), and v ↔∞ if there exists an infinite, open path starting
at v. The percolation probability is the function θ given by

(12.1) θ(p) = θ(p;G) = Pp(v0 ↔∞),

so that the (site) critical probability of G is pc(G) := sup{p : θ(p) = 0}. The
quantities θ(p;G∗) and pc(G∗) are defined similarly.

Remark 12.1. It is an old problem dating back to [8] to decide which graphs G
satisfy pc(G) < 1, and there has been a series of related results since. It was proved
in [21, Thm 1.3] that pc(G) < 1 for all quasi-transitive graphs G with super-linear
growth. This class includes all G ∈ Q with either one or infinitely many ends (see
[5, Sect. 1.4] and Theorem 3.1).

Theorem 12.2. Let G ∈ Q be one-ended.

(a) Let A0 ∈ Z. If G has property ΠA for no A > A0, then pc(G∗) = pc(G).
(b) There exists A′(G) ≥ A(G) such that the following holds. Let A > A′(G). If

G has property Π̂A, then pc(Ĝ) < pc(G).

The constant A′(G) in part (b) depends on the embedded graph G, viewed as a
subset of H, rather on the graph G alone.

Proof of Theorem 1.11. If G does not have property Π, by Theorem 11.7 for large
A it does not have property ΠA, whence by Theorem 12.2(a), pc(G∗) = pc(G).

Conversely, if G has property Π, by Theorem 11.7 again it has property Π̂A for

large A, whence by Theorem 12.2(b), pc(Ĝ) < pc(G). The final claim follows by the

elementary inequality pc(G∗) ≤ pc(Ĝ); see (12.2). �

Proof of Theorem 12.2(a). Let A0 ∈ Z. Assume G has property ΠA for no A ≥ A0,
and let p > pc(G∗). Let π be an infinite open path of G∗ with some endpoint x.
By Lemma 11.1(b), there exists a subset π′ of π that forms a non-self-touching path
of G∗ with endpoint x. Let A > A0. Since ΠA does not hold, every edge of π′ at
distance 2A or more from x is an edge of G, so that there exists an infinite open
path in G. Therefore, p ≥ pc(G), whence pc(G∗) = pc(G). �
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The rest of this section is devoted to the proof of Theorem 12.2(b). Let Ω̂ =

ΩV × ΩΦ where Φ is the set of facial sites and ΩΦ = {0, 1}Φ. For ω̂ = ω × ω′ ∈ Ω̂
and φ ∈ Φ, we call φ open if ω′φ = 1, and closed otherwise. Let Pp,s = Pp×Ps be the
corresponding product measure on ΩV × ΩΦ, and

θ(p, s) = lim
n→∞

θn(p, s) where θn(p, s) = Pp,s(v0 ↔ ∂Λn in Ĝ),

so that

(12.2) θ(p, 0) = θ(p;G), θ(p, p) = θ(p; Ĝ), θ(p, 1) = θ(p;G∗),

where θ(p;H) denotes the percolation probability of the graph H. The following
proposition implies Theorem 12.2(b).

Proposition 12.3. There exists A′(G) <∞ such that the following holds. Suppose

G ∈ Q is one-ended and has property Π̂A where A > A′(G). Let s ∈ (0, 1]. There
exists ε = ε(s) > 0 such that θ(p, s) > 0 for pc(G)− ε < p < pc(G).

We do not investigate the details of how A′(G) depends on G. An explicit lower
bound on A′(G) may be obtained in terms of local properties of the embedding of
G, but it is doubtful whether this will be useful in practice.

The rest of this proof is devoted to an outline of that of Proposition 12.3. Full
details are not included, since they are very close to established arguments of [1],
[24, Sect. 3.3], and elsewhere.

Let n be large, and later we shall let n → ∞. Consider site percolation on Ĝ
with measure Pp,s. We call a vertex (respectively, facial site) z pivotal if it is pivotal

for the existence of an open path of Ĝ from v0 to ∂Λn (which is to say that such a
path exists if z is open, and not otherwise). Let Pin be the set of pivotal vertices,
and Din the set of pivotal facial sites. Proposition 12.3 follows in the ‘usual way’
(see [24, Sect. 3.3]) from the following statement.

Lemma 12.4. Let p, s ∈ (0, 1). There exists M ≥ 1 and f : (0, 1)2 → (0,∞) such
that, for n > 4M and every z ∈ Λn,

(12.3) Pp,s(z ∈ Pin) ≤ f(p, s)Pp,s(Din ∩ ΛM(z) 6= ∅).

On summing (12.3) over z ∈ Λn, we obtain by Russo’s formula (see [24, Sec. 2.4])
that there exists g(p, s) <∞ such that

(12.4)
∂

∂p
θn(p, s) ≤ g(p, s)

∂

∂s
θn(p, s).

The derivation of Proposition 12.3 from this differential inequality is explained in
[1, 24]. It suffices therefore to prove Lemma 12.4.
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Here is an outline of the proof of Lemma 12.4. Let ω̂ ∈ Ω̂, z ∈ V ∩ Λn, and
suppose

(12.5) z is open and pivotal in the configuration ω̂.

By making changes to the configuration ω̂ within the box Λ4M(z) for some fixed M ,

(12.6)
we construct a configuration in which ΛM(z) contains a pivotal facial
site.

This implies (12.3) with f depending on the choice of z. Since Λ4M(z) is finite and
there are only finitely many types of vertex (by quasi-transitivity), f may be chosen
to be independent of z. The above is achieved in five stages.

Assume for now that ω̂ ∈ Ω̂ and the pivotal vertex z satisfies

(12.7) z ∈ Λn−2M \ Λ2M .

For clarity of exposition, our illustrations are drawn as if G is duly embedded in the
Euclidean rather than hyperbolic plane.

Let G have property Π̂A. Let π = (xj), v = xi, be as in Definition 11.6(b), and
write φ = xi+1 = φ(v, xi+2). Find α ∈ Aut(G) such that v′ = αv satisfies dG(z, v′) ≤
∆, where ∆ is given in (9.1). Let M = 2(A + ∆), so that ΛA(v′) ⊆ ΛM/2(z). The
outline of the proof is as follows.

I. If there exist one or more open facial sites in ΛM(z), we declare them one-
by-one to be closed. If at some point in this process, some facial site is found
to be pivotal, then we have achieved (12.6), by changing ω̂ within a bounded
region. We may therefore assume that this never occurs, or equivalently that

(12.8) ω̂ has no open facial site in ΛM(z).

II. Find a non-self-touching open path ν in ω̂ from v0 to ∂Λn. This path passes
necessarily through the pivotal vertex z.

III. By making changes within Λ2M(z), we construct non-touching subpaths of ν
from v0 (respectively, ∂Λn) to ∂ΛM(z), that can be extended inside ΛM(z) in
a manner to be specified at Stage V. This, and especially the following, stage
resembles closely part of the proof in Section 11.3.

IV. We splice a copy (denoted π′ = απ) of π inside ΛA(v′), and we make local
changes to obtain paths π1, π2 from the two endpoints of αφ, respectively, to
∂ΛA(v′) that can be extended outside ΛA(v′) in a manner to be specified at
Stage V.
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z
v0

∂Λn

∂Λ2M(z)

σ̂M

u

v

Figure 12.1. An illustration of the construction at Stages II/III. The
non-self-touching path ν contains subpaths from v0 to σ̂M , and from
the latter set to ∂Λn. The subpaths σiM of σ̂M are indicated in green.

V. Between the contours ∂ΛA(v′) and ∂ΛM(z), we arrange the configuration in
such a way that the retained parts of ν hook up with the endpoints of the πi.
In the resulting configuration, the facial site φ′ := αφ is pivotal.

Some work is needed to ensure that φ′ can be made pivotal in the final configura-
tion. Lemma 11.2(b) will be used to traverse the annulus between the two contours
at Stage V. In making connections at junctions of paths, we shall make use of the

planarity of Ĝ. Rather than working with the boundaries of ΛM(z) and ΛA(v′), we
shall work instead with the non-self-touching cycles σ̂M := σ̂M(z) and σ̂A := σ̂A(v′)

of Ĝ given in Lemma 11.2(b). Let

∂+σ̂M = {y ∈ H \ σ̂M : dĜ(y, σ̂M) = 1},
∂−σ̂A = {y ∈ (σ̂A)◦ : dĜ(y, σ̂A) = 1}.

We move to the proof proper. Stage I is first followed as stated above.

Stage II. By (12.5), we may find an open, non-self-touching path ν of Ĝ from v0

to ∂Λn, and we consider ν as thus directed. By (12.8), ν includes no facial site of
ΛM(z). The path ν passes necessarily through z, and we let u (respectively, w) be
the preceding (respectively, succeeding) vertex to z.
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For y ∈ V , and the given configuration ω̂ (satisfying (12.8)), let

Cy = {x ∈ V : y ↔ x in Ĝ \ {z}},

and write Cy also for the corresponding induced subgraph of Ĝ. By (12.5),

A. Cu and Cw are disjoint (and also non-touching),
B. the subpath of ν, denoted ν(u−), from v0 to u contains no facial site of ΛM(z),
C. the subpath of ν, denoted ν(w+), from w to ∂Λn contains no facial site of

ΛM(z),
D. the pair ν(z−), ν(z+) is non-touching.

Stage III. This is closely related to the proof of Theorem 11.7 given in Section 11.3.
Note that the intersection of ν(u−)∪ν(w+) and Λ2M(z) comprises a family of paths
rather than two single paths. See Figure 12.1.

We follow ν(u−) towards u, and ν(w+) backwards towards w, until we reach the
first vertices/sites, denoted a1, a2, respectively, lying in ∂+σ̂M . Let ν1 be the subpath
of ν(u−) between v0 and a1, and ν2 that of ν(w+) between ∂Λn and a2. We now
change the states of certain vertices/sites x ∈ Λ2M(z) by declaring

(12.9) every x ∈ Λ2M(z) \ σ̂M is declared open if and only if x ∈ ν1 ∪ ν2.

We investigate next the subsets of σ̂M to which the ai may be connected within
σM . We shall show that:

(12.10)

there exist two non-touching subpaths σ1
M , σ2

M of σ̂M , each of length at
least 1

2
|σ̂M | − 4, such that, for i = 1, 2: (i) ai has a neighbour bi ∈ σiM ,

(ii) for yi ∈ σiM , the path νi may be extended from bi to yi along σiM ,
thereby creating (after oxbow-removal if necessary) a non-self-touching
path from the other endpoint of νi, (iii) the composite path ν ′i thus
created is non-self-touching, and (iv) the pair ν ′1, ν ′2 is non-touching.

An explanation follows. Let

(12.11) Ai = {b ∈ σ̂M : dĜ(ai, b) = 1}, D = max{dĜ(b1, b2) : b1 ∈ A1, b2 ∈ A2}.

Suppose D ≥ 2. Choose bi ∈ Ai such that dĜ(b1, b2) ≥ 2. Statement (12.10) follows
as illustrated in Figure 12.1.

Suppose D = 1. We may picture σM as a circle with centre z, and for concreteness
we assume that a2 lies clockwise of a1 around σ̂M (a similar argument holds if not)
See Figure 12.2.
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∂Λn

σ̂M

v0 a1

a2

a′2

a′2

ν′2

b1

∂Λ2M (z)

τ

τ

Figure 12.2. An illustration of the case D = 1 in the Stage III con-
struction. There are two subcases, depending on whether θ > 0 (solid
line) or θ < 0 (dashed line). The green lines indicate the subpaths
σiM in the subcase θ > 0. The rectangle is added in illustration of the
hyperbolic tube used in the case θ ≥ 3

4
π.

A. Suppose the path ν1, when continued along ν(z−) beyond a1, passes at the
next step to some b1 ∈ A1, and add b1 to ν1 (to obtain a path denoted ν ′1).

Since D = 1, the next step of ν(w+) beyond a2 is not to A2. On following

ν(w+) further, it moves insideH\σ̂M until it arrives at some point a′2 ∈ ∂+σ̂M
having some neighbour b′2 ∈ σ̂M satisfying dĜ(b1, b

′
2) ≥ 2; we then add to

ν2 the subpath of ν(w+) between a2 and b′2 (to obtain an extended path

ν ′2). Let θ(a′2) be the angle subtended by the vector
−−→
a2a

′
2 at the centre z,

counted positive if ν(w+) passes clockwise around z of σ̂M , and negative if
anticlockwise.
(i) There are two cases, depending on whether θ := θ(a′2) is positive or

negative. Assume first that θ > 0. If θ < 3
4
π, say, we declare σ1

M to be

the subpath of σ̂M starting at b1 and extending a total distance 1
2
|σ̂M |−4

around σM anticlockwise. We declare σ2
M similarly to start at distance

2 clockwise of b1 along σ̂M and to have the same length as σ1
M . Each ν ′i
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∂Λn

σ̂M

v0

a2

a′2

α

b′2

b1

a1

L
∂Λ2M (z)

β

Figure 12.3. When D = 1 and θ < 0, we adjust the path ν2 by
bypassing a subpath through a2.

may be extended along σiM to end at any prescribed yi ∈ σiM . Therefore,
claim (12.10) holds in this case.
The situation can be more delicate if θ ≥ 3

4
π, since then a′2 may be near

to σ1
M . By the planarity of ν, the region R between ν ′2 and σM contains

no point of ν ′1 (R is the shaded region in Figure 12.2). We position a
hyperbolic tube of width greater than ρ in such a way that it is crossed
laterally by both ν ′2 and the path σ2

M given above. By Lemma 11.2(a),

this tube is crossed in the long direction by some path τ of Ĝ. As
illustrated in Figure 12.2, the union of ν ′2 and τ contains (after oxbow-
removal) a non-self-touching path ν ′′2 from ∂Λn to σ2

M (whose unique
vertex in σ2

M is its second endpoint). We now declare each vertex/site of
Λ2M(z) \ (σ̂M)◦ to be open if and only if it lies in ν ′1 ∪ ν ′′2 . Claim (12.10)
follows in this situation, with the σiM given as above.

(ii) Assume θ < 0, in which case there arises a complication in the above
construction, as illustrated in Figure 12.3. In this case, there is a sub-
path L of ν ′2 from a2 to a′2, that passes anticlockwise around v0, and ν ′1
contains no vertex/site outside the closed cycle comprising L followed by
the subpath of σ̂M from b′2 to b2. In order to overcome this problem, we
alter the path ν ′2 as follows. Let α denote the annulus ΛM(a2)\ΛM−ζ(a2),
with ζ as in Lemma 11.2(b). (We may assume M ≥ 2ζ.) By that lemma,

α contains a non-self-touching cycle β of Ĝ that surrounds a2. The union
of ν ′2 and β contains (after oxbow-removal) a non-self-touching path ν ′′2
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σ̂A

v′

σ̂M

Figure 12.4. An illustration of the construction at Stages IV and V.

of Ĝ from ∂Λn to a′2 that does not contain a2 (see Figure 12.3). We
declare every x ∈ ν ′′2 open and every x ∈ ν ′2 \ ν ′′2 closed. The subpaths
σiM of σ̂M may now be defined as above.

B. Suppose the hypothesis of part A does not hold, but instead ν2 passes from a2

into σ̂M . In this case we follow A with ν(u−) and ν(w+) interchanged. This
case is slightly shorter than A since the above complication cannot occur.

C. Suppose neither νi passes from ai directly into σ̂M . We add b2 to ν2 and
continue as in A above.

Suppose D = 0. Statement (12.10) holds by a similar argument to that of case (ii),

Stage IV. We next pursue a similar strategy within ΛA(v′). The argument is essen-
tially that in proof of Theorem 11.7 given in Section 11.3, and the details of this are
omitted here. See Figures 11.5 and 12.4.

Stage V. Having located the subpaths σiM of σ̂M , and the subpaths σiA of σ̂A, we
prove next that there exists j ∈ {1, 2}, and non-self-touching paths µ1, µ2, such
that: (i) µ1, µ2 is a non-touching pair, (ii) µ1 has endpoints in σ1

M and σjA, and µ2

has endpoints in σ2
M and σj

′

A , where j′ ∈ {1, 2}, j′ 6= j, and (iii) apart from their

endpoints, µ1 and µ2 lie in (σ̂M)◦ \ σ̂A. This statement follows as in Figure 12.4
by positioning two hyperbolic tubes of width exceeding ρ, and appealing to Lemma
11.2(a). It may be necessary to remove some oxbows at the junctions of paths.

Hyperbolic tubes are superimposed on σ̂A above, and it is for this reason that A
is assumed to be sufficiently large.

Having satisfied (12.6) subject to (12.7), we next explain how to remove the
assumption (12.7). Let the pivotal vertex v satisfy v ∈ Λ2M ; a similar argument
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π(x)

π(y)

z

Γ

Figure 13.1. An illustration of the proof of Lemma 13.1. The four
curved lines are geodesics.

applies if v ∈ Λn \ Λn−2M . Let π be an infinite, non-self-touching open path of

Ĝ starting at v0, and declare closed every vertex of Λ4M not lying in π. (Such a
π exists by connectivity and oxbow-removal.) In the resulting configuration, every
vertex/site in the subpath of π from ∂Λ2M to ∂Λ4M is pivotal. We pick one such
vertex and apply the above arguments to obtain a pivotal facial site lying in Λ4M .

13. Strict inequality using the metric method

13.1. Embeddings in the Poincaré disk. Throughout this section we shall work
with the Poincaré disk model of hyperbolic geometry (also denotedH), and we denote
by ρ the corresponding hyperbolic metric.

13.2. Proof of Theorem 10.1 by the metric method. Let Γ be a doubly-infinite
geodesic in the Poincaré disk. Pick a fixed but arbitrary total ordering < of Γ. Then
Γ may be parametrized by any function p : Γ → R satisfying p(v) = p(u) + ρ(u, v)
for u, v ∈ Γ, u < v, and we fix such p.

Here is a lemma. Any x /∈ Γ has an orthogonal projection π(x) onto Γ (for x ∈ Γ,
we set π(x) = x).

Lemma 13.1. For x, y ∈ H, we have ρ(π(x), π(y)) ≤ ρ(x, y).

Proof. We assume for simplicity that x and y are distinct and lie in the same con-
nected component of H \ Γ; a similar proof holds if not. The points x, π(x), π(y), y
form a quadrilateral with two consecutive right angles (see Figure 13.1). Let z be the
orthogonal projection of x onto the geodesic containing y and π(y). The triple x, z, y
forms a right-angled triangle, and the quadruple x, z, π(y), π(x) forms a Lambert
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quadrilateral. By the geometry of such shapes (see, for example, [33, Sect. III.5]),
we have that ρ(x, y) ≥ ρ(x, z) ≥ ρ(π(x), π(y)). �

Let G = (V,E) ∈ T be one-ended but not a triangulation. We shall consider
only the case when G is non-amenable, so that it is embedded as an Archimedean
tiling in the Poincaré disk; the Euclidean case is similar and easier. For an edge e of
G∗ = (V,E∗), let ρ(e) denote the hyperbolic distance between its endvertices; since
every e of G∗ (in its embedding) is a geodesic, ρ(e) equals the hyperbolic length of
e. Since the embedding is Archimedean, every edge of G has the same hyperbolic
length, and we may therefore assume for simplicity that

(13.1) ρ(e) = 1, e ∈ E.
Each e ∈ E∗ is a sub-arc of a unique doubly-infinite geodesic, denoted Γe, of H.

Let r be the maximal number of edges in a face of G, and let F be a face of size
r. Since F is a regular r-gon, by (13.1), F has some diagonal d satisfying

(13.2) ρ(d) ≥ ρ(e) ≥ 1, e ∈ E∗,
and we choose d accordingly. By Lemma 13.1 applied to the geodesic Γd,

(13.3) ρ(π(e)) ≤ ρ(e) ≤ ρ(d), e ∈ E∗,
where π denote orthogonal projection onto Γd, and ρ(γ) is the hyperbolic distance
between the endpoints of an arc γ.

Let < and p be the ordering and parametrization of Γd given at the start of this
subsection. We extend the domain of p by setting

p(x) = p(π(x)), x ∈ H.
We construct next a doubly-infinite path of G∗ containing d and lying ‘close’ to Γd.
Write d = 〈a, b〉 where a < b. Let Γ+

d (respectively, Γ−d ) be the sub-geodesic obtained
by proceeding along Γd from b in the positive direction (respectively, from a in the
negative direction). As we proceed along Γ+

d , we encounter edges and faces of G. If
e ∈ E is such that e ∩ Γ+

d 6= ∅, then the intersection is either a point or the entire
edge e (this holds since both e and Γd are geodesics).

Lemma 13.2. Let e = 〈x, y〉 ∈ E be an edge whose interior e◦ intersects Γ+
d at a

singleton g only, so that e◦ ∩ Γ+
d = {g}. Then,

(a) either p(x) = p(g) = p(y), or
(b) some endvertex z ∈ {x, y} of e satisfies p(z) > p(g).

Proof. The first case arises when e, viewed as a geodesic, is perpendicular to Γ+
d , and

the second when it is not. See Figure 13.2. �
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Figure 13.2. The two cases that arise when Γ+
d meets an edge which

is either perpendicular or not.

In proceeding along Γ+
d , we make an ordered list (wi) of vertices as follows.

(a) Set w0 = b.
(b) Every time Γd passes into the interior of a face F ′, it exits either at a vertex

v′ or across the interior of some edge e′. In the first case we add v′ to the
list, and in the second, we add to the list an endvertex of e′ with maximal
p-value.

(c) If Γ+
d passes along an edge e ∈ E, we add both its endvertices to the list in

the order in which they are encountered.

The following lemma is proved after the end of the current proof.

Lemma 13.3. The infinite ordered list w = (w0, w1, . . . ) is a path of G∗ with the
property that p(wi) is strictly increasing in i.

We apply oxbow-removal, Lemma 11.1(b), to w to obtain an infinite, non-self-
touching path ν+ = (ν0, ν1, . . . ) of G∗ satisfying

(13.4) ν0 = b, p(ν0) < p(ν1) < · · · .

By the same argument applied to Γ−d , there exists an infinite, non-self-touching path
ν− = (ν−1, ν−2, . . . ) of G∗ satisfying

(13.5) ν−1 = a, p(ν−1) > p(ν−2) > · · · .

The composite path ν obtained by following ν− towards a, then d, then ν+, fails to be
non-self-touching in G∗ if and only if there exists s < 0 and t ≥ 0 with (s, t) 6= (−1, 0)
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such that e′′ := 〈νs, νt〉 ∈ E∗. If the last were to occur, by (13.4)–(13.5),

ρ(π(e′′)) = p(νt)− p(νs) > p(b)− p(a) = ρ(d),

in contradiction of (13.3). Thus ν is the required non-self-touching path. The above
may be regarded as a more refined version of part of Proposition 11.2.

Proof of Lemma 13.3. That w is a path of G∗ follows from its construction, and we
turn to the second claim. Let m ≥ 0, and consider w0, w1, . . . , wm as having been
identified. We claim that

(13.6) p(wm) < p(wm+1).

(a) Suppose wm ∈ Γ+
d .

(i) If Γ+
d includes next an entire edge of the form 〈wm, g〉 ∈ E, then wm+1 = g

and (13.6) holds.
(ii) Suppose Γ+

d enters next the interior of some face F ′. If it exits F ′ at a
vertex, then this vertex is wm+1 and (13.6) holds. Suppose it exits by
crossing the interior of an edge e′. If wm is an endvertex of e′, then wm+1

is its other endvertex and (13.6) holds; if not, then wm+1 is an endvertex
of e′ with maximal p-value (recall Lemma 13.2).

(b) Suppose wm is the endvertex of an edge e that is crossed (but not traversed
in its entirety) by Γ+

d , and let F ′ be the face thus entered. The next vertex
wm+1 is given as in (a)(ii) above, and (13.6) holds.

The proof is complete. �

13.3. The case of quasi-transitive graphs. Certain complexities arise in applying
the techniques of Section 13.2 to quasi-transitive graphs. In contrast to transitive
graphs, the faces are not generally regular polygons, and the longest edge need not
be a diagonal.

Let G ∈ Q be one-ended and not a triangulation. As before, we restrict ourselves
to the case when G is non-amenable, and we embed G canonically in the Poincaré
disk H. The edges of G are hyperbolic geodesics, but its diagonals need not be so.
The hyperbolic length of an edge e ∈ E∗ \E does not generally equal the hyperbolic
distance ρ(e) between its endvertices.

The proof is an adaptation of that of Section 13.2, and full details are omitted.
In identifying a path corresponding to the path w of Lemma 13.3, we use the fact
that edges of E are geodesics, and concentrate on the final departures of Γ+

d from
the faces whose interiors it enters.
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Figure 14.1. An illustration with r = 3.

Remark 13.4. The condition of Theorem 10.4 may be weakened as follows. In the
above proof of Theorem 10.1 is constructed a 2∞-nst path ν of G∗ (see the discussion
following Lemma 13.3). It suffices that, in the notation of that discussion, there exist
a diagonal d and s < 0, t ≥ 1 such that (i) the path (νs, νs+1, . . . , νt) is non-self-
touching in G∗, and (ii) for all e ∈ E we have p(νt)− p(νs) > p(π(e)). Cf. Theorem
11.7.

14. Strict inequality using the combinatorial method

We prove Theorem 10.8 in this section. Let G have the given properties, and
let ν = (. . . , ν−1, ν0, ν1, . . . ) be a 2∞-nst path of G∗. Such a path exists by Lemma
11.2(a) since G is connected. If ν contains some diagonal, then we are done. Assume
therefore that

ν contains no diagonal.

We shall make local changes to ν to obtain a 2∞-nst path ν containing some diagonal.
The following analysis is ‘case-by-case’.

In the various steps and figures that illustrate this construction, we write

u = ν−1, v = ν0, w = ν1.

Draw the triple u, v, w in the planar embedding of G as in Figure 14.1. Let fi =
〈v, yi〉, i = 1, 2, . . . , r, be the edges of G incident to v in the sector obtained by
rotating 〈u, v〉 clockwise about v until it coincides with 〈w, v〉; the fi are listed in
clockwise order. Let ν(u−) (respectively, ν(w+)) be the subpath of ν prior to and
including u (respectively, after and including w).

Assume first that G has no triangular faces. For clarity, we begin with this
simpler situation. If r = 0, the edges 〈u, v〉, 〈v, w〉 lie in some face F of G which, by
assumption, is not a triangle. In this case, we remove v from ν and add the diagonal
δ(u,w). The ensuing path ν has the required properties.
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Suppose henceforth that r ≥ 1. Since ν is assumed non-self-touching, no yi lies
in ν(u−) ∪ ν(w+). For i = 1, 2, . . . , r, denote the neighbours of yi other than v
as zi,1, zi,2, . . . , zi,δi , listed in clockwise order of the planar embedding. Note that,
while the zi,1, zi,2, . . . , zi,δi are distinct for given i, there may exist values of i, j and
1 ≤ a ≤ δi, 1 ≤ b ≤ δj with zi,a = zj,b. By the assumed absence of triangles, we have
zi,j 6= yk for all i, j, k.

We list the labels zi,j in lexicographic order (that is, za,b < zc,d if either a < c, or
a = c and b < d) as z1 < z2 < · · · < zs; this is a total order of the label-set Z but
not of the underlying vertices since a given vertex may occur multiply. If a < b we
speak of za as preceding, or being to the left of zb (and zb succeeding, or being to
the right of za). For 1 ≤ i ≤ r, let

(14.1) Si = (zi,j : j = 1, 2, . . . , δi), viewed as an ordered subsequence of Z.

In making changes to the path ν, it is useful to first record which vertices lie in
either ν(u−) or ν(w+), or in neither. We label each vertex z as

U if z ∈ ν(u−),

W if z ∈ ν(w+),

Q if z /∈ ν(u−) ∪ ν(w+).

Write NL be the number of zi with label L. Here is a technical lemma.

Lemma 14.1. Suppose NU ≥ 1, and let zT be the leftmost vertex labelled U . Let
ν ′′(u−) be the subpath of ν(u−) from zT to u, and ν ′(u−) that obtained from ν(u−)
by deleting the edges of ν ′′(u−). Let α = min{j : yj ∼ zT} and S = (zt, zt+1, . . . , zT )
be the zi adjacent to yα that precede or equal zT .

(a) For t ≤ i < j ≤ T , we have that zi � zj.
(b) For 1 ≤ i ≤ T − 1, zi is labelled Q.
(c) For 1 ≤ i ≤ T − 2, zi has no ∗-neighbour lying in ν ′(u−). Furthermore, zT

is the unique ∗-neighbour of zT−1 lying in ν ′(u−).
(d) For 1 ≤ i ≤ T , zi has no ∗-neighbour lying in ν(w+).

Proof. (a) If zi ∼ zj for some t ≤ i < j ≤ T , then (yα, zi, zj) forms a triangle, which
is forbidden by assumption.

(b) By the planarity of ν (see Lemma 11.3), ν ′′(u−) moves around v in an an-
ticlockwise direction, in the sense that the directed cycle obtained by traversing
ν ′′(u−) from zT to u, followed by the edges 〈u, v〉, 〈v, yα〉, 〈yα, zT 〉, has winding num-
ber −1. If, on the contrary, it has winding number 1, then ν ′′(u−) intersects ν(w+)
in contradiction of the planarity of ν. See Figure 14.2.
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u v w

ν(w+)

ν(u−)

zi zT

yα

Figure 14.2. If zi ∈ ν(w+) and zT ∈ ν(u−), then the pair ν(u−),
ν(w+) fails to be non-touching.

u v w

yα

y2

y3

zt z3,3

Q U Q U QW W Q Q
zT

Figure 14.3. The dashed red line contains the diagonal δ(v, zt).

Let 1 ≤ i ≤ T − 1. By assumption, zi is not labelled U . If zi ∈ ν(w+), then (as
illustrated in the figure), ν(u−) and ν(w+) must intersect (when viewed as arcs in
H). This is a contradiction by Lemma 11.3(b).

(c) If 1 ≤ i ≤ T−2 and zi has a ∗-neighbour x in ν ′(u−), then dG∗(x, ν
′′(u−)) ≤ 1,

which (as above) contradicts the assumption that ν(u−) is non-self-touching in G∗.
The second statement holds similarly.

(d) This is similar to the above. �

We consider the various cases, and use the notation of Lemma 14.1.

(a) Suppose NU ≥ 1. Start with the path ν ′(u−), and consider the pairs

P =
{

(zT , zT−1), (zT−1, zT−2), . . . , (zt, v)
}
.
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u v w

y1

yN yN+1

zt

Q Q

zT

RL

zP+1

yα

zP

Figure 14.4. The path ν passes through a vertex v that lies in a 6-
face F . With zT ∈ ν(u−) as given, when yα � yα−1 we may adjust ν to
obtain a non-self-touching path ν ′ passing along the diagonal δ(v, zt).

Since G has no triangles (see also Lemma 14.1(a)), every such pair forms a
diagonal. We add to ν ′(u−) the vertices v, zt, . . . , zT−1. Let ν be the path
of G∗ obtained by following ν ′(u−), then the pairs in P , and then ν(w+).
By Lemma 14.1(b, c, d), ν is non-self-touching, and furthermore it contains a
diagonal. See Figure 14.3.

(b) If NW ≥ 1, we perform a similar construction to the above, utilizing the
rightmost appearance of W .

(c) If NU = NW = 0, we remove v from ν, and replace it by the sequence of sites
y1, y2, . . . , yr (joined by their intermediate diagonals). The ensuing path ν is
non-self-touching and contains a diagonal.

Next we lift the no-triangle assumption. We now permit G to have trian-
gular faces, but assume it has property �. By �, the vertex v is incident to some
face denoted F whose boundary has four or more edges. Let u, w, ν(u−), ν(w+) be
as before. We draw the triple u, v, w as in Figure 14.4, and assume without loss of
generality that F lies above the line drawn horizontally in the illustration. We shall
use much of the notation introduced above.

Let y1, y2, . . . , yr be the neighbours of v other than u and w, considered clockwise
from u to w, as in Figure 14.4, and let z1, z2 . . . , zs be as before (we exclude the yj
from the sequence (zi)). Let r ≥ 1. The following technical lemma is related to the
earlier Lemma 14.1. With ν as above, let ν ′(u−) and ν ′′(u−) be as in Lemma 14.1,
and Si as in (14.1).
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Lemma 14.2.

(a) Let s0 = u, sr+1 = v, and si = yi for i = 1, 2, . . . , r. If si ∼ sj then |i−j| = 1.
(b) Suppose 1 ≤ T ≤ s and zT is labelled U . Let α be such that zT ∈ Sα, and

let S = (zt, zt+1, . . . , zT ) be the zi adjacent to yα that precede or equal zT .
Assume zt, zt+1, . . . , zT−1 are not labelled U .
(i) For t ≤ i ≤ T − 1, zi is labelled Q. For 1 ≤ i < t, zi is labelled either Q

or U .
(ii) For 1 ≤ i ≤ T − 2, zi has no ∗-neighbour lying in ν ′(u−). Furthermore,

zT is the unique ∗-neighbour of zT−1 lying in ν ′(u−).
(iii) For 1 ≤ i ≤ T , zi has no ∗-neighbour lying in ν(w+).

Proof. (a) Suppose si ∼ sj where j ≥ i+ 2. Then (v, si, sj) forms a triangle C of G
that intersects the interior of the edge 〈v, si+1〉 (viewed as a 1-dimensional simplex).
Since G is planar, it follows that si+1 ∈ C◦. This is a contradiction since G is assumed
4-empty.

Part (b) is proved as in the proof of Lemma 14.1. �

Let yN , yN+1 be the neighbours of v in F , and zP , zP+1 their further neighbours
in F (if F is a quadrilateral, we have zP = zP+1). We assume that yN 6= u and
yN+1 6= w; similar arguments are valid otherwise.

Suppose zi ∈ ν(u−) for some i ∈ {P, P+1}. Either zi ∼ v or δ(zi, v) is a diagonal.
In either case there is a contradiction with the fact that ν is non-self-touching in G∗.
A similar argument holds if one of zP , zP+1 lies in ν(w+). Therefore, neither zP nor
zP+1 lies in ν(u−) ∪ ν(w+), and we label them Q accordingly as in Figure 14.4.

Let L = {z1, z2, . . . , zP−1} (respectively, R = {zP+2, zP+2, . . . , zs}) denote the set
of neighbours of yN and the yj to its left (respectively, yN+1 and the yj to its right)
other than u, v, w and zP , zP+1. We do not assume that L and R are disjoint when
viewed as sets of vertices.

Next, we define an iterative construction. For P + 2 ≤ a ≤ s, let

f(a) = min{β ≥ N + 1 : yβ ∼ za}.

Let T ≥ P + 2 and let α ≥ N + 1 be such that zT ∈ Sα, where Sα is given in
(14.1). We define K(T ) as follows. Let T1 = max{a ∈ [φ(α), T ] : f(a) < α} with the
convention that the maximum of the empty set is 0.

1. If T1 = 0, let K(T ) = 0.
2. Assume T1 > 0, so that Sf(T1) contains the vertex represented by the label
zT1 , say with label zT ′1 ∈ Sf(T1). We set K(T ) = T ′1.
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yα

zT

yf(T1)

zT ′
1
= zT1

zT1

zT ′
1

Figure 14.5. An illustration of the function K in the proof of The-
orem 10.8. For zT ∈ Sα, we track backwards through Sα from zT until
we find some zT1 representing a vertex that appears in some Sγ with
N1 ≤ γ < α. In this example, we have K(T ) = T ′1.

The motivation for the function K is as follows. A difficulty arises from the fact
that each zj is a label rather than a vertex, and different labels can correspond to
the same vertex. For an initial label zT ∈ Sα, we examine its predecessors in Sα.
If no such predecessor (including zT itself) represents a vertex that appears also in
some earlier SN+1, . . . , Sα−1, we declare K(T ) = 0. If such a predecessor exists, find
the first such zT1 ∈ Sα, and find the earliest zj (with j ≥ P + 2) that represents the
same vertex as zT1 . Then K(T ) is the index of this zj.

We move now to the argument proper. The idea is to replace a subpath of ν
by another set of vertices, thus creating a non-self-touching path ν that includes a
diagonal.

(a) Assume some zγ ∈ R is labelled U , and let zT be the earliest such zγ. We
remove ν ′′(u−) from ν (while retaining its endvertex zT but not its other
endvertex u), noting by Lemma 14.2 that

(14.2) no ∗-neighbour of zP+1 lies in either ν ′′(u−) or ν(w+).

Next, we add some further vertices in a set A determined according to which
of the following cases applies. Let S and α be given as in (14.1) and Lemma
14.2(b).

Case I. Suppose α = N + 1. Then A = {zP+1} ∪ S, By (14.2) and
Lemma 14.2, the ensuing path ν is non-self-touching and traverses the di-
agonal δ(zP+1, v).

Case II. Suppose α > N + 1.



52 GEOFFREY R. GRIMMETT AND ZHONGYANG LI

u v w

yα

yN yN+1

Q Q

yβ

zS

RL

zT

Figure 14.6. When the rightmost U is on the left, and the leftmost
W is on the right, we replace the subpath of ν from zT to zS by the
dashed edges.

u v w

y1

yN yN+1

Q Q

yr

Figure 14.7. This is the picture when neither U nor W is represented
in the set R ∪ L.

1. If K(T ) = 0, we take A = S. If yα � yα−1 we stop. The ensuing path ν
is non-self-touching and traverses the diagonal δ(zt, v). See Figure 14.4.

2. Let K(T ) = 0, and assume that yα ∼ yα−1. If zt � yα−1 we take
A = {yα−1} ∪ S. The construction of ν is complete on noting that
δ(zt, yα−1) is a diagonal.

3. Let K(T ) = 0, and assume that yα ∼ yα−1 and zt ∼ yα−1. Take A =
{zt−1} ∪ S, and repeat the above with (α, T ) replaced by (α− 1, t− 1).

4. If K(T ) = T ′1 > 0, repeat the above with (α, T ) replaced by (f(T ′1), T ′1).
See Figure 14.5.
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This iterative process terminates with a path ν containing a diagonal of the
form either δ(zk, v) or δ(zk, yβ) for some P+1 ≤ k < T and N+1 ≤ β < α. If
ν is not non-self-touching, one may apply oxbow-removal (by Lemma 11.1(b))
to obtain a path ν containing the above diagonal.

A similar construction is valid if some vertex in L is labelled W .
(e) Assume U appears in L \R but not in R, and W appears in R \L but not in

L. By Lemma 14.2(b),

(14.3)
no yi with i ≤ N has a neighbour labelled W ;

no yi with i > N has a neighbour labelled U .

Let zT ∈ L be the rightmost U and zS ∈ R the leftmost W , and let α =
min{i : yi ∼ zT} and β = max{i : yi ∼ zS}. The zi between zT and zS
are labelled Q. We remove from ν the part of ν(u−) between zT and v, and
similarly that of ν(w+) between zS and w (we retain the endpoints zT and
zS). See Figure 14.6.

Next we add yα, yα+1, . . . , yN and also yβ, yβ+1, . . . , yN+1. By Lemma 14.2(a),
the ensuing ν is non-self-touching, and includes the diagonal δ(yN , yN+1).

(f) Assume that U appears in L \ R but not in R, and W appears nowhere in
L∪R. The argument of part (b) applies with the sequence yβ, yβ+1, . . . , yN+1

replaced by yN+1, yN+2, . . . , yr.
(g) Finally, if neither U nor W is represented in L ∪ R, then all members of

L ∪ R are labelled Q. In this case, we remove v, and we add the points
{yi : i = 1, 2, . . . , r}. See Figure 14.7. By Lemma 14.2(a), the ensuing ν is
non-self-touching and traverses the diagonal δ(yN , yN+1).
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[50] S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling

limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 239–244.

[51] M. F. Sykes and J. W. Essam, Exact critical percolation probabilities for site and bond problems

in two dimensions, J. Math. Phys. 5 (1964), 1117–1127.

[52] A. Vince, Periodicity, quasiperiodicity, and Bieberbach’s theorem on crystallographic groups,

Amer. Math. Monthly 104 (1997), 27–35.

(GRG) Centre for Mathematical Sciences, Cambridge University, Wilberforce

Road, Cambridge CB3 0WB, UK

Email address: g.r.grimmett@statslab.cam.ac.uk

URL: http://www.statslab.cam.ac.uk/~grg/

(ZL) Department of Mathematics, University of Connecticut, Storrs, Connecti-

cut 06269-3009, USA

Email address: zhongyang.li@uconn.edu

URL: http://www.math.uconn.edu/~zhongyang/

http://www.statslab.cam.ac.uk/~grg/
http://www.math.uconn.edu/~zhongyang/

	1. Introduction
	1.1. Percolation on planar graphs
	1.2. Critical points of matching pairs
	1.3. Existence of infinitely many infinite clusters
	1.4. Strict inequality for critical points
	1.5. Organization of material

	2. Notation
	2.1. Graphical notation
	2.2. Percolation notation

	3. Background
	3.1. Embeddings of one-ended planar graphs
	3.2. Percolation
	3.3. Planar duality
	3.4. Graphs with two or more ends
	3.5. FKG inequality

	4. Planar site percolation as a bond model
	5. Amenable planar graphs with one end
	6. Non-amenable graphs with one end
	7. Proof of Theorem 1.8
	8. Proof of Theorem 1.9
	9. Strict inequality: further notation
	10. Applications of Theorem 1.11
	10.1. Transitive graphs have property .
	10.2. The metric method
	10.3. The combinatorial method

	11. Some observations
	11.1. Oxbow-removal
	11.2. Graph properties
	11.3. Proof of Theorem 11.7

	12. Proof of Theorem 1.11
	13. Strict inequality using the metric method
	13.1. Embeddings in the Poincaré disk
	13.2. Proof of Theorem 10.1 by the metric method
	13.3. The case of quasi-transitive graphs

	14. Strict inequality using the combinatorial method
	Acknowledgements
	References

