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Abstract. Correlation inequalities are presented for function-
als of a ferromagnetic Potts model with external field, using the
random-cluster representation. These results extend earlier in-
equalities of Ganikhodjaev–Razak and Schonmann, and yield also
GKS-type inequalities when the spin-space is taken as the set of
qth roots of unity.

1. Introduction

Our purpose in this brief note is to derive certain correlation in-
equalities for a ferromagnetic Potts model. The main technique is the
random-cluster representation of this model, and particularly the FKG
inequality. Some, at least, of the arguments given here are probably
known to others. Our results generalize the work of Ganikhodjaev and
Razak, who have shown in [5] how to formulate and prove GKS in-
equalities for the Potts model with a general number q of local states.
Furthermore, our Theorems 2.5 and 2.7 extend the correlation inequal-
ities of Schonmann to be found in [12].

2. The inequalities

Let G = (V, E) be a finite graph, and let J = (Je : e ∈ E) and
h = (hv : v ∈ V ) be vectors of non-negative reals, and q ∈ {2, 3, . . .}.
We take as local state space for the q-state Potts model the set Q =
{0, 1, . . . , q− 1}. The Potts measure on G with parameters J has state
space Σ = QV and probability measure

π(σ) =
1

Z
exp







∑

e=〈x,y〉∈E

Jeδe(σ) +
∑

v∈V

hvδv(σ)







,

Date: first posted 29 July 2007, revised 7 January 2009.
1991 Mathematics Subject Classification. 82B20, 60K35.
Key words and phrases. Griffiths inequality, GKS inequality, Ising model, Potts

model, random-cluster model, angular spins.
1



2 GEOFFREY R. GRIMMETT

for σ = (σv : v ∈ V ) ∈ Σ, where δe(σ) = δσx,σy
and δv(σ) = δσv ,0

are Kronecker delta functions, and Z is the appropriate normalizing
constant.

We shall make use of the random-cluster representation in this note,
and we refer the reader to [9] for a recent account and bibliography.
Consider a random-cluster model on the graph G+ obtained by adding
a ‘ghost’ vertex g, joined to each vertex v ∈ V by a new edge 〈g, v〉.
An edge e ∈ E has parameter pe = 1 − e−Je, and an edge 〈g, v〉 has
parameter pv = 1 − e−hv . With φ the corresponding random-cluster
measure, we obtain the spin configuration as follows. The cluster Cg

containing g has spin 0. To each open cluster of ω other than Cg,
we allocate a uniformly chosen spin from Q, such that every vertex
in the cluster receives this spin, and the spins of different clusters are
independent. The ensuing spin vector σ = σ(ω) has law π. See [9,
Thm 1.3] for a proof of this standard fact, and for references to the
original work of Fortuin and Kasteleyn.

Let f : Q → C. For σ ∈ Σ, let

(2.1) f(σ)R =
∏

v∈R

f(σv), R ⊆ V.

Thinking of σ as a random vector with law π, we write 〈f(σ)R〉 for the
mean value of f(σ)R. Let Fq be the set of all functions f : Q → C such
that, for all integers m, n ≥ 0:

E(f(X)m) is real and non-negative,(2.2)

E(f(X)m+n) ≥ E(f(X)m)E(f(X)n),(2.3)

where X is a uniformly distributed random variable on Q. That is, f ∈
Fq if each Sm =

∑

x∈Q f(x)m is real and non-negative, and qSm+n ≥
SmSn. For i ∈ Q, let F i

q be the subset of Fq containing all f such that

(2.4) f(i) = max{|f(x)| : x ∈ Q}.

This condition entails that f(i) is real and non-negative.

Theorem 2.5. Let f ∈ F 0
q . For R ⊆ V , the mean 〈f(σ)R〉 is real-

valued and non-decreasing in the vectors J and h, and satisfies 〈f(σ)R〉 ≥
0. For R, S ⊆ V , we have that

〈f(σ)Rf(σ)S〉 ≥ 〈f(σ)R〉〈f(σ)S〉.

If there is no external field, in that h ≡ 0, it suffices for the above that

f ∈ Fq.

Theorem 2.6. Let q ≥ 2. The following functions belong to F 0
q .

(a) f(x) = 1

2
(q − 1) − x.
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(b) f(x) = e2πix/q, a qth root of unity.

(c) f : Q → [0,∞), with f(x) ≤ f(0) for all x.

Case (a) gives us the inequalities of Ganikhodjaev and Razak, [5].
When q = 2, these reduce to the GKS inequalities for the Ising model,
see [7, 8, 11]. We do not now if the implications of case (b) were known
previously, or if they are useful. Perhaps they are elementary examples
of the results of [6]. In case (c) with f(x) = δx,0, we obtain the first
correlation inequality of Schonmann, [12].

Theorem 2.7. Let q ≥ 2, f0 ∈ F0
q , and let f1 : Q → C satisfy (2.2).

If f0 and f1 have disjoint support in that f0f1 ≡ 0 then, for R, S ⊆ V ,

〈f0(σ)Rf1(σ)S〉 ≤ 〈f0(σ)R〉〈f1(σ)S〉.

If h ≡ 0, it is enough to assume f0 ∈ Fq.

Two correlation inequalities were proved in [12], a ‘positive’ inequal-
ity that is implied by Theorem 2.6(c), and a ‘negative’ inequality that
is obtained as a special case of the last theorem, on setting f0(x) = δx,0

and f1(x) = δx,1. We note that Schonmann’s inequalities were them-
selves (partial) generalizations of correlation inequalities proved in [4].

Amongst the feasible extensions of the above theorems that come to
mind, we mention the classical space–time models used to study the
quantum Ising/Potts models, see [1, 2, 3, 10].

3. Proof of Theorem 2.5

We use the coupling of the random-cluster and Potts model described
in Section 2. Let E+ be the edge-set of G+, Ω+ = {0, 1}E+

, and
ω ∈ Ω+. Let Ag, A1, A2, . . . , Ak be the vertex-sets of the open clusters
of ω, where Ag is that of the cluster Cg containing g.

Let R ⊆ V , and let f ∈ F 0
q . By (2.1),

f(σ)R = f(0)|R∩Ag|

k
∏

r=1

f(Xr)
|R∩Ar |,

where Xr is the random spin assigned to Ar. This has conditional
expectation

gR(ω) := E(f(σ)R | ω) = f(0)|R∩Ag |

k
∏

r=1

E(f(X)|R∩Ar| | ω).

By (2.2) and (2.4), gR(ω) is real and non-negative, whence so is its
mean φ(gR) = 〈f(σ)R〉.

We show next that gR is a non-decreasing function on the partially
ordered set Ω+. It suffices to consider the case when the configuration
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ω′ is obtained from ω by adding an edge between two clusters of ω. In
this case, by (2.3)–(2.4), gR(ω′) ≥ gR(ω). That 〈σR〉 = φ(gR) is non-
decreasing in J and h follows by the appropriate comparison inequality
for the random-cluster measure φ, see [9, Thm 3.21].

Now,

E(f(σ)Rf(σ)S | ω) = f(0)|R∩Ag|+|S∩Ag|

k
∏

r=1

E
(

f(X)|R∩Ar|+|S∩Ar|
∣

∣ ω
)

.

By (2.3),

E(f(σ)Rf(σ)S | ω) ≥ gR(ω)gS(ω).

By the FKG property of φ, see [9, Thm 3.8],

〈f(σ)Rf(σ)S〉 = φ
(

E(f(σ)Rf(σ)S | ω)
)

≥ 〈f(σ)R〉〈f(σ)S)〉,

as required.
When h ≡ 0, the terms in f(0) do not appear in the above, and it

therefore suffices that f ∈ Fq.

4. Proof of Theorem 2.6

We shall use the following elementary fact: if T is a non-negative
random variable,

(4.1) E(T m+n) ≥ E(T m)E(T n), m, n ≥ 0.

This trivial inequality may be proved in several ways, of which one is
the following. Let T1, T2 be independent copies of T . Clearly,

(4.2) (T m
1 − T m

2 )(T n
1 − T n

2 ) ≥ 0,

since either 0 ≤ T1 ≤ T2 or 0 ≤ T2 ≤ T1. Inequality (4.1) follows by
multiplying out (4.2) and averaging.

Case (a). Inequality (2.4) with i = 0 is a triviality. Since f(X) is real-
valued, with the same distribution as −f(X), E(f(X)m) = 0 when m is
odd, and is positive when m is even. When m+n is even, (2.3) follows
from (4.1) with T = f(X)2, and both sides of (2.3) are 0 otherwise.

Case (b). It is an easy calculation that

E(f(X)m) = 1{q divides m},

where 1{F} is the indicator function of the set F , and (2.2)–(2.3) follow.

Case (c). Inequality (2.3) follows by (4.1) with T = f(X).
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5. Proof of Theorem 2.7

We may as well assume that f0 6≡ 0, so that f0(0) > 0 and f1(0) = 0.
We use the notation of Section 3, and write

F0(ω) = f0(0)|R∩Ag |
k

∏

r=1

E(f0(X)|R∩Ar | | ω),(5.1)

F1(ω) =

k
∏

r=1

E(f1(X)|S∩Ar| | ω).(5.2)

By (2.2), F0 and F1 are real-valued and non-negative. Since f0 ∈ F0
q ,

F0 is increasing.
Since f0f1 ≡ 0,

E
(

f0(σ)Rf1(σ)S
∣

∣ ω
)

= 1Z(ω)F0(ω)F1(ω),

where 1Z is the indicator function of the event Z = {S = R ∪ {g}}.
Here, as usual, we write U ↔ V if there exists an open path from some
vertex of U to some vertex of V . Let T be the subset of V containing all
vertices joined to S by open paths, and write ωT for the configuration
ω restricted to T . Using conditional expectation,

〈f0(σ)Rf1(σ)S〉 = φ
(

1ZF0F1

)

(5.3)

= φ
(

1ZF1φ(F0 | T, ωT )
)

,

where we have used the fact that 1Z and F1 are functions of the pair T ,
ωT only. On the event Z, F0 is an increasing function of the configura-
tion restricted to V \T . Furthermore, given T , the conditional measure
on V \ T is the corresponding random-cluster measure. It follows that

φ(F0 | T, ωT ) ≤ φ(F0) on Z,

by [9, Thm 3.21]. By (5.3),

〈f0(σ)Rf1(σ)S〉 ≤ φ
(

1ZF1φ(F0)
)

≤ φ(F0)φ(F1) = 〈f0(σ)R〉〈f1(σ)S〉,

and the theorem is proved.
When h ≡ 0, Ag = ∅ in (5.1), and it suffices that f0 ∈ Fq.
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