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Abstract

Ganikhodjaev and Razak have proved versions of the two Griffiths

inequalities for the ferromagnetic Potts model. We show how their in-

equalities may be derived via the FKG inequality for the random-cluster

representation of the Potts model.

1 Introduction

Ganikhodjaev and Razak have shown in [1] how to formulate and prove two
Griffiths-type inequalities for the Potts model with a general number q of local
states. Our purpose in this note is to derive their inequalities using the FKG
inequality for the random-cluster representation of the Potts model.

2 The inequalities

Let G = (V, E) be a finite graph, and let J = (Je : e ∈ E) be a vector of
non-negative reals and q ∈ {2, 3, . . .}. As in [1], we take as local state space
for the q-state Potts model the set Q = {−Q,−Q + 1,−Q + 2, . . . , Q} where
Q = 1

2
(q − 1). The important properties of Q for what follows are that |Q| = q

and Q = −Q. The Potts measure on G with parameters J has state space
Σ = QV and probability measure

π(σ) =
1

Z
exp

(

∑

e∈E

Jeδe(σ)

)

, σ = (σv : v ∈ V ) ∈ Σ,

where
δe(σ) = δσx,σy

for e = 〈x, y〉 ∈ E,

is a Kronecker delta, and Z is the appropriate normalizing constant.
We shall make use of the random-cluster representation in this note, and

we refer the reader to [5] for a recent account and bibliography. In particular,
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we shall use the following fact. Let Ω = {0, 1}E, and let φ denote the random-
cluster measure on Ω with edge-parameters pe = 1− e−Je and cluster-weighting
factor q. Suppose ω is sampled from Ω according to φ, and write k(ω) for the
number of ‘open clusters’ of ω. To each open cluster of ω we allocate a uniformly
chosen spin from Q, such that every vertex in the cluster receives this spin, and
the spins of different clusters are independent. The ensuing spin vector σ has
law π. See [5], Theorem 1.13 for a proof of this standard fact.

We present next the inequalities of [1]. For σ ∈ Σ let

σR =
∏

v∈R

σv, R ⊆ V.

Thinking now of σ as a random vector with law π, we write 〈σR〉 for the mean
value of σR.

Theorem 2.1. For R, S ⊆ V , we have that 〈σR〉 ≥ 0 and 〈σRσS〉 ≥ 〈σR〉〈σS〉.

As pointed out in [1], these inequalities generalize the two Griffiths inequal-
ities for the Ising model, see [3, 4]. We do not know if they were known prior
to [1]. Check [2].

Several feasible extensions come to mind. . .

3 Proof of Theorem 2.1

We shall use the coupling of the random-cluster and Potts model described in
Section 2. Let ω ∈ Ω and let A1, A2, . . . , Ak be the vertex-sets of the open
clusters of ω. Let R ⊆ V . We call R even (with respect to ω) if |R∩Ai| is even
for every i ∈ {1, 2, . . . , k}. Let χR(ω) be the indicator function of the event that
R is even. Note that ER ≡ 0 if R has odd cardinality.

Let gR : Ω → R be given by

gR(ω) = χR(ω)

k
∏

i=1

E(Q|Ai|). (3.1)

where Q is chosen uniformly at random from Q.

Lemma 1. Let ω ∈ Ω and let σ be chosen at random according to the coupling

of Section 2. The conditional expectation of σR given ω equals gR(ω).

Proof. Clearly

σR =

k
∏

i=1

Q
|Ai|
i ,

where Qi is the spin allocated to the ith cluster Ai. Assume that R is not even,
say that a = |R ∩ A1| is odd. Then Qa

1 has conditional mean satisfying

E(Qa
1) = E((−Q1)

a) = −E(Qa
1),

whence E(Qa
1) = 0. The claim of the lemma follows.
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By Lemma 1, 〈σR〉 = φ(gR). Now gR takes values in the non-negative reals,
and the first inequality of Theorem 2.1 follows.

Lemma 2. The function gR : Ω → R is non-decreasing on the partially ordered

set Ω.

Once this is proved, the second inequality of Theorem 2.1 follows immedi-
ately by the FKG property of φ, see [5], Theorem 3.8.

Proof. It is clear that χR is non-decreasing on Ω, since the addition of new open
edges has the effect of joining together open clusters. By (3.1), gR(ω) > 0 if
and only if χR(ω) = 1. It suffices therefore to show (using the above notation)
that

hR(ω) =

k
∏

i=1

E(Q|Ai|)

is non-decreasing on the event {ω : χR(ω) = 1} that R is even. By considering
the case when ω′ is obtained from ω by adding an edge between two clusters of
ω, it suffices that

E(T m+n) ≥ E(T m)E(T n), m, n ≥ 1, (3.2)

where T = Q2. This trivial inequality may be proved in several ways, of which
one is the following. Let T1, T2 be independent copies of T . It is trivial that

(T m
1 − T m

2 )(T n
1 − T n

2 ) ≥ 0, (3.3)

since either T1 ≤ T2 or T1 > T2. Inequality (3.2) follows by multiplying out
(3.3) and averaging.
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