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Abstract. Let θ(J) be the order parameter of a (ferromagnetic) Potts or random-
cluster process with bond-variables J = (Je : e ∈ K). We discuss differential inequali-
ties of the form

∂θ

∂Je

≤ α(J)
∂θ

∂Jf

for all e, f ∈ K.

Such inequalities may be established for all random-cluster processes that satisfy the
FKG inequality, possibly in the presence of many-body interactions (subject to certain
necessary and sufficient conditions on the sets of interactions). There are (at least)
two principal consequences of this. First, for a process having ‘inverse-temperature’
β, the critical value βc = βc(J) is a strictly monotone function of J. Secondly, at any
fixed point J lying on the critical surface of the process, the critical exponent of θ in
the limit as J′ ↓ J is independent of the direction of approach of the limit. Such a
conclusion should be valid for other critical exponents also; this amounts to a small
amount of rigorous universality.

1. Introduction

Let us consider a general spin-system on Z
d having a finite set J = (Je : e ∈ K) of

parameters. One general approach to the question of establishing macroscopic proper-
ties of the system is to derive and analyse inequalities involving the partial derivatives
of the order parameter θ(J). The purpose of this paper is to survey inequalities of the
form

∂θ

∂Je

≤ α(J)
∂θ

∂Jf

for all e, f ∈ K, (1)

where α is a continuous function that is finite on (at least) the interior of the space of



all vectors J. (Note that (1) should, strictly speaking, be replaced by the corresponding
inequalities for the finite-box approximations θΛ of θ, where α is independent of the
choice of the box Λ.)

Two points at issue are:
(a) How may one derive inequalities (1)?
(b) How may such inequalities be used?

Inequalities of the type (1) appear to have been established first by Menshikov
[12] in the special setting of bond percolation with two types of edges. The basic idea
of [12] was isolated and refined by Aizenman and Grimmett [1], and discussed there
in some detail for percolation and Ising models with pair-interactions. More recently,
Bezuidenhout, Grimmett, and Kesten [3] have set such work in the general context
of Potts and random-cluster processes. The general case of many-body interactions
is treated by Grimmett [10]. In Sections 3 and 4 of the present paper, we present
the basic ideas of the derivation of (1) for percolation and random-cluster processes,
respectively.

Just as important as the derivation of the inequalities (1) are their uses. There
appear to be two principal uses of such inequalities, and each concerns the nature of
the phase transition. The first application is to the question of the strict monotonicity
of the critical point as a function of the underlying parameters (for example, the
strict monotonicity of the critical inverse-temperature βc = βc(J), as a function of
J). The second application is to the universality of certain critical exponents. These
applications of (1) are discussed in the next section.

2. Applications of the Differential Inequalities

Assume for the sake of definiteness that the vector J of parameters satisfies J ∈
(0,∞)K, and that the phase transition is indicated by the order parameter θ changing
from the value 0 to being strictly positive. The subcritical and supercritical regions
may be defined respectively as follows. For J ∈ (0,∞)K, let

βc(J) = sup
{
β : θ(βJ) = 0

}
, (2)

and define the subcritical and supercritical regions by

SB =
{
J : βc(J) > 1

}
, (3)

SP =
{
J : βc(J) < 1

}
. (4)

The critical surface is the set C given by

C =
{
J : βc(J) = 1

}
. (5)

The question of strict monotonicity of critical points may be cast in this framework as
follows: do there exist J,J′ ∈ C such that J ≤ J′ but J 6= J′? The following argument
may be made rigorous (see [1, 3]). Since C is (approximately) a contour of the function



θ, the normal to C at a point J lies in the direction of the gradient vector ∇θ at J. If
(1) holds, then there exists δ (> 0) such that this gradient vector satisfies

∂θ

∂Je

≥ δ|∇θ| for all e ∈ K. (6)

The tangent vectors to C at J are perpendicular to ∇θ, and it follows from (6) that
every unit tangent vector has all components bounded away from zero. By considering
the geometry of C, it follows that if J ∈ C and J′ ≥ J, J′ 6= J, then J′ lies in the
interior of SP.

In the usual setting, there is a single parameter β, the ‘inverse-temperature’,
and the hamiltonian H of the system satisfies H(β,J, σ) = H(1, βJ, σ), where σ is a
configuration of spins. For given J, the critical value is defined as in (2). Applying the
arguments sketched above, one finds that βc(J) is strictly monotone in J, in that

βc(J) > βc(J
′) whenever J′ ≥ J and J′ 6= J, (7)

so long as inequalities (1) hold. Further discussion may be found in [1].
A second application of (1) is to the question of the universality of critical expo-

nents. It is generally believed that θ(J′) behaves roughly as |J′ − J|b in the limit as
J′ ↓ J ∈ C; here b is a universal critical exponent, supposed to depend only on the type
of the process (percolation, Ising, etc.) and the number of its dimensions. Suppose
then that, for J ∈ C and for any unit vector e of R

K , there exists a number βJ(e) such
that

θ(J + ǫe) − θ(J) ≈ ǫβJ(e) as ǫ ↓ 0; (8)

the relation ‘≈’ should be interpreted in some reasonable way. As stated above, it is
believed that βJ(e) is independent of J and of e (so long as e ≥ 0, say), and furthermore
βJ(e) is believed to depend only on the type and on the number of dimensions of the
process.

Suppose now that (1) holds. Since the left-hand side of (8) may be obtained by
integrating e.∇θ, it may be shown that βJ(e) does not depend on the choice of e (so
long as e ≥ 0, say, though actually less suffices). That is to say, at any fixed point J

on the critical surface of the process, the critical exponent of θ does not depend on the
direction of approach of J. This is a (rather small) piece of rigorous universality, valid
whenever inequalities (1) hold (or rather, corresponding inequalities for the finite-box
approximations of θ).

It is valuable to note that βJ(e) is independent of e at any point J in a neigh-
bourhood of which (1) is valid (with α finite). This is especially interesting if such a J

lies on the boundary of the parameter space [0,∞)K. Suppose for example that J is
such that Jf = 0 for some f ∈ K, and that (1) holds in a neighbourhood of J. Then
the critical exponent βJ(e) satisfies, in particular,

βJ(ef ) = βJ(eg) for all g ∈ K, (9)

where eg is the unit vector (δeg : e ∈ K), δeg being the Kronecker delta. Now βJ(eg),
for g 6= f , is a critical exponent of a process with Jf = 0, i.e., a process in which the



interaction indexed by f is absent; whereas, βJ(ef ) is an exponent of the ‘full’ process.
An example of this observation is given at the end of the next section.

Since working on the boundary of the parameter space [0,∞)K usually corresponds
to ‘switching off’ certain interactions, special care is needed in checking the validity of
(1) (with finite α) at such boundary points.

3. Percolation

The following simple example is illustrative of the derivation of inequalities (1). Con-
sider bond percolation on the triangular lattice T. We write e‖f if e and f are parallel
edges, and we denote by η1, η2, and η3 the equivalence classes of the relation ‖. Edges
in ηi are declared open with probability pi, independently of the states of all other
edges; the three parameters of the process are p = (p1, p2, p3). It is known that the
critical surface of the process is the set of all p satisfying φ(p) = 0 where

φ(p) = p1 + p2 + p3 − p1p2p3 − 1; (10)

see [9, 15]; this fact is completely irrelevant to the following discussion. The order
parameter is the probability θ(p) that the origin 0 belongs to an infinite open cluster,
i.e.,

θ(p) = Pp(0 ↔ ∞) (11)

where Pp is the associated probability measure. Russo’s formula (see [9]) provides a
representation for the partial derivatives ∂θ/∂pi of the form

∂θ

∂pi

= Ep(Ni), (12)

where Ep(Ni) is the mean number of edges of ηi which are ‘pivotal’ for the event
{0 ↔ ∞}; we recall that an edge is ‘pivotal’ for an event A if the state of this edge
determines whether or not A occurs. (Actually, Russo’s formula implies (12) with
θ replaced by a ‘finite-box approximation’ θΛ(p) = Pp(0 ↔ ∂Λ), where ∂Λ is the
boundary of a cube Λ containing the origin, and with Ni replaced by the number Ni(A)
of edges that are pivotal for the event A = {0 ↔ ∂Λ}.) Therefore, the ‘macroscopic’
derivative ∂θ/∂pi may be expressed as the sum,

∂θ

∂pi

=
∑

e∈ηi

Pp

(
e is pivotal for {0 ↔ ∞}

)
(13)

of probabilities of events having a local character.
Now each edge e (∈ ηi) has a ‘bottom left’ endvertex, which is also the ‘bottom

left’ endvertex of a unique edge in ηj (where j 6= i); call this latter edge e′. It is not
hard to see that there exists a continuous function α(p), finite on (0, 1)3, such that

Pp

(
e is pivotal for {0 ↔ ∞}

)
≤ α(p)Pp

(
e′ is pivotal for {0 ↔ ∞}

)
, (14)



implying by (13) that
∂θ

∂pi

≤ α(p)
∂θ

∂pj

(15)

as required for (1). Furthermore, α may be chosen in such a way that (15) holds for
all i and j. Inequality (14) is obtained in the following way. Suppose that ω is a
configuration for which e is pivotal for the event {0 ↔ ∞}. By making changes to the
states of edges near to e, i.e., within some fixed distance R of e, we may obtain a new
configuration ω′ for which e′ is pivotal for {0 ↔ ∞}. Some geometrical considerations
are relevant in making such local changes, but it is not difficult to see roughly how
this may be done. Since ω and ω′ differ only on a bounded number of edges, we have
that Pp(ω) ≤ γ(p)Pp(ω′) for some γ(p) which is continuous and finite on (0, 1)3, and
which is independent of the choice of e. Summing over all such ω, we obtain that

Pp

(
e pivotal for {0 ↔ ∞}

)
=

∑

ω

Pp(ω) ≤ γ(p)
∑

ω

Pp(ω′)

≤ Nγ(p)
∑

ω′

Pp(ω′)

= Nγ(p)Pp

(
e′ pivotal for {0 ↔ ∞}

)
,

where N = N(R) is a uniform upper bound for the number of configurations ω which
give rise to a given ω′. To make the above argument rigorous, one replaces the event
{0 ↔ ∞} by the event {0 ↔ ∂Λ} where Λ is a finite box containing the origin; the
function γ may be taken to be independent of the choice of Λ.

With care, one may see that (15) holds for all p ∈ [0, 1)3 and for a function α(p)
which is finite on the set S of all vectors p ∈ [0, 1)3 having at least two non-zero
components. Note that setting p3 = 0 corresponds to working on the square lattice
Z

2, rather than on the triangular lattice T.
Having established (15), and therefore (1), we obtain information about the phase

transition, as follows. Suppose that the critical surface C has equation φ(p) = 0 (the
fact that φ may be taken according to (10) in this case is completely immaterial to the
current discussion). One learns first that C has no ‘flat sections’, in the sense that if
φ(p) = 0, and p′ ≥ p but p′ 6= p, then φ(p′) 6= 0. Secondly, one obtains that, if the
critical exponents βp(e), given by

θ(p + ǫe) − θ(p) ≈ ǫβp(e) as ǫ ↓ 0, for p ∈ C,

exist, then βp(e) does not depend on the choice of e (so long as e ≥ 0, say, though
actually less suffices). Furthermore, this invariance of βp(e) is valid for all p ∈ S. A
conclusion of a particularly interesting type is obtained at the point p = ( 1

2 , 1
2 , 0), which

lies on the critical surface by virtue of the fact that bond percolation on Z
2 has critical

probability 1
2 . With this choice of p, we obtain the equality of the critical exponents

associated with the two quantities θ( 1
2
, 1

2
, ǫ) and θ( 1

2
+ ǫ, 1

2
+ ǫ, 0), in the limit as ǫ ↓ 0.

Striking is the fact that the first is an exponent associated with the triangular lattice,
and the second is associated with the square lattice. None of the above argument
is based on the special structure of the pair (Z2, T). Similar conclusions are valid



for mixed percolation, with ‘bonds’ which may be general finite sets of vertices; such
processes are hypergraphs, rather than graphs.

The argument leading to (15) was set in a general context in [1], where it was
proved that any ‘essential enhancement’ of a percolation process changes its critical
point strictly . Other applications of this idea are presented in [1].

Conclusions related to the above discussion of critical exponents have been reached
also by Wierman (1992, private communication), using different means. The method
described here may be applied also to certain other exponents, such as the one usually
denoted by γ.

4. Potts and Random-Cluster Processes

The relationship between Potts and random-cluster processes was established and ex-
plored by Fortuin and Kasteleyn, and reviewed more recently by others (see [5, 6, 7, 11,
2, 4, 13, 14]). Fortuin and Kasteleyn observed that the magnetization of a ferromag-
netic Potts model, with q states available at each vertex (q ≥ 2), could be expressed in
terms of the ‘percolation probability’ of a certain process on the edge-set of the lattice.
This representation for the Potts model enables one to translate questions concerning
long-range correlations in Potts models into geometrical questions for random-cluster
processes. Furthermore, the random-cluster measures may be defined for any positive
real q, rather than for integers only; therefore, in studying random-cluster processes,
one may obtain results in a more general setting than for Potts models only.

We omit the details of the derivation of the random-cluster representation of Potts
models, but we refer the reader to [2, 4, 10].

Let G = (V, E) be a finite graph, and let p̃ = (p̃e : e ∈ E) be a vector of numbers
satisfying 0 ≤ p̃e ≤ 1, and indexed by the edge-set of G. The random-cluster measure
φ is a probability measure on the configuration space ΩE = {0, 1}E given by

φ(ω) =
1

Z

{∏

e∈E

p̃ω(e)
e (1 − p̃e)

1−ω(e)

}
qk(ω), ω ∈ ΩE , (16)

where k(ω) is the number of components of the graph (V, η(ω)), and η(ω) = {e : ω(e) =
1} is the set of edges which are ‘open’ in the configuration ω. The constant Z is the
appropriate normalizing factor. Note that φ may be expressed as product-measure
together with a ‘derivative’ proportional to qk(ω). It may be seen that φ satisfies the
FKG inequality if and only if q ≥ 1 (see [2, 8]).

The first step towards establishing (1) for random-cluster processes is to represent
the derivatives of φ(A) in a useful way, for certain events A of interest. The following
notably simple formula is valid: for any event A, we have that

∂

∂p̃e

φ(A) =
1

p̃e(1 − p̃e)
cov(Ie, IA), (17)

where Ie is the indicator function of the event {ω(e) = 1}, and IA is the indicator
function of the event A; of course, ‘cov’ is the covariance operator associated with φ.



This formula, easily derived from (16) with hindsight, is a generalization of Russo’s
formula (see [9], particularly Theorem (2.33)).

We may express the covariance in (17) as

cov(Ie, IA) = φ(A)
{
φ
(
ω(e) = 1

∣∣A
)
− φ

(
ω(e) = 1

)}
. (18)

Suppose now that q ≥ 1 (so that φ satisfies the FKG inequality), and that A is
an increasing event (in that, if ω ∈ A and ω ≤ ω′, then ω′ ∈ A). In this case,
the right-hand side of (18) is non-negative, and it is useful to express the difference
therein as a single non-negative object, as follows. One may construct a Markov chain
(X, Y ) = (Xt, Yt)t≥0 taking values in ΩE × A, such that
(a) X is irreducible with stationary measure φ(·),
(b) Y is irreducible with stationary measure φ(· | A),
(c) Xt ≤ Yt for all t.
This chain may be used to represent (17), via (18), as

∂

∂p̃e

φ(A) =
φ(A)

p̃e(1 − p̃e)
lim

t→∞
P

(
Xt(e) = 0, Yt(e) = 1

)
, (19)

where P is the appropriate probability measure on the sample paths of (X, Y ). This
formula is central to the method; it is valid for all increasing A, and whenever q ≥ 1.

The random-cluster measure on the infinite lattice Z
d is constructed as follows.

Let K be a finite set of vertices, not including the origin 0, and let p = (px : x ∈ K)
be a vector of numbers satisfying 0 ≤ px ≤ 1. As edge-set of Z

d, we take the set
E = {eu,x : u ∈ Z

d, x ∈ K}, where eu,x denotes an edge with endpoints u and u + x.
Thus, each vertex u ‘interacts’ with all vertices of the form u − x or u + x, for x ∈ K.
We assume that

if x ∈ K, then −x /∈ K,(20)

the graph (Zd, E) is connected.(21)

Let Λ be a finite box of Z
d containing the origin, and let ∂Λ be the boundary of Λ,

i.e., ∂Λ is the set of all vertices u (∈ Λ) for which there exists x (∈ K) such that either
u+x /∈ Λ or u−x /∈ Λ. We write EΛ for the set of edges (in E) both of whose endpoints
lie in Λ, and we denote by ΩΛ the subset of Ω = {0, 1}E containing configurations ω
satisfying ω(e) = 1 for all e /∈ EΛ. We define the ‘finite-box’ probability measure on
ΩΛ by

φΛ,p,q(ω) =
1

ZΛ

{∏

e∈E

pω(e)
e (1 − pe)

1−ω(e)

}
qk(ω), ω ∈ ΩΛ, (22)

where pe = px if e = eu,x ∈ E. Note that φΛ,p,q is the measure φ given by (16), where
G is obtained from (Zd, E) by identifying all vertices in Λ \ ∂Λ, and p̃ is given by
p̃e = pe.

Suppose q ≥ 1. It may be shown that the weak limit

φp,q = lim
Λ↑Zd

φΛ,p,q (23)



exists. Let A = {0 ↔ ∞}, the event that the origin is in an infinite component of the
graph (Zd, η(ω)), and define

θΛ(p, q) = φΛ,p,q(A). (24)

It is not hard to see that

θΛ(p, q) ↓ θ(p, q) as Λ ↑ Z
d,

where
θ(p, q) = φp,q(A).

The function θ is the order parameter of the process, and the subcritical, supercritical,
and critical regions may be defined by (2)–(5) with J replaced by p.

Making use of (19), one finds that

∂θΛ

∂px

=
θΛ(p, q)

px(1 − px)

∑

u∈Λ

lim
t→∞

P
(
Xt(eu,x) = 0, Yt(eu,x) = 1

)
, (25)

if 0 < px < 1, where (X, Y ) is a certain bivariate Markov chain. This formula plays
the role that (13) played for percolation. Fix x, y ∈ K with x 6= y, and suppose that
q > 1 (the following argument fails if q = 1). By following the sample paths of the
process (X, Y ), and by estimating the transition intensities of the chain, we may find
a continuous function γ(p, q) such that

P
(
Xt(eu,x) = 0, Yt(eu,x) = 1

)
≤ γ(p, q)P

(
Xt(eu,y) = 0, Yt(eu,y) = 1

)
(26)

for all u ∈ Λ\∂Λ. Taking into account some special effects when u ∈ ∂Λ, one concludes
from (25) and (26) that

∂θΛ

∂px

≤ 2γ(p, q)
∂θΛ

∂py

for all x, y ∈ K, (27)

as required for (1).
It is interesting to note that such arguments and conclusions are valid (with some

changes) in four related situations. First, one may show that (27) holds (with finite
γ) at certain points on the boundary of the parameter space (0, 1)K. Suppose, for
example, that K is partitioned as K = K ′ ∪ R, in such a way that (20) and (21) hold
when K is replaced by K ′. Then γ may be taken to be finite at any point p satisfying
0 ≤ px < 1 for x ∈ R, 0 < px < 1 for x ∈ K ′.

Secondly, inequalities (27) may be derived in the context of many-body interac-
tions rather than pair-interactions only. In this generalization of the random-cluster
process, the edges are replaced by hyperedges, being finite sets of vertices having car-
dinality two or more. See [10].

Thirdly, the method is valid also if one weakens the assumption that the underlying
graph (Zd, E) is vertex-transitive, replacing it by an appropriate but general assumption
of periodicity. Certain extra geometrical complications arise in this general setting,



especially when the interactions are many-body rather than pair. Nevertheless, one
may arrive at a geometrical condition for any given interaction which is necessary and
sufficient for this interaction to contribute in a vital way to the phase transition. See
[10].

Finally, it may interest probabilists to note that inequalities of the type (27) may
be established when the underlying measure φ in (16) is replaced by something of the
form

φ(ω) =

{∏

e∈E

p̃ω(e)
e (1 − p̃e)

1−ω(e)

}
ρ(ω), ω ∈ ΩE ,

where ρ is a ‘Radon–Nikodym’ derivative satisfying certain suitable conditions.
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